
Thesis Planning
GPU/CUDA basics
Histogram kernel

Tsapatsaris Panagiotis (Ntua)
Professor:

Dimitrios Soudris (Ntua)
Advisors:

Konstantinos Iliakis (Ntua,Cern)
Sotirios Xydis (Ntua)

Diploma Thesis Planning

● November to January studying(GPU architecture , Cuda programming model)

● February break for exams

● March to …. implementing and optimizing

Implementing And Optimizing in 2 Phases

● implementing and optimizing each kernel alone
● merge kernels and optimize again

Comparison between CPU and GPU
Vector Add

for (int i=0; i<size; i++)
c[i] = a[i] + b[i]

int tid = threadIdx.x + blockIdx.x*blockDim.x
if (tid<size)

c[tid] = a[tid] + b[tid]

We call a kernel like that:
kernel_name<<<grid,block>>>

grid and block can be 1d, 2d or 3d

What if threads are lesser than size?

for (int i=tid; i<size; i=i+blockDim.x*gridDim.x)
c[i] = a[i] + b[i]

GPU Basic Operations

Memory Operations

● Allocate memory in the GPU

● Copy from CPU to GPU (host to

device)

● Execute the computations

● Copy the results from the device to

host

Histogram Function

Input

● n particles each with a value

● k bins (k ~n/1000)

● cut_right , cut_left

Histogram function measure the frequency of these particles, so for each particle we

● check if it is inside the limits

● find the target bin

● increase its frequency by 1

Why do we need atomic operations

thread a thread b final value of i is 1
read i(0)
add 1 (1)

read i(0) That is the reason why we
store i(1) need atomic operations

add 1(1)
store i(1)

starting value of i is 0

thread a thread b

i++; i++;

After these threads complete their execution what is the value of i?

Answer: We do not know Example

Histogram Kernel

Only atomic version Shared Memory version

each thread atomically increase target bin’s
frequency by 1

Problem:
The code is being serialized because of
conflicts

Each block of threads computes a local
histogram and then add it to the global
histogram atomically

Pros:
Less conflicts in the shared memory
Cons:
More operations

So what if the local histogram can not fit
in the shared memory?

Hybrid version

Each block of threads has a local histogram for a
subgroup of bins and increase the rest of them
atomically

Example:

shared memory capacity = 4
histogram bins = 10
block 0 → [0,3] locally and the rest globally
block 1 → [4,7] locally
block 2 → [8,10] locally
block 3 → [0,3] locally

Parameters for optimizing

We need to find the optimal values for block size and grid size

We also need to decide which algorithm to choose

Results for small sizes
normalized with (1024,1024) shared memory
1000 turns, slices ~particles/1000

Results for big sizes
normalized with (1024,1024) shared memory
1000 turns, slices ~particles/1000

Results for huge sizes
normalized with (1024,1024) shared memory
1000 turns, slices ~particles/1000

Future work

● try to find dynamically the best couple of
(grid size,block size)

● test on normal distribution
● test different number of bins

Thank you very much!

Questions

