

Femtosecond laser-based manufacturing of functional 3D objects: from nanoresolution to millimeter size devices

Valdas Monkus

Business Development Executive, Femtika, Vilnius 30 January, 2020

(valdas@femtika.lt)

3D STRUCTURES IN NANOSCALE
Workstations and Services

Laser companies in Lithuania

The number of companies developing and producing lasers, laser solutions and services in Lithuania ->4 times growth in 10 years!

Femtika joined Lithuania laser comunity in 2013 and employed 6 specialists

>430

The number of **employees** expanded more than twice!

>2% of all Lithuania laser industry employees work at Femtika

Based on Lithuanian Laser association data

www.femtika.lt

ELI project

ELI Beam Lines L4 (Czech Republic, Prague)
Most powerful femtosecond laser in a world!

Laser "CERN"

Finish: 2018

10 PW;

•Technology:

Split disc mixed glass amplifiers;

Pulse duration 150 fs;

•Pulse energy 1500 J.

Femtika is a spin-off from Vilnius University Laser Research Center, working in the area of laser micro-machining, polymerization and optics solutions:

- Founded in 2013.
- Employees: 29 (3 PhD, 6 pre PhD).
- Member of Lithuanian Laser Association, EPIC.
- Partners Light Conversion, Vilnius
 University, Innovational Medical Center.
- Working in various R&D projects with EU partners (under H2020, Eurostars).

Our product : Laser Nanofactory!

Hybrid micro-fabrication workstation

- All-in-one package;
- Highly tunable;
- Subtractive and additive manufacturing;
- Fast (up to cm/s translation velocity);
- High precision (up to tens of nm) with high working volume (11x11x6 cm³);
- Durable (years of continuous use);

Enabler of rapid hybrid subtractive-additive fabrication of 3D meso-scale structures!

MFEMLIKA

Laser Nanofactory – micro-fabrication system

Amplified fs laser allows to combine **additive** and **subtractive** manufacturing.

Wide tunability enables efficient fabrication of micronano structures using huge range of materials (polymers, glasses, metals, ceramics, etc.).

Simultaneous motion of galvo and servo axes over the entire working field.

Femtika's own software 3DPoli for the full control of related devices (both manual and from user defined scripts).

Add-ons (for instance optical-fiber holders) and is **customizable** (as a versatile optical characterization setup).

System is **modular, can be adjusted** under requirements and integrated into automatic production line.

Subtractive vs additive manufacturing

Subtractive:

- Examples: CNC machining, laser cutting;
- Relatively faster;
- Simpler;
- No limitations for the materials;

Additive:

- Examples: casting, 3D printing;
- Allows more complex (3D) geometries;
- Low waste;
- Relatively easier structure integration;

øfemtika

Cold processing (Ablation and drilling)

- High cut quality;
- Simple;
- Fast;
- Applicable to all materials.

Selective glass etching

Possibilities:

MFEMLIKA

- Arbitrary 3D shape;
- Relatively high surface quality (1 μm RMS);
- Fast fabrication;
- Possibilities for large structures (~cm).

øfemtika

Femtosecond laser 3D lithography

(a) Laser writing

(b) Development

(c) Finished structure

- Unlimited 3D architecture;
- Ultra-high spatial resolution (<100 nm);
- Wide variety of materials (proteins, hydrogels, acrylates, silicon elastomers, hybrid organic-inorganic materials);
- Flexible and easily tunable.

Suspended antennas

[™] FEMCIRE

Meso-butterfly

Embedded nanolattice

Microlenses

Line width ~650 nm₁₁

Femtosecond laser surface structuring

Application of **fs laser allows** to achieve **hierarchical nanogrooves** (a), **micro-features** (b) and **combine** them **together** (c). This enables the control of surface **wetting**, **photonic and related properties**. Can be used to create hydrophobic or hydrophilic surface.

Gradient chainmail (flexible scaffold)

125 μm diameter

Chain and supports are printed with varying (dynamic) slicing and hatching steps for increased printing efficiency.

5 μm diameter

Applications: Micro-optics

Focusing (0.5 mm lens)

Thermal post-processing of SZ2080

Material: hybrid polymer SZ2080 with wt% ratio 2:8 of inorganic (Zr) – organic (Si containing acrylates).

Laser writing

Heat Treatment

Atmospheres: Air, O_2 , Ar (inert) Tested temperatures: 200-1500 °C Pre-treatment with $H_2SO_4 + H_2O_2$.

Jonušauskas et al., Materials **10**(1), 12 (2017)

Micro-Raman spectra

- Structures treated in 1000 °C in Air
- Initial vibrations of C=C; C=O; CH₂; CH₃ evident
- After treatment organic vibrations non-present!

Downscaling bulks and lattices

Nano-lattice

Nano-lattice + bulk

25 μm 25 μm

Complex 3D bulk

Uniform, consistent and well predictable feature down-sizing to 60% of initial size!

NOTOJA 🕪 NETOLI PAGĖGIŲ ANT APSEMTO KELIO ĮLŪŽUS MIKROAUT

Movable squid

Gecko-like suction cups

- Polymer is hard gel during fabrication – no supports needed;
- Single printing step.

Movement of the squid

- Sample is in liquid;
- Probe is moving on the top of meniscus;
- Capillary force moves the squid;
- Fluent and continuous movement is observed;
- No damage to the structure.

Movable glass structures

- 3D structurability enables intertwined movable glass structures;
- Bending and rotation of structure is possible.

Hybrid fabrication in action: lab-on-chip

Jonušauskas et al., Opt. Eng. **56**(9), 094108 (2017).

- Chemically inert glass channels;
- Integrated ultra-high resolution multi-level filters;
- Towards passive macro-molecule separation.

Channel ablation results – **superb quality** and adequate profile

The way Femtika works

Research

- Research of customer specific micro-structure fabrication method;
- Fabrication of microstructure prototype;
- Measurement and alignment with technical requirements;

Development

- Development of microstructure fabrication process;
- Development of mass production fabrication design;
- Development of needed machinery and automation;
- Batch production of product;

Installation

- Evaluation of site requirements and site preparation;
- Machinery manufacturing;
- Installation on site, if needed inside of existing production process;
- Training of users;

Laser-based Micro- and Nanoprocessing XIV, Sessioin PTue

4 February • 6:00 - 8:00 PM

Titas Tickunas et al: Dynamic voxel size tuning for direct laser writing

Laser 3D Manufacturing VII, Session 3

4 February • 2:30 - 2:50 PM

Titas Tickunas et al: Towards the improvement of axial resolution:

4Pi multiphoton polymerization

Laser-based Micro- and Nanoprocessing XIV, Session 6

5 February • 9:50 - 10:10 AM

Gedvinas Nemickas: Surface structuring by high power

femtosecond laser for industrial applications

Laser 3D Manufacturing VII, Session PTue

4 February • 6:00 - 8:00 PM

Linas Jonusauskas et al: Meso-optical elements printed via 3D laser

lithography

Laser 3D Manufacturing VII, Session 9

6 February • 8:50 - 9:20 AM

Linas Jonusauskas et al: Hybrid additive-subtractive femtosecond

laser 3D fabrication of medical microdevices

www.femtika.lt info@femtika.lt

Questions?

Ačiū!

Thank you!

Valdas@femtika.lt