Emittance Exchange in MICE

Craig Brown Brunel University 12 March 2020

Aims

2

- Demonstrate Emittance Exchange and Reverse Emittance Exchange in the Wedge using MICE data
- Emittance Exchange can be demonstrated by looking at the change in phase space density of the particle selection before and after having passed through a Wedge absorber
- Emittance Exchange is shown by a decreased transverse phase space density (x, px, y, py) and increased longitudinal phase space density (z, pz), (and vice versa for Reverse Emittance Exchange)
- Can use a number of techniques to calculate phase space density: KDE, KNN, Voronoi Tessellations, etc.
- ► MICE beam only has a small natural dispersion → Use beam reweighing techniques to select beams with desired dispersion

Previously

 Showed change in transverse phase-space density plots for various absorbers in two different ways. Both are however biased.

Case 1: Biased by Transmission Losses

- Cooling seen when the transverse downstream phase space density is greater than the upstream density.
- Bias is introduced by the missing particles being excluded from the downstream phase space volume calculation i.e comparing different volumes
- The current normalization doesn't account for the change in the particle distribution function.

Case 2: Biased by surviving beam particles

Fraction of beam above certain density

Top Left: No absorber

Top Right: Wedge

Bottom Left: LiH

Bottom Right: LH2

Blue – Full Upstream Sample 1.2 Red – Full Downstream Sample 1.0

Orange – Upstream Sample which made it Downstream

Green – Upstream Sample which doesn't make it downstream

Previously

Showed change in transverse phase-space density plots for various absorbers in two different ways. Both are however biased.

Case 1: Biased by Transmission Losses

Case 2: Biased by surviving beam particles

- The ratio of the downstream to upstream densities is a constant for the flat/no absorber case (expected when comparing same volumes)
- Lost particles are however excluded. Biased as it excludes some of the heating aspect

Ratio of the Downstream density to the Upstream density which makes it downstream

Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Ratio above one indicates heating while a ratio below one indicates cooling.

Transmission limits the beam to approximately 60% of the full upstream sample.

The min and max are limited 0.50 by low sample size and occupient occupients occupient occupients occupient occupients occupient occupients occupient occupi

Transmission losses (Recall)

7

- Liouville's theorem only applies to the same particles (or to system with the same particle distribution function). I.e the volume remains the same and the change in the covariance matrix can be described in a conserved manner.
- Transmission losses and subsequent change in particle distribution function can be described by the change it has on the covariance matrix (subscript 1: Full Upstream sample, 2: Upstream which makes it downstream, 3: Upstream which goes missing)

$$\begin{split} & \Sigma_{1} \\ &= \frac{N_{2}^{3}}{(N_{2} + N_{3})^{3}} \Sigma_{2} + \frac{N_{3}^{3}}{(N_{2} + N_{3})^{3}} \Sigma_{3} \\ &+ \sum_{N_{2}}^{N_{2}} \left(N_{2} N_{3} (P_{i} - \bar{P}_{2}) (P_{i} - \bar{P}_{3}) + N_{2} N_{3} (P_{i} - \bar{P}_{3}) (P_{i} - \bar{P}_{2}) + N_{3}^{2} (P_{i} - \bar{P}_{3}) (P_{i} - \bar{P}_{3}) \right) / (N_{2} + N_{3})^{3} \\ &+ \sum_{1}^{N_{3}} \left(N_{2} N_{3} (P_{i} - \bar{P}_{2}) (P_{i} - \bar{P}_{3}) + N_{2} N_{3} (P_{i} - \bar{P}_{3}) (P_{i} - \bar{P}_{2}) + N_{2}^{2} (P_{i} - \bar{P}_{2}) (P_{i} - \bar{P}_{2}) \right) / (N_{2} + N_{3})^{3} \end{split}$$

For the case of a symmetric absorber this can be simplified to

 $N_1\Sigma_1 = N_2\Sigma_2 + N_3\Sigma_3$

The determinant of a matrix (Recall)

The determinant of a matrix can be separated into parts using:

$$|\Sigma_{1}| = \sum_{i=0}^{n} \Gamma_{n}^{i} \left| \frac{\Sigma_{2}}{\Sigma_{3}^{i}} \right| = |\Sigma_{2}| + |\Sigma_{3}| + \sum_{i=1}^{n-1} \Gamma_{n}^{i} \left| \frac{\Sigma_{2}}{\Sigma_{3}^{i}} \right|$$

Where Γ_n^i represents substituting all combinations of i^{th} lines from Σ_2 by the same lines in Σ_3 and taking the subsequent determinant of the new matrix

For the symmetric case (LiH, LH2 and no absorber) the previous and above substitutions could be made to compare the upstream and downstream densities. Due to the asymmetry this cannot be done for the wedge and requires further derivation for the asymmetric case.

Potential next step (Recall)

- The missing data downstream is inaccessible, however the upstream sample which makes it downstream can be compared to the downstream sample
- The transport, M, of a covariance matrix from upstream to downstream can be given by:

$$\Sigma_{down} = \langle X_{down} \tilde{X}_{down} \rangle = \langle M X_{up} \tilde{M} \tilde{X}_{up} \rangle = M \langle X_{up} \tilde{X}_{up} \rangle \tilde{M} = M \Sigma_{up} \tilde{M}$$

The determinant is given by:

$$|\Sigma_{down}| = |M\Sigma_{up}\widetilde{M}| = |M|^2 |\Sigma_{up}| = |\Sigma_{up}|$$

- The transfer matrix M has been previously investigated by Sophie Middleton and Chris Rogers
- A potential investigation would be to investigate the change in R for different fraction sizes of the beam. If stable it could be used to investigate the missing data downstream to see if it is due to scraping and magnet misalignment affects and nothing else

Sample case from TKU S2 to TKU S1

- Last analysis meeting, showed plots for a third order transfer matrix from TKU S2 to TKU S1 excluding ~1% of highly scattered particles, decays, etc, i.e. highly deviating particles.
- Applied transfer matrix to independent sample, and showed residuals from through position
- Residuals were on par with width of scintillating fibre
- Idea is to extend this for further distances and determine performance of transfer matrix from upstream to downstream.

X Residual order 3

Y Residual order 3

Concerns

- Advised results are too optimal due to Kalman actually pulling the spacepoints to desired location. Transfer matrix working too optimally by default.
- Not sure I agree (yet), as trackpoints should not be pulled beyond fibre width (and perhaps Gaussian like), although there may be inherent biases in trackpoint calculation
- Began investigating spacepoints and trackpoints
- Transfer matrix should apply on spacepoints just as on trackpoints.
- Became concerned about Kalman implementation as it is supposedly highly sensitive to the <u>seed position</u>, and the Pz discrepancy. Transfer matrix will be compromised by wrong Pz, but likely only a larger error.

Trackpoints and Spacepoints

- Trackpoints are in a global reference frame
- Spacepoints are in a local reference frame
- Local coordinates are transformed to global coordinates by taking account of tracker misalignments
- Residuals between local Spacepoints and Global Trackpoints should be straight lines of each tracker misalignment
- Residual between Global Spacepoints and Global Trackpoints at each station should be random unless there is an inherent bias

X Residual Global

X Axis: Local Station Coordinates (mm) Y Axis: Residual (mm)

Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

X Residual is between Global X position Track point and Global X position Space point (+/- 50 mm Offset introduced for TKU and TKD respectively)

If there is no inherent bias, they should be randomly distributed

Y Residual Global

X Axis: Local Station Coordinates (mm) Y Axis: Residual (mm)

Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Y Residual is between Global Y position Track point and Global Y position Space point (+/- 50 mm Offset introduced for TKU and TKD respectively)

If there is no inherent bias, they should be randomly distributed

TKU TKD

Energy Loss at the stations

- Energy Loss through the stations is expected to be small, so that the mean energy loss and RMS at each station should be similar.
- This is not the case in the reconstruction
- While the mean is very similar, the RMS is not
- Either side of the absorber, the RMS Energy Loss is smallest between two innermost stations and increases between stations as one moves away from the absorber
- Some of the difference could be explained by the larger dz between stations further away from the absorber
- The difference in RMS between S1 and S2, and the other stations may be due to an inherent bias in the Reconstruction/Kalman Filter

Circle Fit of spacepoints

- Currently spacepoints are fitted to a circle, accepted if chi-squared are small enough
- A straight line is also made in s-z plane, accepted if it passes Roadcut
- Radius of circle determines transverse momentum i.e. ~ $p_t = cBQR$
- Longitudinal momentum determined through $p_z/p_t = \frac{\Delta z}{R\Delta \varphi}$
- For circle fit R and p_t don't change until Kalman does its smoothing. Therefore p_z is determined mostly by the phase advance until it is Kalman smoothed
- Kalman is sensitive to the seed position, so the question is how the seed position is determined and used (haven't figured it out yet)

Does it Fit?

20

- Left shows a large radius upstream track and a low radius downstream track
- Red and blue circles show fit to each of the 5 points
- Yellow circles are +/- 3 mm change in radius from centre.
- To see how well the 5 track points fit a circle fit, will look at the number of particles that deviate a certain distance from the circle
- Strictness of radius cut, determines which candidates are accepted
- Low radius particle in this case has managed to fit a circle to the hits, as it has passed the radius cut, without being particularly a circular path

resol 0.0			resol I.U	
TKU S5 -45.8262471655 54.1737528345 TKU S4 -40.3663548753 59.6336451247 TKU S3 -58.4041950113 41.5958049887 TKU S2 -49.7803287982 50.2196712018 TKU S1 -58.5317460317 41.4682539683	Diff 8.34750566893 Diff 19.2672902494 Diff -16.8083900227 Diff 0.439342403628 Diff -17.0634920635	No absorber	TKUS5-28.890306122435.9410430839TKUS4-11.709892290222.4702380952TKUS3-9.056122448986.77437641723TKUS2-26.923894557827.5014172336TKUS1-33.822278911619.4196428571	Diff 7.05073696145 Diff 10.760345805 Diff -2.28174603175 Diff 0.577522675737 Diff -14.4026360544
TKD S1 -45.8297902494 54.1418650794 TKD S2 -49.0504535147 50.924744898 TKD S3 -52.4766156463 47.4985827664 TKD S4 -46.0778061224 53.8938492063 TKD S5 -55.0914115646 44.8837868481 Enter Sandman bash-4.2\$ python RadiusChange3.py 43456 Full Upstream	Diff 8.31207482993 Diff 1.87429138322 Diff -4.97803287982 Diff 7.8160430839 Diff -10.2076247166	Particles inside or outside the bounding yellow circle lines with a radius of:	TKD S1 -26.1054421769 33.2482993197 TKD S2 -13.4424603175 13.8321995465 TKD S3 -12.9570578231 10.9233276644 TKD S4 -12.8720238095 17.7366780045 TKD S5 -33.0286281179 23.4977324263 Enter Sandman bash-4.2\$ python RadiusChange3.py 43456	Diff 7.14285714286 Diff 0.389739229025 Diff -2.03373015873 Diff 4.86465419501 Diff -9.53089569161
resol 0.0 TKU S5 -45.7290132548 54.2502761414 TKU S4 -39.5572533137 60.4151325479 TKU S3 -59.0850515464 40.8896354934 TKU S2 -49.8688328424 50.1081553756 TKU S1 -59.3450846834 40.636505891 Upstream that made it Downstream, Downs	Diff 8.5212628866 Diff 20.8578792342 Diff -18.195416053 Diff 0.239322533137 Diff -18.7085787923 tream	Top Left:+/- 0 mmTop Right:+/- 1 mmBottom Left:+/- 2 mmBottom Right +/- 3 mm	Full Upstream resol 1.0 TKU S5 -28.4931885125 35.8799705449 TKU S4 -11.6876840943 24.5098490427 TKU S3 -10.0354381443 6.78387334315 TKU S2 -27.3564064801 27.6325478645 TKU S1 -34.4969624448 18.9709131075 Upstream that made it Downstream, Downs	Diff 7.3867820324 Diff 12.8221649485 Diff -3.25156480118 Diff 0.276141384389 Diff -15.5260493373 tream
resol 2.0 TKU S5 -15.5966553288 20.5179988662 TKU S4 -2.48015873016 5.63350340136 TKU S3 -0.563350340136 1.18339002268 TKU S2 -11.1429988662 11.0933956916 TKU S1 -15.2281746032 6.58659297052 TKD S1 -13.1342120181 18.6755952381 TKD S2 -2.70691609977 2.70337301587 TKD S3 -1.94869614512 2.43764172336 TKD S4 -2.92658730159 4.34736394558 TKD S5 -18.1583049887 11.1394557823 Enter Sandman bash-4.2\$ python RadiusChange3.py 43456 Full Upstream resol 2.0 TKU S5 -15.3166421208 20.6139543446	Diff 4.92134353741 Diff 3.1533446712 Diff 0.62003968254 Diff -0.0496031746032 Diff -8.64158163265 Diff 5.54138321995 Diff -0.00354308390022 Diff 0.488945578231 Diff 1.42077664399 Diff -7.01884920635	Particles start outside the circle and spiral inwards on average However, large number of particles deviate significantly from circle fit line	resol 3.0 TKU S5 -7.21371882086 9.90291950113 TKU S4 -0.595238095238 1.17630385488 TKU S3 -0.16298185941 0.396825396825 TKU S2 -3.41553287982 3.1462585034 TKU S1 -5.20479024943 1.78925736961 TKD S1 -5.57327097506 9.62655895692 TKD S2 -0.878684807256 0.839710884354 TKD S3 -0.531462585034 0.878684807256 TKD S4 -0.981434240363 1.15858843537 TKD S5 -9.25453514739 4.83630952381 Enter Sandman bash-4.2\$ python RadiusChange3.py 43456 Full Upstream resol 3.0 TKU S5 -7.06231590574 9.9456921944	Diff 2.68920068027 Diff 0.581065759637 Diff 0.233843537415 Diff -0.269274376417 Diff -3.41553287982 Diff 4.05328798186 Diff -0.0389739229025 Diff 0.34722222222 Diff 0.177154195011 Diff -4.41822562358
TKU S4 -2.51518777614 6.84600515464 TKU S3 -0.706461708395 1.09075846834 TKU S2 -11.4368556701 11.3379050074 TKU S1 -15.636505891 6.43639543446	Diff 4.3308173785 Diff 0.384296759941 Diff -0.0989506627393 Diff -9.20011045 <u>655</u>		TKU S4 -0.623619293078 1.67065537555 TKU S3 -0.188696612666 0.352080265096 TKU S2 -3.72560751105 3.37122606775 TKU S1 -5.43308173785 1.7949 <u>1899853</u>	Diff 1.04703608247 Diff 0.16338365243 Diff -0.354381443299 Diff -3.63816273 <u>932</u>

Upstream that made it Downstream, Downs	stream			6176 Unstream th	at made it Downstream Downs	tream	
resol 0.0				resol 1.0	Tat made it bownstream, bowns	ci caili	
TKU S5 -48.9961139896 51.0038860104 TKU S4 -40.4306994819 59.5693005181 TKU S3 -58.6139896373 41.3860103627 TKU S2 -46.1301813472 53.8698186528 TKU S1 -57.399611399 42.600388601	Diff 2.00777202073 Diff 19.1386010363 Diff -17.2279792746 Diff 7.7396373057 Diff -14.7992227979	Wedg	ge	TKU S5 -31 TKU S5 -31 TKU S4 -11 TKU S3 -9 TKU S2 -23 TKU S1 -33	L.1042746114 32.917746114 L.8523316062 22.2474093264 .03497409326 6.84909326425 3.7856217617 30.731865285 3.1930051813 20.3367875648	Diff 1.8 Diff 10 Diff -2 Diff 6.9 Diff -1	1347150259 .3950777202 .18588082902 4624352332 2.8562176166
TKD S1 -45.9520725389 54.0479274611 TKD S2 -43.1509067358 56.8329015544 TKD S3 -46.5835492228 53.4002590674 TKD S4 -53.7240932642 46.2597150259 TKD S5 -55.4727979275 44.5110103627 Enter Sandman bash-4.2\$ python RadiusChange3.py 10664	Diff 8.09585492228 Diff 13.6819948187 Diff 6.81670984456 Diff -7.46437823834 Diff -10.9617875648	Particles inside the bounding circle lines wit of:	e or outside yellow h a radius	TKD S1 -27 TKD S2 -15 TKD S3 -10 TKD S4 -17 TKD S5 -37 Enter Sand bash-4.2\$ p	7.5582901554 35.7674870466 5.9164507772 22.9436528497 9.832253886 16.9527202073 7.6651554404 11.5932642487 7.9371761658 26.5867875648 dman python RadiusChange3.py	Diff 8.2 Diff 7.0 Diff 6.12 Diff -6 Diff -1	20919689119 92720207254 2046632124 .07189119171 1.350388601
Full Upstream				10664 Eull Unctr	2.2m		
resol 0.0		Top Left.	$+/_{-}0$ mm	resol 1.0	zalli		
TKU S5 -46.455363841 53.4977494374 TKU S4 -39.90060015 60.0525131283 TKU S3 -58.8990997749 41.0633908477 TKU S2 -48.6965491373 51.256564141 TKU S1 -58.5990247562 41.3634658665	Diff 7.0423855964 Diff 20.1519129782 Diff -17.8357089272 Diff 2.56001500375 Diff -17.2355588897	Top Right: Bottom Left:	+/- 1 mm +/- 2 mm	TKU S5 - 29 TKU S4 - 12 TKU S3 - 9 TKU S2 - 26 TKU S1 - 33	9.2854463616 34.9774943736 2.3124531133 24.5405101275 .99624906227 6.92048012003 5.5941485371 28.4977494374 3.7584396099 19.7018004501	Diff 5.0 Diff 12 Diff -3 Diff 1. Diff 1.	592048012 .2280570143 .07576894224 90360090023 4.0566391598
Upstream that made it Downstream. Downs	tream	BOTTOM RIGHT	+/-3 mm	6176			
resol 2.0				Upstream t	hat made it Downstream, Downst	ream	
TKU S5 -16.9041450777 18.3613989637 TKU S4 -2.23445595855 4.69559585492 TKU S3 -0.582901554404 1.08484455959 TKU S2 -9.27784974093 12.2733160622 TKU S1 -14.5077720207 6.78432642487	Diff 1.45725388601 Diff 2.46113989637 Diff 0.501943005181 Diff 2.99546632124 Diff -7.72344559585	Chanaina the	e absorber	resol 3.0 TKU S5 -7 TKU S4 -0 TKU S3 -0 TKU S3 -3 TKU S1 -4	.96632124352 8.4682642487 .404792746114 0.987694300518 .0809585492228 0.323834196891 .04404145078 3.44883419689 .79274611399 1.47344559585	Diff 0.5019 Diff 0.9 Diff 0 Diff 0.404 Diff -3.3	943005181 582901554404 .242875647668 4792746114 1930051813
TKD S1 -14.9773316062 22.0531088083 TKD S2 -5.42422279793 8.77590673575 TKD S3 -1.70012953368 4.7603626943 TKD S4 -5.89378238342 2.8335492228 TKD S5 -25.0161917098 14.9287564767 Enter Sandman bash-4.2\$ python RadiusChange3.py	Diff 7.07577720207 Diff 3.35168393782 Diff 3.06023316062 Diff -3.06023316062 Diff -10.0874352332	appears to ho effect on the the tracker	ave no particles in	TKD S1 -7 TKD S2 -1 TKD S3 -0 TKD S4 -2 TKD S5 -1 Enter San bash-4.2\$.36722797927 11.9009067358 .9268134715 3.96696891192 .307642487047 1.7810880829 .34779792746 0.809585492228 5.7707253886 8.09585492228 dman python RadiusChange3.py	Diff 4.533 Diff 2.0401 Diff 1.473 Diff 1.475 Diff -1.5 Diff -7.67	367875648 15544041 344559585 53821243523 7487046632
Full Upstream				Full Unstr	eam		
resol 2.0				resol 3.0			
TKU S5 -15.6414103526 19.7393098275 TKU S4 -2.78507126782 6.51725431358 TKU S3 -0.759564891223 1.22843210803 TKU S2 -10.8964741185 11.562 <u>2655664</u>	Diff 4.09789947487 Diff 3.73218304576 Diff 0.468867216804 Diff 0.665791447862			TKU S5 -7 TKU S4 -0 TKU S3 -0 TKU S2 -3	.39872468117 9.40547636909 .572018004501 1.52850712678 .131282820705 0.375093773443 .80720180045 3.43210802701	Diff 2.000 Diff 0.95 Diff 0.3 Diff - <u>0.3</u>	575168792 56489122281 243810952738 75093773443
TKU S1 -14.7974493623 6 89234808702	Diff -7.90510127532			TKII 51 -5	24193548387 1 65978994749	Diff -3-5	8214553638

resol 0.0			resol I.0	
TKUS5-45.374686267554.6253137325TKUS4-39.852993904660.1470060954TKUS3-58.712800286841.2871997132TKUS2-50.188239512449.8117604876TKUS1-58.596271064941.4037289351	Diff 9.25062746504 Diff 20.2940121907 Diff -17.4256005737 Diff -0.37647902474 Diff -17.1925421298	LiH	TKU S5-28.289709573336.4467551094TKU S4-11.043384725722.812836142TKU S3-9.053424166376.1939763356TKU S2-27.079598422427.1602724991TKU S1-33.551452133418.5640014342	Diff 8.15704553603 Diff 11.7694514163 Diff -2.85944783076 Diff 0.08067407673 Diff -14.9874506992
TKD S1 -41.4575116529 58.5424883471 TKD S2 -44.7203298673 55.2527787738 TKD S3 -50.5378271782 49.4442452492 TKD S4 -51.0308354249 48.9512370025 TKD S5 -59.7257081391 40.2563642883 Enter Sandman bash-4.2\$ python RadiusChange3.py 17935 Full Upstream	Diff 17.0849766942 Diff 10.5324489064 Diff -1.09358192901 Diff -2.07959842237 Diff -19.4693438508	Particles inside or outside the bounding yellow circle lines with a	<pre>TKD S1 -25.9591251345 41.5650770886 TKD S2 -15.749372535 22.7590534242 TKD S3 -11.5184653998 13.5622086769 TKD S4 -12.1011115095 10.1828612406 TKD S5 -43.0172104697 24.9731086411 Enter Sandman bash-4.2\$ python RadiusChange3.py 17935 Full Upstream</pre>	Diff 15.6059519541 Diff 7.00968088921 Diff 2.04374327716 Diff -1.91825026891 Diff -18.0441018286
resol 0.0	Diff 0 72710621600	radius of:	resol 1.0	
TKU S4 -39.5595204907 60.4181767494	Diff 20.8586562587		TKU S5 -28.2129913577 36.3590744355	Diff 8.14608307778
TKU S3 -58.7956509618 41.1820462782	Diff -17.6136046836	Top loft: +/ 0 mm	TKU S4 -11.6643434625 24.4215221634	Diff 12.7571787009
TKU S2 -50.0473933649 49.9303038751	Diff -0.117089489824			DITT -3.116810/0532
TKU S1 -59.0632840814 40.9032617786	Diff -18.1600223028	Top Right: +/- I mm	TKU 52 -27.4579704468 27.1550102595	Diff -15 9074435461
Instream that made it Downstream. Downs	tream	Bottom Left: +/-2 mm	Upstream that made it Downstream. Downs	stream
resol 2.0	, cr cum	Detterne Diarlet 1 / 2 mini	resol 3.0	
TKU S5 -15.0233058444 20.5898171388	Diff 5.56651129437	BOITOM RIGHT +/- 3 MM	TKU S5 -6.92004302617 9.84223736106	Diff 2.92219433489
TKU S4 -2.03477949086 5.75475080674	Diff 3.71997131588		TKU S4 -0.59160989602 1.31767658659	Diff 0.72606669057
TKU S3 -0.573682323413 1.09358192901	Diff 0.519899605593		TKU S3 -0.179275726067 0.37647902474	Diff 0.197203298673
IKU 52 -11.42882/5368 10.8910003586	DITT -0.53/82/1/82		TKU 52 -3./04/9024/4 3.038/2355083	DITT -0./200000905/ Diff -3 486912872
10 31 -14.9764809129 0.14019301778	0111 -0.03029329309	Looking at the full	1.0134013340	0111 -3.400912072
FKD \$1 -14.7543922553 \$27.1602724991 FKD \$2 -5.03764790247 \$8.53352456077 FKD \$3 -1.68519182503 \$3.20903549659 FKD \$4 -3.14628899247 1.86446755109 FKD \$5 -30.5665112944 15.8121190391	Diff 12.4058802438 Diff 3.4958766583 Diff 1.52384367157 Diff -1.28182144138 Diff -14.7543922553	Upstream sample, or the Upstream	TKD S1 -7.7895302976 15.8300466117 TKD S2 -2.07063463607 3.45105772678 TKD S3 -0.475080674077 1.0846181427 TKD S4 -1.11150950161 0.582646109717 TKD S5 -20 2581570455 9 17891717461	Diff 8.04051631409 Diff 1.38042309071 Diff 0.609537468627 Diff -0.528863391897 Diff -11 0792398709
Enter Sandman	1111010022000	sumple mui muue i	Enter Sandman	11.0752550705
bash-4.2\$ python RadiusChange3.py		downstream also	bash-4.2\$ python RadiusChange3.py	
17935		appears to have no	17935	
Full Upstream		appears to have no	Full Upstream	
FKU S5 -14.9763033175 20.4126010594	Diff 5.43629774185	effect	TKU 55 -6 89155282966 9 6013381656	Diff 2 70978533594
TKU S4 -2.5313632562 6.71870643992	Diff 4.18734318372		TKU S4 -0.775020908837 1.62810147756	Diff 0.85308056872
TKU S3 -0.713688318929 1.20992472819	Diff 0.496236409256		TKU S3 -0.183997769724 0.429328129356	Diff 0.245330359632
TKU S2 -11.4747700028 11.2238639532 TKU S1 -15.1435740173 6.35628659047	Diff -0.250906049624 Diff -8.78728742682		TKU S2 -3.75801505436 3.13911346529 TKU S1 -5.08502927237 1.78979648732	Diff -0.618901589072 Diff -3.29523278506

```
17581
Jpstream that made it Downstream, Downstream
resol 0.0
TKU S5 -45.7710027871 54.2289972129
                                         Diff 8.4579944258
TKU S4 -40.4868892554 59.5131107446
                                         Diff 19.0262214891
TKU S3 -58.3868949434 41.6131050566
                                         Diff -16.7737898868
TKU S2 -49.9402764348 50.0597235652
                                         Diff 0.119447130425
TKU S1 -58.1252488482 41.8747511518
                                         Diff -16.2504976964
TKD S1 -41.4765940504 58.5063420738
                                         Diff 17.0297480234
TKD S2 -44.6334110688 55.3438370969
                                         Diff 10.7104260281
TKD S3 -49.2235936522 50.7479665548
                                         Diff 1.52437290257
TKD S4 -52.3462829191 47.625277288
                                        Diff -4.72100563108
TKD S5 -59.4619191172 40.521017007
                                        Diff -18.9409021102
Enter Sandman
bash-4.2$ python RadiusChange3.py
28075
/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:44
warnings.warn(errors[info][0], RuntimeWarning)
Full Upstream
resol 0.0
TKU S5 -45.7239536955 54.2546749777
                                         Diff 8.53072128228
TKU S4 -39.8646482636 60.1104185218
                                         Diff 20.2457702582
TKU S3 -58.7177203918 41.2573463936
                                         Diff -17.4603739982
TKU S2 -49.7488869101 50.2261798753
                                         Diff 0.477292965272
TKU S1 -58.7640249332 41.21460374
                                       Diff -17.5494211932
Upstream that made it Downstream, Downstream
resol 2.0
TKU S5 -14.9195153859 20.6984813151
                                        Diff 5.77896592913
TKU S4 -2.02491325863 5.55713554405
                                        Diff 3.53222228542
TKU S3 -0.614299527899 0.949889084807
                                          Diff 0.335589556908
TKU S2 -11.3474773904 10.4203401399
                                        Diff -0.927137250441
TKU S1 -14.9308913031 6.46152096013
                                        Diff -8.46937034298
TKD S1 -14.3279676924 26.5513907059
                                        Diff 12.2234230135
TKD S2 -5.50594391673 9.01541436778
                                        Diff 3.50947045106
TKD S3 -1.39923781355 3.2762641488
                                        Diff 1.87702633525
TKD S4 -3.35020761049 1.82583470792
                                        Diff -1.52437290257
TKD S5 -30.1006768671 15.6248222513
                                        Diff -14.4758546158
Enter Sandman
bash-4.2$ python RadiusChange3.py
28075
/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:447
 warnings.warn(errors[info][0], RuntimeWarning)
Full Upstream
resol 2.0
TKU S5 -15.1130899377 20.2991985752
                                        Diff 5.18610863758
TKU S4 -2.32235084595 6.6821015138
                                       Diff 4.35975066785
TKU S3 -0.708815672306 1.05431878896
                                         Diff 0.345503116652
TKU S2 -11.6153161175 10.821015138
                                        Diff -0.794300979519
TKU S1 -15.0810329475 6.36865538736
                                        Diff -8.71237756011
```

IH2

Particles inside or outside the bounding yellow circle lines with a radius of:

Top Left:+/- 0 mmTop Right:+/- 1 mmBottom Left:+/- 2 mmBottom Right +/- 3 mm

	17581					
	pstream that made it Downstream, Downstream					
	esol 1.0					
ĺ	KU S5 -28.4454809169 36.448438655	4 Diff 8.00295773847				
Ì	KU S4 -11.700130823 22.8769694557	Diff 11.1768386326				
i	KU S3 -9.27137250441 6.6719754280	2 Diff -2.59939707639				
j	KU S2 -27.4728399977 26.921108014	3 Diff -0.551731983391				
1	KU S1 -33.3712530573 19.361811046	Diff -14.0094420113				
j	KD S1 -25.6470052898 41.169444286	4 Diff 15.5224389966				
	KD S2 -16.2334338206 24.111256470	1 Diff 7.87782264945				
j	KD S3 -11.046015585 13.9866901769	Diff 2.94067459189				
	KD S4 -12.5931403219 9.5159547238	5 Diff -3.07718559809				
	KD S5 -42.5118025141 25.339855525	9 Diff -17.1719469882				
	Enter Sandman					
	ash-4.2\$ python RadiusChange3.py					
	28075					
	/usr/lib64/python2.7/site-packages/	scipy/optimize/minpack.py:447				
	<pre>warnings.warn(errors[info][0], Ru</pre>	ntimeWarning)				
	ull Upstream					
	resol 1.0					
	KU S5 -28.4737310775 35.843276936	8 Diff 7.36954585931				
	KU S4 -11.9786286732 24.484416740	9 Diff 12.5057880677				
ľ	KU S3 -9.9697239537 6.93855743544	Diff -3.03116651825				
	KU S2 -27.3802315227 27.184327693	7 Diff -0.195903829029				
ł	KU S1 -34.0445235975 18.952804986	6 Diff -15.0917186109				
	Instream that made it Downstream Do	wnstream				
	resol 3 0					
	TKU 55 -6.64353563506 9.90273590808	Diff 3.25920027302				
	TKU S4 -0.483476480291 1.3480461862	2 Diff 0.864569705933				
	TKU S3 -0.193390592116 0.3810932256	41 Diff 0.187702633525				
	KU S2 -3.70286104317 2.90654684034	Diff -0.796314202833				
	KU S1 -5.07934702235 1.61538024003	Diff -3.46396678232				
	TKD S1 -7.35453045902 15.5679426654	Diff 8.21341220636				
	TKD S2 -2.19555201638 3.6801092088	Diff 1.48455719242				
	FKD S3 -0.278709970991 1.0864000910	Diff 0.807690120016				
	FKD S4 -1.18309538707 0.52329219043	3 Diff -0.659803196633				
ľ	FKD S5 -20.1524372903 8.88459132018	Diff -11.2678459701				
	Enter Sandman					
	bash-4.2\$ python RadiusChange3.py					
	28075					
	/usr/lib64/python2.7/site-packages/s	cipy/optimize/minpack.py:447:				
	warnings.warn(errors[info][0], Rur	timeWarning)				
	ull Upstream					
	resol 3.0					
	KU S5 -6.74265360641 9.69902048085	Diff 2.95636687444				
	KU S4 -0.537845057881 1.7987533392	7 Diff 1.26090828139				
	KU S3 -0.178094390027 0.3704363312	56 Diff 0.192341941229				
	KU S2 -3.88601959038 3.25200356189	Diff -0.634016028495				
	KU S1 -5 09349955476 1 68121104185	Diff -3.41228851291				

Path of particle in ideal solenoid

- If there is no Energy Loss, then the particle will follow a constant radius path
- If there is a constant Energy Loss with no scattering, then the particle will spiral towards a centre with radius $r = a\varphi$, where φ is the turning angle and a is angle of the polar slope (between tangent and polar circle, dictates expansion of spiral).
- dE/dx is fairly constant through the stations as the Energy Loss is small (or as implemented by MAUS)
- In MICE we have 5 stations per tracker. Between stations the particles follow a helical path (with no Energy Loss, assume perfect vacuum) and are deviated at the station.
- At the station, Energy Loss occurs, and the particle is deviated to a lower radius path but remains tangential to the circle centre unless scattered.
- This in turn creates a new circle centre along the radial path. The radius change is proportional to the Energy Loss.

R1 true radius of initial particle R2 true radius of particle after Energy Loss through 1st station, with new centre

What affect does it have on Pt and Pz

- $p_t = cBQR$
- c, B and Q are constant (should be), so transverse momentum changes by radius loss
- A particle loses approximately 0.6 MeV per station, so ~ 3 MeV per tracker, which for a 140 MeV particle is ~2%
- Therefore the radius from start to finish reduces by 2%
- For a high radius particle, e.g. 100mm, this radius reduction would be more than a few widths of fibres, leading to a poor qui-squared value for the circle fit and thus being excluded

What effect does it have on Pt and Pz

- z-s plane
- Another qui-squared cut is made in the z-s plane, if the fit in the z-s plane fits a straight line.
- $z = \frac{dz}{ds}s s_0$ with $s = R\varphi$, however if the radius is not constant, or not the appropriate radius (wrong circle centre), then the phase advance will be wrong.
- Should have straight line between stations in s-z plane, however a small deviation at each station. That deviation should be similar at each station (i.e. angle change)
- A too strict straight line qui-squared cut may exclude valid particles, but more importantly:

$$p_z/p_t = \Delta z/R\Delta \varphi$$

- The p_t to R ratio should be fairly constant and thus p_z is heavily influenced by the phase advance.
- If the movement of circle centre isn't accounted for, then will have the wrong phase advance angle

Circle for 3 points (No Energy Loss)

- For any 3 points a circle can be found
- Circumcentre for those 3 points found by the intersection of tangential midpoint lines
- For 5 points, this can be repeated for each set of consecutive 3 points (In the no Energy Loss case it can be for any 3 points)
- I.e. Find the circumcentre for points 1,2,3 and 2,3,4 and 3,4,5
- If No Energy loss then the 3 circumcentres should match

Example case

Pt = 31.303620, 30.734442, 28.816315, 28.564572, 28.994226 151.896970, 151.072839, 150.557543, 149.898163, 149.102635

- Purple point is most upstream point with the following x marks hits in the following stations (local reference frame).
- Blue Diamond and circle is the circle fit to those five points
- Blue, red and green are the circumcentre for each three consecutive points assuming no energy loss
- Circumcentres shift slightly due to energy loss, this leads to slightly incorrect calculation of seed Pt and Pz
- Will try to introduce Energy Loss and match parameters between 3 consecutive circles
- Black points are in global reference frame, as well as showing the trackpoint Pt and Pz

32

Circle for 3 points (with Energy Loss)

- For no Energy Loss at Station 2, the green point is the centre of the three points.
- Energy Loss changes the radial path taken by the particle.
- For the same three hits, the particle must have started at a higher radius path and can to a lower radius path (assuming ionization acts uniformly)
- For points 1 and 2, they still share the same radius, and thus the new centre must still remain on their tangential midpoint line.
- The same respectively happens for points 2 and 3.
- At station 2 the radial paths overlap, where the energy loss from the higher radius path to the lower radius path can be given in terms of some parameter, alpha.
- This parameter, alpha, can be minimized for three consecutive circles to match radii, pt, pz, ds/dz, ds^2/dz^2, etc.

Solving for alpha (Energy Loss at a station)

 $R_2 = \alpha R_1$

• Let $R_2 = \varepsilon_2 R$ and $R_1 = \varepsilon_1 R$, i.e. $\alpha = \frac{\varepsilon_2}{\varepsilon_1}$ and use Sin rule to solve left triangles $\frac{\sin(90-\theta_4)}{R} = \frac{\sin(180-\theta_{c1}/2)}{R_1} \qquad \text{and} \qquad \frac{\sin(\theta_{c2}/2)}{R_2} = \frac{\sin(90+\theta_3)}{R}$

• Using $\theta_1 + \theta_2 = \theta_3 + \theta_4$ and $\theta_1 = 90 - \theta_{c2}/2$, $\theta_2 = 90 - \theta_{c1}/2$

(phi c2/2)

180 - (phi_c1)/2

90 + phi3

R2

R

90 - phi4

R1

R

$$\alpha = \frac{\varepsilon_2}{\varepsilon_1} = \frac{\sin(\theta_{c2}/2)}{\sin(90+\theta_3)} \frac{\sin(90-\theta_4)}{\sin(180-\theta_{c1}/2)} = \frac{\sin\left(\frac{\theta_{c2}}{2}\right)}{\sin\left(\frac{\theta_{c1}}{2}\right)} \left(-\cos\left(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2}\right) + \sin\left(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2}\right) \tan(\theta_3)\right)$$

• Alpha effectively changes the opening angle (θ_3) made by the radial path at station 2. It can be more effective writing it in terms of θ_3

$$\theta_3 = \frac{\alpha \sin(\frac{\theta_{c1}}{2})}{\sin(\frac{\theta_{c2}}{2})\sin(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2})} + \frac{1}{\tan(\frac{\theta_{c1}}{2} + \frac{\theta_{c2}}{2})}$$

Currently I am matching and minimizing parameters between three consecutive circles.

Can then see if it changes/improves pz discrepancy, Energy Loss in cooling channel

Alpha = 1.0

bash-4.2\$ python MomentumCalculator2.py distance between particles [59.94764677484771, 52.280953274956566, 44.056411260740134, 36.49189946774329] dist particle to xc yc [36.1579856268822, 32.71681098981141, 32.78318201674866, 30.838589466811612, 30.024216568787033] centre [2.04716976 -60.03118376] center 3 [array([1.23703529, -61.98185364]), array([2.52493767, -58.69986045]), array([1.93109654, -58.5649314])] radii 32.50415693380818 radii 3 [34.063898377771984, 31.918221623833947, 31.480328201146676] angle xc yc [2.110555721417649, 1.8485437627047396, 1.5288506284921168, 1.2857042875488722] angle 3 [2.151426881207568, 1.7495377550554478, 1.919272396255438, 1.5233791970 730666, 1.5500812751028525, 1.2364717151627733] Pt xc yc 29.80756993458405 pt 3 [31.237913206230722, 29.270244577560767, 28.868679360926308] pz xc yc [152.10761187526083, 148.79110448013583, 149.35899226356028, 143.28894153944862] pz 3 [149.21798798679876, 157.21116468503266, 143.30788514925217, 149.8954361670602 7, 147.31330083188175, 148.99427478723723] s advance xc yc [68.601834386506, 60.08535656196713, 49.69400075685904, 41.79073393295859] s-advance 3 [73.28598664866152, 59.59607629628411, 61.25976170018792, 48.62355482931635, 48.79706727868973, 38.924535404758856] ds dz xc yc [0.19596369680058087, 0.20033166659209437, 0.19956997220485614, 0.2080242174611764] ds dz 3 [0.2093441523215976, 0.19870034846961948, 0.20424727185860303, 0.1952710858050323, 0.19596790783930698, 0.19375697087791174] For alpha = 1.0 , phi3, phi4 for each set is: [0.6960274492671729, 0.49508288610131934, 0.8091067282583633, 0.6111601285773844, 0.95256046921351, 0.7957556891536771] ('This equation has two solutions: ', [1.2370352903365267, -61.981853639129184], ' or', [24.83983137633014, -84.1309925252292]) ('This equation has two solutions: ', [1.237035287801749, -61.98185363675052], ' or', [17.19379804553159, -21.31884418442347]) pz 1 149.217987974 pt 1 31.237913204716225 P total 152.45266529810678 pz 2 157.211164685 pt 2 31.23791320623072 P total 160.28461411846263 s adv 1 73.28598665122584 ds dz 1 0.20934415232892267 s adv 2 59.59607629628409 ds dz 2 0.1987003484696194 ds^2/dz^2 1.0535671121932162 ('This equation has two solutions: ', [2.524937670846709, -58.69986044235635], ' or', [15.905895662486632, -24.600837378817637]) ('This equation has two solutions: ', [2.5249376736179263, -58.69986044653414], ' or', [-42.52343767361794, -48.46423673914893]) pz 1 143.307885136 pt 1 29.27024457571928 P total 146.26652781696282 pz 2 149.895436185 pt 2 29.270244580316707 P total 152.7265170387981 s adv 1 61.25976170206593 ds dz 1 0.20424727186486452 s adv 2 48.62355482816245 ds dz 2 0.19527108580039826 ds^2/dz^2 1.0459678196988238 ('This equation has two solutions: ', [1.9310965385955132, -58.56493139852289], ' or', [-41.92959653859553, -48.599165787160175]) ('This equation has two solutions: ', [1.931096538595492, -58.564931398522894], ' or', [-18.093146538595498, -105.80278927786925]) pz 1 147.313300832 pt 1 28.868679360926315 P total 150.11531983787816 pz 2 148.994274787 pt 2 28.868679360926297 P total 151.7652613987098 s adv 1 48.79706727868975 ds dz 1 0.1959679078393071 s adv 2 38.92453540475885 ds dz 2 0.19375697087791172 ds^2/dz^2 1.0114108769938839

36

Alpha = 0.98

bash-4.2\$ python MomentumCalculator2.py distance between particles [59.94764677484771, 52.280953274956566, 44.056411260740134, 36.49189946774329] dist particle to xc yc [36.1579856268822, 32.71681098981141, 32.78318201674866, 30.838589466811612, 30.024216568787033] centre [2.04716976 -60.03118376] center 3 [array([1.23703529, -61.98185364]), array([2.52493767, -58.69986045]), array([1.93109654, -58.5649314])] radii 32.50415693380818 radii 3 [34.063898377771984, 31.918221623833947, 31.480328201146676] angle xc yc [2.110555721417649, 1.8485437627047396, 1.5288506284921168, 1.2857042875488722] angle 3 [2.151426881207568, 1.7495377550554478, 1.919272396255438, 1.5233791970 730666, 1.5500812751028525, 1.2364717151627733] Pt xc yc 29.80756993458405 pt 3 [31.237913206230722, 29.270244577560767, 28.868679360926308] pz xc yc [152.10761187526083, 148.79110448013583, 149.35899226356028, 143.28894153944862] pz 3 [149.21798798679876, 157.21116468503266, 143.30788514925217, 149.8954361670602 7, 147.31330083188175, 148.99427478723723] s advance xc yc [68.601834386506, 60.08535656196713, 49.69400075685904, 41.79073393295859] s-advance 3 [73.28598664866152, 59.59607629628411, 61.25976170018792, 48.62355482931635, 48.79706727868973, 38.924535404758856] ds dz xc yc [0.19596369680058087, 0.20033166659209437, 0.19956997220485614, 0.2080242174611764] ds dz 3 [0.2093441523215976, 0.19870034846961948, 0.20424727185860303, 0.1952710858050323, 0.195967<u>90783930698, 0.19375697087791174]</u> For alpha = 0.98 , phi3, phi4 for each set is: [0.6813090429818605, 0.5098012923866317, 0.7975348683354458, 0.6227319885003019, 0.9442231264770992, 0.804093031890088] ('This equation has two solutions: ', [0.8181896903250724, -61.58880404734837], ' or', [25.258676976341594, -84.52404211701003]) ('This equation has two solutions: ', [1.4728132273273196, -61.381014937250896], ' or', [16.958020106006018, -21.9196828839231]) pz 1 151.287979728 pt 1 31.49157813723043 P total 154.53081344445968 pz 2 154.609780903 pt 2 30.86174657603517 P total 157.65986094311373 s adv 1 72.87022434258357 ds dz 1 0.20815651179830869 s adv 2 59.86907865362459 ds dz 2 0.19961057053301332 ds^2/dz^2 1.0428130696810065 ('This equation has two solutions: ', [2.3588388756658336, -59.123134071287645], ' or', [16.071994457667508, -24.177563749886346]) ('This equation has two solutions: ', [2.0092914342028267, -58.582698377267526], ' or', [-42.007791434202844, -48.58139880841554]) pz 1 145.057068926 pt 1 29.511488076151412 P total 148.02864984148417 pz 2 147.652250556 pt 2 28.921258319216182 P total <u>150.4580548758972</u> s adv 1 61.01986602457969 ds dz 1 0.20344743137744903 s adv 2 48.7737197987723 ds dz 2 0.1958741448931322 ds^2/dz^2 1.038664043630918 ('This equation has two solutions: ', [2.3000052922556034, -58.64875264969387], ' or', [-42.29850529225562, -48.5153445359892]) ('This equation has two solutions: ', [1.756405853118209, -58.977032557183975], ' or', [-17.918455853118218, -105.39068811920818]) pz 1 148.915226227 pt 1 29.117532994642175 P total 151.73521453506928 pz 2 147.011718984 pt 2 28.53518233479332 P total 149.7554745223248 s adv 1 48.68825797088238 ds dz 1 0.19553093214397127 s adv 2 38.99373155775903 ds dz 2 0.1941014126769545 ds^2/dz^2 1.007364807124799

- Currently I am matching and minimizing parameters between three consecutive circles.
- Alpha will change between stations
- Can get a distribution of alpha which should look like the Energy Loss distribution for going through tracker material
- Can then see if it changes/improves pz discrepancy, Energy Loss in cooling channel
- There are changes between runs. E.g. misalignments and movement. Need to consider for transfer matrix approach

Conclusion

- Transmission losses heavily bias cooling results as the particle distribution function of the remaining sample is heavily changed.
- Particle losses occur at both low and high density
- In the limit of full transmission, changes in the volume occupied have a smaller effect
- To eliminate the bias in the particle distribution function, will try to use a transfer matrix approach to approximate what the downstream particle distribution function look like. Can be tested in reverse on the Upstream sample.
- Transfer Matrix will have heavy correlations as in reality we only have x, y and z with everything else derived from there
- Need to ensure Momenta are correct to eliminate biases from the density calculations

Extra Slides

Trackpoints and Spacepoints

- Trackpoints are in a global reference frame
- Spacepoints are in a local reference frame
- Local coordinates are transformed to global coordinates by taking account of tracker misalignments
- Residuals between local Spacepoints and Global Trackpoints should be straight lines of each tracker misalignment
- Residual between Global Spacepoints and Global Trackpoints at each station should be random unless there is an inherent bias

-1000

-500

500

1000

Emittance in Experiments

- Emittance measurements can be biased
- The scraping of the beam on the aperture can give a false cooling effect
- Non-linearities can give rise to a false heating effect. The emittance of the beam has increased due to the non-linearities but the phase space volume hasn't changed size
- To see cooling, one can look at the change in phase-space volume or the change in density of that volume before and after it has gone through some material

Figure 6.6: Scatter plot of a beam ($\epsilon_i = 6 \text{ mm}$, $\langle p_z \rangle = 140 \text{ MeV}/c$ and $\beta_{\perp} = 800 \text{ mm}$) after transport through a linear focusing lens of $f = 5 \text{ mm}^{-1}$ (left) and a similar nonlinear lens with $C_{\alpha} = 10^{-4} \text{ mm}^{-2}$ (right). The red curve is the RMS ellipse.

Phase Space Volume and Density

- Take an arbitrary phase space volume upstream of the absorber and count the number of particles in that volume. Take the same volume downstream and count the number of particles in that volume. If it has changed then heating or cooling has taken place
- The problem is what does that phase space volume actually look like downstream as it has changed in shape due to differing momenta of particles in the beam and the magnetic forces of the cooling channel
- Transmission losses also need to be accounted for in an unbiased way

Liouville's theorem

- A particle beam can be described by the distribution of the particles in the beam also known as the phase space density $\rho(x, y, z, p_x, p_y, p_z)$.
- Liouville's theorem states that the density of particles in phase space is a constant i.e. $d^{\rho}/dt = 0$ (providing there are no dissipative forces)
- The number of particles in a phase-space volume is then given by:

$$N = \int \rho(x, y, z, p_x, p_y, p_z) dx dy dz dp_x dp_y dp_z = \int \rho dV$$

- The phase-space density is directly related to the phase space volume
- The phase-space density can be calculated in a number of ways using density estimation techniques such as Kernel Density Estimation (KDE), the k-Nearest Neighbour Approach (KNN) plus many more
- Phase Space Density Estimation is a non-parametric technique to estimate the underlying probability density, the probability that a particle will be realized at a particular phase space density

Transmission effects – extreme example

- Imagine phase space distribution given by 8 points arranged in a cube separated by a 1 unit distance, giving a 1 unit volume.
- The system is sent through a magnetic system with no dissipative forces. The points may have changed location, but the 1 unit volume is preserved.

Transmission effects – extreme example

- The eight particles are again put through a magnetic system which has an aperture (acts as a dissipative force), resulting in a loss of two particles.
- The volume of the remaining 6 particles is 0.5 unit volume.

48

If one were to normalize the downstream sample by the sample size, one would artificially increase the density (which is wrong). For transmission losses, the change is particle distribution is important.

No Wedge (left) and Wedge (right)

X Distribution (Top) and Density (Bottom)

Blue – Full Upstream Sample Red – Upstream Sample which makes it Downstream Green – Upstream Sample which does not make it Downstream

Small preference for larger magnitude x not to make it downstream

Wedge case shows slight directional bias as well. The Wedge does not transmit up to 15% of particles that would have made it downstream otherwise.

Tanaz (left) vs Francois (right) 6-140 LiH analysis

z [m]

Figure 4: Evolution of the core phase-space density for the 6 - 140 beam setting.

Me (left) vs Francois (right) 10-140 No absorber

Bottom Right: Change in density through cooling channel

- Top left: Upstream (blue) which made it downstream (red) at reference planes (100% Transmission, biased sample)
- Bottom left: Full Upstream sample (blue) vs downstream (red) (Unbiased Upstream sample, ~50-60% Transmission)

Tanaz and Francois analysis (why the numbers don't match)

To produce the core density evolution plot, the kernel density estimator is used to (the process of summing the kernel functions centered at each data point) re-estimate the density over the core muons, once a core contour is found. The idea is to first estimate the density everywhere (not just at the core of the beam) by summing over kernel functions of fixed widths centered at each muon. The widths of the kernel functions are selected such that the resulting estimated distribution has the smallest deviation from the true density (true density is assumed to be Gaussian). Such kernel width, known as optimal bandwidth parameter (explained in detail in Section 3.2),²⁷ ensures that the resulting estimated density is not overly smooth or noisy. Once the core contour is found, the transverse phase-space coordinates of core muons (muons with densities higher the density of the core contour density) are saved, and the Gaussian kernel functions are re-evaluated over them. However, this time, because the core has higher occupancy (data points are more closely spaced) than the tail, the optimal kernel width is now smaller than when the tail of the distribution was included in the density estimation process; this leads to an estimated distribution that has, on average higher density than when the density is estimated everywhere in the distribution. A comparison between the evolution plots (Figs. 4.6 and 4.7) and

- I had agreement with Francois, difference with Tanaz
- Accounting for change in units, factor of 10,000 difference
- Tanaz and Francois results look similar bar the 10,000 difference, however, she actually does calculate the density differently:
- Tanaz finds the 9% core and isolates those particles. From those particles she recalculates the density with the remaining sample. This has changed the particle distribution, as well as the volume over which it has been calculated.
- Isolating the core can be advantageous to aid with transmission, however it appears the 9-th percentile density is calculated on the 9% core.
- ~10% for each of four dimensions would give a factor of ~10,000
- Effectively < 1% of particles are chosen, which can result in significant statistical fluctuations
- It also doesn't deal with transmission losses and if the same particles are being compared

52

Change in Peak density vs beam fraction

Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Orange – Upstream Sample which made it Downstream Green – Upstream Sample which doesn't make it downstream

Change in 9th percentile density vs beam fraction

> Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Blue – Full Upstream Sample Red – Full Downstream Sample

Orange – Upstream Sample which made it Downstream Green – Upstream Sample which doesn't make it downstream

Tanaz's 6-140 transverse 4D results – IPAC2018

55

- Tanaz 6-140 Wedge plot
- Analysis is based on comparing the reference planes where it claims a decrease in density.
- Liouville change in density only through dissipative forces, therefore change in density should only occur across the absorber (the wedge in this case)
- Before and after the density should remain constant (for the case where transverse components can be isolated from the longitudinal components)
- However a change is seen (something has gone wrong)
- Either the transmission losses are heavily biasing the results, or the statistical errors of choosing too small a sample size haven't been accounted for.
- In either case, Emittance Exchange can't be claimed here

Not only low density particles are eliminated

56

Blue – Full Upstream Sample Orange – Upstream Sample which makes it Downstream Green – Upstream Sample which doesn't make it Downstream

The full upstream distribution (blue) can be divided into the upstream distribution which makes it downstream (orange) and upstream distribution which doesn't make it downstream (green) calculated over the full Upstream distribution volume.

