Emittance Exchange in MICE

Craig Brown
Brunel University
12 March 2020

- Demonstrate Emittance Exchange and Reverse Emittance Exchange in the Wedge using MICE data
- Emittance Exchange can be demonstrated by looking at the change in phase space density of the particle selection before and after having passed through a Wedge absorber
- Emittance Exchange is shown by a decreased transverse phase space density ($\mathrm{x}, \mathrm{px}, \mathrm{y}, \mathrm{py}$) and increased longitudinal phase space density ($z, p z$), (and vice versa for Reverse Emittance Exchange)
- Can use a number of techniques to calculate phase space density: KDE, KNN, Voronoi Tessellations, etc.
- MICE beam only has a small natural dispersion \rightarrow Use beam reweighing techniques to select beams with desired dispersion

Previously

- Showed change in transverse phase-space density plots for various absorbers in two different ways. Both are however biased.

Case 1: Biased by Transmission Losses

- Cooling seen when the transverse downstream phase space density is greater than the upstream density.
- Bias is introduced by the missing particles being excluded from the downstream phase space volume calculation i.e comparing different volumes
- The current normalization doesn't account for the change in the particle distribution function.

Case 2: Biased by surviving beam particles

Previously

- Showed change in transverse phase-space density plots for various absorbers in two different ways. Both are however biased.

Case 1: Biased by Transmission Losses

Case 2: Biased by surviving beam particles

- The ratio of the downstream to upstream densities is a constant for the flat/no absorber case (expected when comparing same volumes)
- Lost particles are however excluded. Biased as it excludes some of the heating aspect

Transmission losses (Recall)

- Liouville's theorem only applies to the same particles (or to system with the same particle distribution function). I.e the volume remains the same and the change in the covariance matrix can be described in a conserved manner.
- Transmission losses and subsequent change in particle distribution function can be described by the change it has on the covariance matrix (subscript 1: Full Upstream sample, 2: Upstream which makes it downstream, 3: Upstream which goes missing)

$$
\begin{aligned}
& \Sigma_{1} \\
& =\frac{N_{2}^{3}}{\left(N_{2}+N_{3}\right)^{3}} \Sigma_{2}+\frac{N_{3}^{3}}{\left(N_{2}+N_{3}\right)^{3}} \Sigma_{3} \\
& +\sum_{1}^{N_{2}}\left(N_{2} N_{3}\left(P_{i}-\bar{P}_{2}\right)\left(P_{i}-\bar{P}_{3}\right)+N_{2} N_{3}\left(P_{i}-\bar{P}_{3}\right)\left(P_{i}-\bar{P}_{2}\right)+N_{3}^{2}\left(P_{i}-\bar{P}_{3}\right)\left(P_{i}-\bar{P}_{3}\right)\right) /\left(N_{2}+N_{3}\right)^{3} \\
& +\sum_{1}^{N_{3}}\left(N_{2} N_{3}\left(P_{i}-\bar{P}_{2}\right)\left(P_{i}-\bar{P}_{3}\right)+N_{2} N_{3}\left(P_{i}-\bar{P}_{3}\right)\left(P_{i}-\bar{P}_{2}\right)+N_{2}^{2}\left(P_{i}-\bar{P}_{2}\right)\left(P_{i}-\bar{P}_{2}\right)\right) /\left(N_{2}+N_{3}\right)^{3}
\end{aligned}
$$

- For the case of a symmetric absorber this can be simplified to

$$
N_{1} \Sigma_{1}=N_{2} \Sigma_{2}+N_{3} \Sigma_{3}
$$

The determinant of a matrix (Recall)

- The determinant of a matrix can be separated into parts using:

$$
\left|\Sigma_{1}\right|=\sum_{i=0}^{n} \Gamma_{n}^{i}\left|\Sigma_{2} / \Sigma_{3}{ }^{i}\right|=\left|\Sigma_{2}\right|+\left|\Sigma_{3}\right|+\sum_{i=1}^{n-1} \Gamma_{n}^{i}\left|\Sigma_{2} / \Sigma_{3}{ }^{i}\right|
$$

Where Γ_{n}^{i} represents substituting all combinations of $i^{\text {th }}$ lines from Σ_{2} by the same lines in Σ_{3} and taking the subsequent determinant of the new matrix

- For the symmetric case (LiH, LH2 and no absorber) the previous and above substitutions could be made to compare the upstream and downstream densities. Due to the asymmetry this cannot be done for the wedge and requires further derivation for the asymmetric case.

Potential next step (Recall)

- The missing data downstream is inaccessible, however the upstream sample which makes it downstream can be compared to the downstream sample
- The transport, M, of a covariance matrix from upstream to downstream can be given by:

$$
\Sigma_{\text {down }}=\left\langle X_{\text {down }} \tilde{X}_{\text {down }}\right\rangle=\left\langle M X_{\text {up }} \widetilde{M} \tilde{X}_{\text {up }}\right\rangle=M\left\langle X_{\text {up }} \tilde{X}_{\text {up }}\right\rangle \widetilde{M}=M \Sigma_{\text {up }} \widetilde{M}
$$

- The determinant is given by:

$$
\left|\Sigma_{\text {down }}\right|=\left|M \Sigma_{u p} \widetilde{M}\right|=|M|^{2}\left|\Sigma_{\text {up }}\right|=\left|\Sigma_{\text {up }}\right|
$$

- The transfer matrix M has been previously investigated by Sophie Middleton and Chris Rogers
- A potential investigation would be to investigate the change in R for different fraction sizes of the beam. If stable it could be used to investigate the missing data downstream to see if it is due to scraping and magnet misalignment affects and nothing else

Sample case from TKU S2 to TKU S 1

- Last analysis meeting, showed plots for a third order transfer matrix from TKU S2 to TKU S 1 excluding ~1\% of highly scattered particles, decays, etc, i.e. highly deviating particles.
- Applied transfer matrix to independent sample, and showed residuals from through position
- Residuals were on par with width of scintillating fibre
- Idea is to extend this for further distances and determine performance of transfer matrix from upstream to downstream.

X Residual order 3

Px Residual order 3

Y Residual order 3

Py Residual order 3

Concerns

- Advised results are too optimal due to Kalman actually pulling the spacepoints to desired location. Transfer matrix working too optimally by default.
- Not sure I agree (yet), as trackpoints should not be pulled beyond fibre width (and perhaps Gaussian like), although there may be inherent biases in trackpoint calculation
- Began investigating spacepoints and trackpoints
- Transfer matrix should apply on spacepoints just as on trackpoints.
- Became concerned about Kalman implemantation as it is supposedly highly sensitive to the seed position, and the Pz discrepancy. Transfer matrix will be compromised by wrong Pz, but likely only a larger error.

Trackpoints and Spacepoints

- Trackpoints are in a global reference frame
- Spacepoints are in a local reference frame
- Local coordinates are transformed to global coordinates by taking account of tracker misalignments
- Residuals between local Spacepoints and Global Trackpoints should be straight lines of each tracker misalignment
- Residual between Global Spacepoints and Global Trackpoints at each station should be random unless there is an inherent bias

TKU TKD

X Residual

 GlobalX Axis: Local Station Coordinates (mm)
Y Axis: Residual (mm)
Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2
X Residual is between Global X position Track point and Global X position Space point (+/- 50 mm Offset introduced for TKU and TKD respectively)

If there is no inherent bias, they should be randomly distributed

Y Residual

Global

X Axis: Local Station Coordinates (mm)
Y Axis: Residual (mm)
Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Y Residual is between Global Y position Track point and Global Y position Space point (+/- 50 mm Offset introduced for TKU and TKD respectively)

If there is no inherent bias, they should be randomly distributed

TKU TKD

Energy Loss at the stations

- Energy Loss through the stations is expected to be small, so that the mean energy loss and RMS at each station should be similar.
- This is not the case in the reconstruction
- While the mean is very similar, the RMS is not
- Either side of the absorber, the RMS Energy Loss is smallest between two innermost stations and increases between stations as one moves away from the absorber
- Some of the difference could be explained by the larger dz between stations further away from the absorber
- The difference in RMS between S1 and S2, and the other stations may be due to an inherent bias in the Reconstruction/Kalman Filter

Energy difference (TKU S4 - TKU S5)

Energy difference (TKU S2 - TKU S3)

Energy difference (TKU S3 - TKU S4)

Energy difference (TKU S1-TKU S2)

Energy difference (TKD S1 - TKU S1)
Energy difference (TKD S2 - TKD S1)

Energy difference (TKD S3-TKD S2)

Energy difference (TKD S4 - TKD S3)

Circle Fit of spacepoints

- Currently spacepoints are fitted to a circle, accepted if chi-squared are small enough
- A straight line is also made in s-z plane, accepted if it passes Roadcut
- Radius of circle determines transverse momentum i.e. $\sim p_{t}=c B Q R$
- Longitudinal momentum determined through $p_{z} / p_{t}=\Delta z / R \Delta \varphi$
- For circle fit R and p_{t} don't change until Kalman does its smoothing. Therefore p_{z} is determined mostly by the phase advance until it is Kalman smoothed
- Kalman is sensitive to the seed position, so the question is how the seed position is determined and used (haven't figured it out yet)

Does it Fit?

- Left shows a large radius upstream track and a low radius downstream track
- Red and blue circles show fit to each of the 5 points
- Yellow circles are +/- 3 mm change in radius from centre.
- To see how well the 5 track points fit a circle fit, will look at the number of particles that deviate a certain distance from the circle
- Strictness of radius cut, determines which candidates are accepted
- Low radius particle in this case has managed to fit a circle to the hits, as it has passed the radius cut, without being particularly a circular path
$-45.8262471655 \quad 54.1737528345$ $-40.366354875359 .6336451247$ $-58.404195011341 .5958049887$ $-49.780328798250 .2196712018$ $-58.531746031741 .4682539683$
$-49.029790249454 .1418650794$. 050453514750.924744898 $-52.476615646347 .4985827664$ $-46.077806122453 .8938492063$ - 55.091411564644 .8837868481 Enter Sandman bash43456 Full Upstream resol 0.0 TKU S5 -45.729013254854 .2502761414 TKU S4 -39.557253313760 .4151325479 TKU S3 -59.085051546440 .8896354934 TKU S2 -49.868832842450 .1081553756 TKU S1 -59.3450846834 40.636505891

Upstream that made it Downstream, Downstream
resol 2.0
TKU S5 -15.5966553288 20.5179988662
TKU S4 -2.48015873016 5.63350340136
TKU S3 $-0.563350340136 \quad 1.1833900226$
TKU S2 -11.142998866211 .0933956916
TKU S1 -15.22817460326 .58659297052

Diff 3.1533446712
Diff 0.6200396825
Diff -0.0496031746032
Diff -8.64158163265

TKD S1 $-13.1342120181 \quad 18.6755952381$
TKD S2 -2.70691609977 2.70337301587
TKD S3 -1.94869614512 2.43764172336
TKD S4 -2.926587301594 .34736394558
TKD S5 -18.1583049887 11.1394557823

Enter Sandman

bash-4.2\$ python RadiusChange3.py 43456
Full Upstream
resol 2.0
TKU S5 $-15.3166421208 \quad 20.6139543446$
TKU S4 $-2.51518777614 \quad 6.84600515464$
TKU S3 -0.7064617083951 .09075846834
TKU S2 -11.436855670111 .3379050074
TKU S1 -15.6365058916 .43639543446

Diff 5.54138321995 inwards on average

Diff -0.0035430839002
Diff 0.488945578231
Diff 1.42077664399
Diff -7.01884920635
However, large number of particles

Diff 8.34750566893 Diff 19.2672902494 Diff -16.8083900227 Diff 0.439342403628 Diff -17.0634920635

Diff 8.31207482993 Diff 1.87429138322
Diff -4.97803287982
Diff 7.8160430839
Diff -10.2076247166

No absorber

Particles inside or outside the bounding yellow circle lines with a radius of:

Diff 8.5212628866 Diff 20.8578792342 Diff -18.195416053 Diff 0.239322533137 iff -18.7085787923

Top Left: $\quad+/-0 \mathrm{~mm}$
Top Right: $\quad+/-1 \mathrm{~mm}$
Bottom Left: $+/-2 \mathrm{~mm}$
Bottom Right $+/-3 \mathrm{~mm}$

Diff 5.29731222386
Diff 4.3308173785
Diff 0.384296759941
Diff -9.20011045655
$-28.890306122435 .9410430839$
KU S4 -11.7098922902 22.4702380952 TKU S3 -9.056122448986 .77437641723 TKU S2 -26.9238945578 27.5014172336 TKU S1 -33.822278911619 .4196428571

TKD S1 -26.1054421769 33.2482993197 TKD S2 -13.442460317513 .8321995465 TKD S3 -12.957057823110 .9233276644
TKD S4 -12.872023809517 .7366780045 TKD S5 -33.0286281179 23.4977324263 Enter Sandman
ash-4.2\$ python RadiusChange3.py 43456

Particles start outside the circle and spiral deviate significantly from circle fit line
ull Upstream
resol 1.0
TKU S5 $-28.4931885125 \quad 35.8799705449$ TKU S4 -11.6876840943 24.5098490427 TKU S3-10.0354381443 6.78387334315 TKU S2 -27.356406480127 .6325478645 TKU S1 -34.4969624448 18.9709131075 pstream that made lt Downstream, Downstream resol 3.0
KU S5 -7.21371882086 9.90291950113
TKU S4 -0.5952380952381 .17630385488
TKU S3 -0.162981859410 .396825396825
TKU S2 -3.415532879823 .1462585034
TKU S1 -5.20479024943 1.78925736961
TKD S1 -5.57327097506 9.62655895692
TKD S2 -0.8786848072560 .839710884354
TKD S3 -0.5314625850340 .878684807256
TKD S4 -0.981434240363 1.15858843537
KD S5 -9.25453514739 4.83630952381
Enter Sandman
ash-4.2\$ python RadiusChange3.py 43456
Full Upstream
resol 3.0
TKU S5 -7.06231590574 9.9456921944
TKU S4 -0.6236192930781 .67065537555
TKU S3 -0.1886966126660 .352080265096
TKU S2 $-3.72560751105 \quad 3.37122606775$
TKU S1 -5.433081737851 .79491899853
iff 7.05073696145 Diff 10.760345805 Diff -2.28174603175 Diff 0.577522675737 Diff -14.4026360544

Diff 7.14285714286 Diff 0.389739229025 Diff -2.03373015873
Diff 4.86465419501
Diff -9.53089569161

Diff 7.3867820324
Diff 12.8221649485
Diff -3.25156480118
Diff 0.276141384389
Diff -15.5260493373

Diff 2.68920068027 Diff 0.581065759637 Diff 0.233843537415 Diff -0.269274376417 Diff -3.41553287982

Diff 4.05328798186
Diff -0.0389739229025
Diff 0.34722222222 Diff 0.177154195011 Diff -4.41822562358

Diff 2.88337628866 Diff 1.04703608247 Diff 0.16338365243 Diff -0.354381443299 Diff -3.63816273932

6176 Upstre

TKU S5 -48.996113989651 .0038860104 TKU S4 $-40.4306994819 \quad 59.5693005181$ TKU S3 -58.613989637341 .3860103627 TKU S2 TKU S1

TKD S1 $\quad-45.9520725389 \quad 54.0479274611$ TKD S2 -43.150906735856 .8329015544 TKD S3 -46.5835492228 53.4002590674 TKD S4 -53.724093264246 .2597150259 TKD S5 -53.472797927544 .5110103627 Enter Sandman
bash-4.2\$ python RadiusChange3.py 10664

Full Upstre

resol 0.0
TKU S5 $\quad-46.455363841 \quad 53.4977494374$ TKU S4 -39.9006001560 .0525131283 TKU S3 -58.899099774941 .0633908477 TKU S2 -48.696549137351 .256564141 TKU S1 -58.599024756241 .3634658665 6176 Upstream that made it Downstream, Downstream resol 2.0
TKU S5 -16.904145077718 .3613989637 TKU S4 -2.234455958554 .69559585492 TKU S3 -0.5829015544041 .08484455959 TKU S2 -9.2778497409312 .2733160622 TKU S1 -14.50777202076 .78432642487 TKD S1 - $14.9773316062 \quad 22.0531088083$ TKD S2 -5.424222797938 .77590673575 TKD S3 -1.700129533684 .7603626943 $\begin{array}{llll}\text { TKD S4 } & -5.89378238342 & 2.8335492228\end{array}$ $\begin{array}{lll}\text { TKD S5 } & -25.0161917098 & 14.9287564767\end{array}$ Enter Sandman
bash-4.2\$ python RadiusChange3.py 10664
1066
Full Upst
resol 2.0
$\begin{array}{lll}\text { TKU S5 } & -15.6414103526 & 19.7393098275\end{array}$ TKU S4 -2.785071267826 .51725431358 TKU S3 $-0.759564891223 \quad 1.22843210803$ TKU S2 -10.896474118511 .5622655664 TKU S1 -14.79744936236 .89234808702
$-14.79744936236 .89234808702$

Diff 2.00777202073
Diff 19.1386010363
Diff - 17.2279792746
Diff 7.7396373057
Diff -14.7992227979
Diff 8.09585492228
Diff 13.6819948187
Diff 6.81670984456
Diff -7.46437823834
Diff -10.9617875648

Diff 7.0423855964 Diff 20.1519129782
Diff -17.8357089272
Diff 2.56001500375
Diff -17.2355588897

Diff 1.45725388601 Diff 2.46113989637
Diff 0.50194300518
Diff 2.99546632124
Diff -7.72344559585

Diff 7.07577720207 Diff 3.35168393782 Diff 3.06023316062 Diff -3.06023316062 Diff -10.0874352332

Diff 4.09789947487 Diff 3.73218304576 Diff 0.468867216804 Diff 0.665791447862 Diff -7.90510127532

Wedge

Particles inside or outside the bounding yellow circle lines with a radius of:

$$
\begin{array}{ll}
\text { Top Left: } & +/-0 \mathrm{~mm} \\
\text { Top Right: } & +/-1 \mathrm{~mm} \\
\text { Bottom Left: } & +/-2 \mathrm{~mm} \\
\text { Bottom Right }+/-3 \mathrm{~mm}
\end{array}
$$

Changing the absorber appears to have no effect on the particles in the tracker

6176
Jpstream that made it Downstream, Downstream

resol 1.0

TKU S5 $-31.1042746114 \quad 32.917746114$ TKU S4 -11.8523316062 22.2474093264
TKU S3 -9.034974093266 .84909326425
TKU S2 -23.7856217617 30.731865285

$$
\begin{array}{lll}
\text { IKU S2 } & -23 . / 85621 / 61 / & 30 . / 31865285 \\
\text { TKU S1 } & -33.1930051813 & 20.3367875648
\end{array}
$$

TKD S 1
TKD 22
TKD S2
TKD 33
15.916450777222 .9436528497
$-10.83225388616 .9527202073$
$-37.937176165826 .5867875648$
Enter Sandman
bash-4.2\$ python RadiusChange3.py
10664
full Upstream
resol 1.0
$\begin{array}{llll}\text { TKU S5 } & -29.2854463616 & 34.9774943736\end{array}$
TKU S4 -12.312453113324 .5405101275
TKU S3 -9.996249062276 .92048012003
TKU S2 -26.594148537128 .4977494374
TKU S1 -33.7584396099 19.7018004501
6176
pstream that made it Downstream, Downstream
resol 3.0
TKU S5 -7.966321243528 .4682642487
TKU S4 -0.4047927461140 .987694300518
TKU S3 $-0.0809585492228 \quad 0.323834196891$
TKU S2 -3.04404145078 3.44883419689
$\begin{array}{lll}\text { TKU S1 } & -4.79274611399 & 1.47344559585\end{array}$
TKD S1 -7.36722797927 11.9009067358
TKD S2 -1.92681347153 .96696891192
TKD S3 -0.3076424870471 .7810880829
TKD S4 -2.347797927460 .809585492228
TKD S5 -15.7707253886 8.09585492228
Enter Sandman
ash-4.2\$ python RadiusChange3.py 10664
Full Upstream
resol 3.0
TKU S5 -7.39872468117 9.40547636909
TKU S4 -0.5720180045011 .52850712678
KU S3 -0.131282820705 0.375093773443
TKU S2 -3.80720180045 3.43210802701
$\begin{array}{llll}\text { TKU S1 } & -5.24193548387 & 1.65978994749\end{array}$

Diff 1.81347150259 Diff 10.3950777202 Diff -2.18588082902 Diff 6.94624352332 Diff $\quad-12.8562176166$

Diff 8.20919689119 Diff 7.02720207254 Diff 6.12046632124 Diff -6.07189119171 Diff -11.350388601

Diff 5.692048012
Diff 12.2280570143
Diff -3.07576894224
Diff 1.90360090023
Diff -14.0566391598

Diff 0.501943005181 Diff 0.582901554404 Diff 0.242875647668 Diff 0.404792746114 Diff -3.31930051813

Diff 4.53367875648
Diff 2.04015544041
Diff 1.47344559585 iff - 1.53821243523 Diff -7.67487046632
diff 2.00675168792 Diff 0.956489122281 Diff 0.243810952738 Diff -0.375093773443 Diff -3.58214553638
resol 0
TKU s5

TKD S1 -41.457511652958 .5424883471 TKD S2 -44.720329867355 .2527787738 TKD S3 -50.537827178249 .4442452492 TKD S4 -51.030835424948 .9512370025 TKD S5 -59.7257081391 40.2563642883 Enter Sandman
bash-4.2\$ python RadiusChange3.py 17935
Full Upstream
resol 0.0
TKU S5 $-45.6258712016 \quad 54.3629774185$ TKU S4 -39.559520490760 .4181767494 TKU S3 -58.795650961841 .1820462782 TKU S2 -50.047393364949 .9303038751 TKU S1 -59.063284081440 .9032617786

Diff 9.25062746504

 Diff 20.2940121907 Diff -17.4256005737Diff -0.37647902474
Diff -17.1925421298
Diff 17.0849766942
Diff 10.5324489064
Diff -1.09358192901
Diff -2.07959842237
Diff -19.4693438508
jpstream that made it Downstream, Downstream
resol 2.0

IKU S5 $-15.0233058444 \quad 20.5898171388$ TKU S4 -2.034779490865 .75475080674 TKU S3 -0.5736823234131 .09358192901

TKU S2 -11.428827536810 .8910003586

TKU S1 -14.97848691296 .14019361778
TKD S1 - 14.754392255327 .160272499 TKD S2 -5.03764790247 8.53352456077 TKD S3 -1.68519182503 3.20903549659
TKD S4 -3.146288992471 .86446755109 TKD S5 -30.5665112944 15.812119039] Enter Sandman
ash-4.2\$ python RadiusChange3.py 17935
=ull Upstream
esol 2.0
TKU S5 $-14.9763033175 \quad 20.4126010594$
TKU S4 -2.53136325626 .71870643992
TKU S3 -0.7136883189291 .20992472819
TKU S2 $-11.4747700028 \quad 11.2238639532$
TKU S1 -15.14357401736 .35628659047

Diff 5.56651129437
Diff 3.71997131588
Diff 0.519899605593
Diff -0.5378271782
Diff -8.83829329509

Diff 12.4058802438
Diff 3.4958766583
Diff 1.52384367157
Diff -1.28182144138
Diff -14.7543922553

Diff 5.43629774185 Diff 4.18734318372
Diff 0.496236409256
Diff -0.250906049624
Diff -8.78728742682

KU S5 $-11.043384725722 .812836142$ $-9.053424166376 .1939763356$ $-27.079598422427 .1602724991$ $-33.551452133418 .5640014342$
$-25.959125134541 .5650770886$ $-15.74937253522 .7590534242$ $-11.518465399813 .5622086769$ $-12.101111509510 .1828612406$ KD S5 -43.017210469724 .9731086411

Enter Sandman

ash-4.2\$ python RadiusChange3.py 17935
Full Upstream
resol 1.0
TKU S5 -28.2129913577 36.3590744355
TKU S4 -11.664343462524 .4215221634

TKU S2 $-27.4371511011988 \quad 18.2436576526$

Diff 8.15704553603
Diff 11.7694514163
Diff -2.85944783076 Diff 0.08067407673 Diff -14.9874506992

Diff 15.6059519541

 Diff 7.00968088921 Diff 2.04374327716Diff -1.91825026891 Diff -18.0441018286

Top Left: $\quad+/-0 \mathrm{~mm} \begin{array}{lll}\text { TKU S3 } & -9.6682464455 & 6.55143574017 \\ \text { TKU } & \text { S2 } & -27.437904488 \\ 27\end{array}$
 $-27.437970448827 .1536102593$
 Top Right: $\quad+/-1 \mathrm{~mm}$

 Bottom Left: +/- 2 mm Bottom Right $+/-3 \mathrm{~mm}$Looking at the full Upstream sample, or the Upstream
sample that made it downstream also appears to have no effect

jpstream that made it Downstream, Downstream

resol 3.0
TKU S5 -6.92004302617 9.84223736106 TKU S4 -0.591609896021 .31767658659 TKU S3 -0.1792757260670 .37647902474
TKU S2 -3.76479024743 .03872355683
TKU S1 -5.1003944066 1.6134815346
TKD S1 -7.7895302976 15.8300466117
TKD S2 -2.07063463607 3.45105772678
TKD S3 $-0.475080674077 \quad 1.0846181427$
TKD S4 -1.11150950161 0.582646109717
TKD S5 -20.2581570455 9.17891717461
Enter Sandman
bash-4.2\$ python RadiusChange3.py 17935
full Upstream
resol 3.0
TKU S5 -6.891552829669 .6013381656
TKU S4 -0.7750209088371 .62810147756
TKU S3 -0.1839977697240 .429328129356
TKU S2 -3.758015054363 .13911346529
$\begin{array}{llll}\text { TKU S1 } & -5.08502927237 & 1.78979648732\end{array}$

Diff 8.14608307778 Diff 12.7571787009 Diff -3.11681070532

Diff -0.284360189573
Diff -15.9074435461

Diff 2.92219433489 Diff 0.72606669057 Diff 0.197203298673 Diff -0.72606669057 Diff -3.486912872

Diff 8.04051631409 Diff 1.38042309071 Diff 0.609537468627
Diff -0.528863391897 Diff -11.0792398709

Diff 2.70978533594 Diff 0.85308056872 Diff 0.245330359632 Diff -0.618901589072 Diff -3.29523278506

Jpstream

45.7710027871 .54 .2289972129 $-40.486889255459 .5131107446$ $-58.386894943441 .6131050566$ $-49.940276434850 .0597235652$ -58.125248848241.8747511518

$-41.476594050458 .5063420738$

 $-44.633411068855 .3438370969$-49.2235936522 50.7479665548
-52.346282919147.625277288
$-59.461919117240 .521017007$ Sandman

Diff 8.4579944258 Diff 19.0262214891 Diff - 16.7737898868 Diff 0.119447130425 Diff -16.2504976964

Diff 17.0297480234
Diff 10.7104260281
Diff 1.52437290257
Diff - 4.72100563108 Diff -18.9409021102 Enter Sandman
ash-4.2\$ python RadiusChange3.py 28075
/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:44 warnings.warn(errors[info][0], RuntimeWarning)

resol 0.0

TKU S5 $\quad-45.7239536955 \quad 54.254674977$ TKU S4 -39.864648263660 .1104185218 TKU S3 -58.717720391841 .2573463936 TKU S2 $-49.7488869101 \quad 50.226179875$ TKU S1 -58.764024933241 .21460374
Upstream that made it Downstream, Downstrean
resol 2.0
TKU S5 -14.919515385920 .6984813151
TKU S4 -2.024913258635 .55713554405
TKU S3 -0.6142995278990 .949889084807
TKU S2 $\begin{array}{llll}-11.3474773904 & 10.4203401399\end{array}$
$\begin{array}{llll}\text { TKU S2 } & -11.3474773904 & 10.4203401399 \\ \text { TKU S1 } & -14.9308913031 & 6.46152096013\end{array}$
TKD S1 -14.327967692426 .551390705
TKD S2 -5.50594391673 9.01541436778
TKD S2 -5.50594391673 9.0154143677
$\begin{array}{llll}\text { TKD S3 } & -1.39923781355 & 3.2762641488 \\ \text { TKD S4 } & -3.35020761049 & 1.8258347079\end{array}$
TKD S4 -3.350207610491 .82583470792
$\begin{array}{llll}\text { TKD S5 } & -30.1006768671 & 15.624822251 \\ \text { Enter Sandman }\end{array}$
bash-4.2\$ python RadiusChange3.py
28075
/usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:447
warnings.warn(errors[info][0], RuntimeWarning)
Full Upstream
resol 2.0
$\begin{array}{lll}\text { TKU S5 } & -15.1130899377 & 20.2991985752\end{array}$
TKU S4 $-2.32235084595 \quad 6.6821015138$
TKU S3 -0.7088156723061 .05431878896
TKU S2 $-11.6153161175 \quad 10.821015138$
TKU S1 $-15.0810329475 \quad 6.36865538736$

```
Diff 5.18610863758
Diff 4.35975066785
    Diff 0.345503116652
Diff -0.794300979519
Diff -8.71237756011
```


Particles inside or outside the bounding yellow circle lines with a radius of:

Top Left:
Top Right:
$+/-0 \mathrm{~mm}$
$+/-1 \mathrm{~mm}$
Bottom Left: +/- 2 mm
Bottom Right +/- 3 mm

17581
stream that made it Downstream, Downstream
$\begin{array}{lll}164 & -28.4454809169 & 36.4484386554\end{array}$ KU S4 $-11.700130823 \quad 22.8769694557$
KU S3 -9.271372504416 .67197542802
KU S2 -27.472839997726 .9211080143
KU S1 -33.371253057319 .361811046
TKD S1 -25.647005289841 .1694442864
TKD S2 -16.2334338206 24.1112564701
TKD S3 -11.04601558513 .9866901769
KD S4
KD S4 $-\mathbf{- 1 2 . 5 9 3 1 4 0 3 2 1 9} 9.51595472385$
KD S5 $-42.5118025141 \quad 25.3398555259$
Enter Sandman
ash-4.2\$ python RadiusChange3.py
8075
usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:44
warnings.warn(errors[info][0], RuntimeWarning)
ull Upstream
esol 1.0
KU S5 -28.473731077535 .8432769368
KU S4 $-11.9786286732 \quad 24.4844167409$
TKU S3 $-9.9697239537 \quad 6.93855743544$
KU S2 -27.3802315227 27.1843276937
KU S1 -34.044523597518 .9528049866
$\begin{array}{ll}\text { Diff } & 7.36954585931 \\ \text { Diff } & 12.5057880677\end{array}$ Diff -3.03116651825 $\begin{array}{cl}\text { Diff } & -3.03116651825 \\ \text { Diff } & -0.195903829029\end{array}$
ustream that made it Downstream, Downstream
resol 3.0
KU S5 -6.64353563506 9.90273590808
KU S4 -0.4834764802911 .34804618622
TKU S3 -0.1933905921160 .381093225641
KUU S2 -3.702861043172 .90654684034
KU S1 $-5.07934702235 \quad 1.61538024003$
TKD S1 -7.3545304590215 .5679426654
TKD S2 -2.195552016383 .6801092088
TKD S3 -0.2787099709911 .08640009101
TKD S4 -1.183095387070 .523292190433
$\begin{array}{llll}\text { TKD S5 } & -20.1524372903 & 8.88459132018\end{array}$
Enter Sandman
ash-4.2\$ python RadiusChange3.py
28075
usr/lib64/python2.7/site-packages/scipy/optimize/minpack.py:447:
warnings.warn(errors[info][0], RuntimeWarning)
ull Upstream
esol 3.0
KU S5 -6.742653606419 .69902048085
KU S4 $-0.537845057881 \quad 1.79875333927$
TKU S3 $-0.178094390027 \quad 0.370436331256$
KU S2 $-3.88601959038 \quad 3.25200356189$
TKU S1 -5.093499554761 .68121104185

Diff 8.00295773847 Diff 11.1768386326
Diff -2.59939707639
Diff -0.551731983391
Diff -14.0094420113
$\begin{array}{ll}\text { Diff } & 15.5224389966 \\ \text { Diff } & 7.87782264945\end{array}$ Diff 2.94067459189
Diff $\quad-3.07718559809$
Diff $\quad-3.07718559809$
Diff -17.1719469882

Diff - 15.0917186109

Diff 3.25920027302
Diff 0.864569705933 Diff 0.187702633525
Diff -0.796314202833 Diff - 3.46396678232

Diff 8.21341220636 Diff 1.48455719242
Diff 0.807690120016 Diff -0.659803196633 Diff -11.2678459701

Diff 2.95636687444 Diff 1.26090828139 Diff 0.192341941229 Diff -0.634016028495

Path of particle in ideal solenoid

- If there is no Energy Loss, then the particle will follow a constant radius path
- If there is a constant Energy Loss with no scattering, then the particle will spiral towards a centre with radius $r=a \varphi$, where φ is the turning angle and a is angle of the polar slope (between tangent and polar circle, dictates expansion of spiral).
- $\mathrm{dE} / \mathrm{dx}$ is fairly constant through the stations as the Energy Loss is small (or as implemented by MAUS)
- In MICE we have 5 stations per tracker. Between stations the particles follow a helical path (with no Energy Loss, assume perfect vacuum) and are deviated at the station.
- At the station, Energy Loss occurs, and the particle is deviated to a lower radius path but remains tangential to the circle centre unless scattered.
- This in turn creates a new circle centre along the radial path. The radius change is proportional to the Energy Loss.

Exaggerated case - not to any scale

Circle fit radius of five stations

R1 true radius of initial particle
R2 true radius of particle after Energy Loss through $1^{\text {st }}$ station, with new centre

Before Station 2 to after Station 2

Before Station 5 to after Station 5

What affect does it have on Pt and Pz

- $p_{t}=c B Q R$
- c, B and Q are constant (should be), so transverse momentum changes by radius loss
- A particle loses approximately 0.6 MeV per station, so $\sim 3 \mathrm{MeV}$ per tracker, which for a 140 MeV particle is $\sim 2 \%$
- Therefore the radius from start to finish reduces by 2%
- For a high radius particle, e.g. 100 mm , this radius reduction would be more than a few widths of fibres, leading to a poor qui-squared value for the circle fit and thus being excluded

What effect does it have on Pt and Pz

- z-s plane
- Another qui-squared cut is made in the z-s plane, if the fit in the z-s plane fits a straight line.
- $z=\frac{d z}{d s} s-s_{0}$ with $s=R \varphi$, however if the radius is not constant, or not the appropriate radius (wrong circle centre), then the phase advance will be wrong.
- Should have straight line between stations in s-z plane, however a small deviation at each station. That deviation should be similar at each station (i.e. angle change)
- A too strict straight line qui-squared cut may exclude valid particles, but more importantly:

$$
p_{z} / p_{t}=\Delta z / R \Delta \varphi
$$

- The p_{t} to R ratio should be fairly constant and thus p_{z} is heavily influenced by the phase advance.
- If the movement of circle centre isn't accounted for, then will have the wrong phase advance angle

Circle for 3 points (No Energy Loss)

- For any 3 points a circle can be found
- Circumcentre for those 3 points found by the intersection of tangential midpoint lines
- For 5 points, this can be repeated for each set of consecutive 3 points (In the no Energy Loss case it can be for any 3 points)
- I.e. Find the circumcentre for points 1,2,3 and 2,3,4 and 3,4,5
- If No Energy loss then the 3 circumcentres should match

Example case

$151.896970,151.072839,150.557543,149.898163,149.102635$

- Purple point is most upstream point with the following x marks hits in the following stations (local reference frame).
- Blue Diamond and circle is the circle fit to those five points
- Blue, red and green are the circumcentre for each three consecutive points assuming no energy loss
- Circumcentres shift slightly due to energy loss, this leads to slightly incorrect calculation of seed Pt and Pz
- Will try to introduce Energy Loss and match parameters between 3 consecutive circles
- Black points are in global reference frame, as well as showing the trackpoint Pt and Pz

Circle for 3 points (with Energy Loss)

- For no Energy Loss at Station 2, the green point is the centre of the three points.
- Energy Loss changes the radial path taken by the particle.
- For the same three hits, the particle must have started at a higher radius path and can to a lower radius path (assuming ionization acts uniformly)
- For points 1 and 2 , they still share the same radius, and thus the new centre must still remain on their tangential midpoint line.
- The same respectively happens for points 2 and 3 .
- At station 2 the radial paths overlap, where the energy loss from the higher radius path to the lower radius path can be given in terms of some parameter, alpha.
- This parameter, alpha, can be minimized for three consecutive circles to match radii, pt, pz, ds/dz, $d s \wedge 2 / d z \wedge 2$, etc.

Solving for alpha (Energy Loss at a station)

$$
R_{2}=\alpha R_{1}
$$

- Let $R_{2}=\varepsilon_{2} R$ and $R_{1}=\varepsilon_{1} R$, i.e. $\alpha={ }^{\varepsilon_{2}} / \varepsilon_{1}$ and use Sin rule to solve left triangles

$$
\frac{\sin \left(90-\theta_{4}\right)}{R}=\frac{\sin \left(180-\theta_{c 1} / 2\right)}{R_{1}} \quad \text { and } \quad \frac{\sin \left(\theta_{c 2} / 2\right)}{R_{2}}=\frac{\sin \left(90+\theta_{3}\right)}{R}
$$

- Using $\theta_{1}+\theta_{2}=\theta_{3}+\theta_{4} \quad$ and $\theta_{1}=90-\theta_{c 2} / 2, \quad \theta_{2}=90-\theta_{c 1} / 2$
- $\alpha=\varepsilon_{2} / \varepsilon_{1}=\frac{\sin \left(\theta_{c 2} / 2\right)}{\sin \left(90+\theta_{3}\right)} \frac{\sin \left(90-\theta_{4}\right)}{\sin \left(180-\theta_{c 1} / 2\right)}=$

$$
=\frac{\sin \left(\frac{\theta_{c 2}}{2}\right)}{\sin \left(\frac{\theta_{c 1}}{2}\right)}\left(-\cos \left(\frac{\theta_{c 1}}{2}+\frac{\theta_{c 2}}{2}\right)+\sin \left(\frac{\theta_{c 1}}{2}+\frac{\theta_{c 2}}{2}\right) \tan \left(\theta_{3}\right)\right)
$$

- Alpha effectively changes the opening angle $\left(\theta_{3}\right)$ made by the radial path at station 2 . It can be more effective writing it in terms of θ_{3}

$$
\theta_{3}=\frac{\alpha \sin \left(\frac{\theta_{c 1}}{2}\right)}{\sin \left(\frac{\theta_{c 2}}{2}\right) \sin \left(\frac{\theta_{c 1}}{2}+\frac{\theta_{c 2}}{2}\right)}+\frac{1}{\tan \left(\frac{\theta_{c 1}}{2}+\frac{\theta_{c 2}}{2}\right)}
$$

- Currently I am matching and minimizing parameters between three consecutive circles.
- Can then see if it changes/improves pz discrepancy, Energy Loss in cooling channel

Alpha $=1.0$

ash-4.2\$ python MomentumCalculator2. py

distance between particles [59.94764677484771, 52.280953274956566, 44.056411260740134, 36.49189946774329]
dist_particle to xc yc [36.1579856268822, 32.71681098981141, 32.78318201674866, 30.838589466811612, 30.024216568787033]
 radii 32.50415693380818 radii_3 [34.063898377771984, 31.918221623833947, 31.480328201146676]
 $73066 \overline{6}, \overline{1} .5500812751028525,1.2364717151627733]$
Pt xc yc 29.80756993458405 pt 3 [31.237913206230722, 29.270244577560767, 28.868679360926308]
 $7,147.31330083188175,148.99427478723723]$
advance_xc_yc [68.601834386506, 60.08535656196713, 49.69400075685904, 41.79073393295859]
-advance_3 [73.28598664866152, 59.59607629628411, 61.25976170018792, 48.62355482931635, 48.79706727868973, 38.924535404758856] ds_dz_xc_yc [0.19596369680058087, 0.20033166659209437, 0.19956997220485614, 0.2080242174611764] ds dz $3[0.2093441523215976,0.19870034846961948,0.20424727185860303,0.1952710858050323,0.19596790783930698,0.19375697087791174]$
 ('This equation has two solutions: ', [1.2370352903365267, -61.981853639129184], 'or', [24.83983137633014, -84.1309925252292$]$) ('This equation has two solutions: ', [1.237035287801749, -61.98185363675052], ' or', [17.19379804553159, -21.31884418442347$]$) pz_1 149.217987974 pt_1 31.237913204716225 P_total 152.45266529810678
pz_2 157.211164685 pt_2 31.23791320623072 P total 160.28461411846263
s_adv_1 73.2859866512 2584 ds_dz_1 $0.2093441 \overline{5} 232892267$

('This equation has two solutions: ', [2.524937670846709, -58.69986044235635], ' or', [15.905895662486632, -24.600837378817637])
('This equation has two solutions: ', [2.5249376736179263, -58.69986044653414], ' or', [-42.52343767361794, -48.46423673914893])
pz_1 143.307885136 pt_1 29.27024457571928 P_total 146.26652781696282

$s_{\bar{a}}$ adv_1 $\quad 61.25976170206593$ ds_dz_1 $\quad 0.20424727186486452$

('This equation has two solutions: ', [1.9310965385955132, -58.56493139852289], 'or', [-41.92959653859553, -48.599165787160175])
'This equation has two solutions: ', [1.931096538595492, -58.564931398522894], ' or', [-18.093146538595498, -105.80278927786925])
pz_1 147.313300832 pt_1 28.868679360926315 p total 150.11531983787816
pz_2 148.994274787 pt_2 28.868679360926297 P_total 151.7652613987098
s_adv_1 $48.7970672786 \overline{8975}$ ds_dz_1 0.1959679078393071
$s^{-} \mathrm{adv}^{-} 238.92453540475885 \mathrm{ds} \mathrm{dz}^{-} 20.19375697087791172 \mathrm{ds}^{\wedge} 2 / \mathrm{dz} z^{\wedge} 21.0114108769938839$

Alpha $=0.98$

ash-4.2\$ python MomentumCalculator2. py

distance between particles [59.94764677484771, 52.280953274956566, 44.056411260740134, 36.49189946774329]
dist_particle to_xc yc [36.1579856268822, 32.71681098981141, 32.78318201674866, 30.838589466811612, 30.024216568787033]
 radii 32.50415693380818 radii_3 [34.063898377771984, 31.918221623833947, 31.480328201146676]
 $73066 \overline{6}, 1.5500812751028525,1.2364717151627733]$
Pt xc yc 29.80756993458405 pt 3 [31.237913206230722, 29.270244577560767, 28.868679360926308]
 7, 147.31330083188175, 148.99427478723723]
_advance_xc_yc [68.601834386506, 60.08535656196713, 49.69400075685904, 41.79073393295859]
-advance_3 [73.28598664866152, 59.59607629628411, 61.25976170018792, 48.62355482931635, 48.79706727868973, 38.924535404758856] ds_dz_xc_yc [0.19596369680058087, 0.20033166659209437, 0.19956997220485614, 0.2080242174611764] ds dz 3 [0.2093441523215976, 0.19870034846961948, 0.20424727185860303, 0.1952710858050323, 0.19596790783930698, 0.19375697087791174]
 ('This equation has two solutions: ', [0.8181896903250724, -61.58880404734837], ' or', [25.258676976341594, -84.52404211701003]) ('This equation has two solutions: ', [1.4728132273273196, -61.381014937250896], 'or', [16.958020106006018, -21.9196828839231]) pz_1 151.287979728 pt_1 31.49157813723043 P_total 154.53081344445968
$\mathrm{pz}_{2}^{-} 2154.609780903 \mathrm{pt}_{-}^{-} 30.86174657603517 \mathrm{P}_{-}^{-}$total 157.65986094311373
s_adv_1 $72.8702243425 \overline{8} 357$ ds_dz_1 $0.2081565 \overline{1} 179830869$
s adv_2 59.86907865362459 ds_dz_2 $0.19961057053301332 \mathrm{ds}^{\wedge} 2 / \mathrm{dz}$ ^2 1.0428130696810065
('This equation has two solutions: ', [2.3588388756658336, -59.123134071287645], ' or', [16.071994457667508, -24.177563749886346])
('This equation has two solutions: ', [2.0092914342028267, -58.582698377267526], ' or', [-42.007791434202844, -48.58139880841554])
pz 1 145.057068926 pt $1 \quad 29.511488076151412$ P total 148.02864984148417
$\begin{array}{lllll}\mathrm{pz} \\ \mathrm{pz} & 1 & 147.652250556 & \mathrm{pt} & 2\end{array} 28.921258319216182 \mathrm{P}_{-}^{-}$total 150.4580548758972
s adv 1 61.01986602457969 ds dz $1 \quad 0.20344743137744903$

('This equation has two solutions: ', [2.3000052922556034, -58.64875264969387], ' or', [-42.29850529225562, -48.51534453359892])
'This equation has two solutions: ', [1.756405853118209, -58.977032557183975], ' or', [-17.918455853118218, -105.39068811920818]) pz_1 148.915226227 pt $1 \quad 29.117532994642175$ P total 151.73521453506928

```
pz_2 147.011718984 pt_2 28.53518233479332 P_-total 149.7554745223248
```

s $\bar{a} d v _1 \quad 48.68825797088238$ ds_dz_1 $0.1955309 \overline{3} 214397127$

Next Steps

- Currently I am matching and minimizing parameters between three consecutive circles.
- Alpha will change between stations
- Can get a distribution of alpha which should look like the Energy Loss distribution for going through tracker material
- Can then see if it changes/improves pz discrepancy, Energy Loss in cooling channel
- There are changes between runs. E.g. misalignments and movement. Need to consider for transfer matrix approach

Conclusion

- Transmission losses heavily bias cooling results as the particle distribution function of the remaining sample is heavily changed.
- Particle losses occur at both low and high density
- In the limit of full transmission, changes in the volume occupied have a smaller effect
- To eliminate the bias in the particle distribution function, will try to use a transfer matrix approach to approximate what the downstream particle distribution function look like. Can be tested in reverse on the Upstream sample.
- Transfer Matrix will have heavy correlations as in reality we only have x, y and z with everything else derived from there
- Need to ensure Momenta are correct to eliminate biases from the density calculations

THE END

Extra Slides

Trackpoints and Spacepoints

- Trackpoints are in a global reference frame
- Spacepoints are in a local reference frame
- Local coordinates are transformed to global coordinates by taking account of tracker misalignments
- Residuals between local Spacepoints and Global Trackpoints should be straight lines of each tracker misalignment
- Residual between Global Spacepoints and Global Trackpoints at each station should be random unless there is an inherent bias

TKU TKD

Y Residual
X Axis: Local Station Coordinates (mm)
Y Axis: Residual (mm)
Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Y Residual is between Global Y position Track point and local Y position Space point

Residual should simply show the input Tracker misalignment. Should it be equal?

TKU TKD

Emittance in Experiments

- Emittance measurements can be biased
- The scraping of the beam on the aperture can give a false cooling effect
- Non-linearities can give rise to a false heating effect. The emittance of the beam has increased due to the non-linearities but the phase space volume hasn' \dagger changed size
- To see cooling, one can look at the change in phase-space volume or the change in density of that volume before and after it has gone through some material

Figure 6.6: Scatter plot of a beam ($\epsilon_{i}=6 \mathrm{~mm},\left\langle p_{z}\right\rangle=140 \mathrm{MeV} / c$ and $\beta_{\perp}=800 \mathrm{~mm}$) after transport through a linear focusing lens of $f=5 \mathrm{~mm}^{-1}$ (left) and a similar nonlinear lens with $C_{\alpha}=10^{-4} \mathrm{~mm}^{-2}$ (right). The red curve is the RMS ellipse.

Phase Space Volume and Density

- Take an arbitrary phase space volume upstream of the absorber and count the number of particles in that volume. Take the same volume downstream and count the number of particles in that volume. If it has changed then heating or cooling has taken place
- The problem is what does that phase space volume actually look like downstream as it has changed in shape due to differing momenta of particles in the beam and the magnetic forces of the cooling channel
- Transmission losses also need to be accounted for in an unbiased way

Liouville's theorem

- A particle beam can be described by the distribution of the particles in the beam also known as the phase space density $\rho\left(x, y, z, p_{x}, p_{y}, p_{z}\right)$.
- Liouville's theorem states that the density of particles in phase space is a constant i.e. ${ }^{d \rho} / d t=0$ (providing there are no dissipative forces)
- The number of particles in a phase-space volume is then given by:

$$
N=\int \rho\left(x, y, z, p_{x}, p_{y}, p_{z}\right) d x d y d z d p_{x} d p_{y} d p_{z}=\int \rho d V
$$

- The phase-space density is directly related to the phase space volume
- The phase-space density can be calculated in a number of ways using density estimation techniques such as Kernel Density Estimation (KDE), the kNearest Neighbour Approach (KNN) plus many more
- Phase Space Density Estimation is a non-parametric technique to estimate the underlying probability density, the probability that a particle will be realized at a particular phase space density

Transmission effects - extreme example

- Imagine phase space distribution given by 8 points arranged in a cube separated by a 1 unit distance, giving a 1 unit volume.
- The system is sent through a magnetic system with no dissipative forces. The points may have changed location, but the 1 unit volume is preserved.

Transmission effects - extreme example

- The eight particles are again put through a magnetic system which has an aperture (acts as a dissipative force), resulting in a loss of two particles.
- The volume of the remaining 6 particles is 0.5 unit volume.
- If one were to normalize the downstream sample by the sample size, one would artificially increase the density (which is wrong). For transmission losses, the change is particle distribution is important.

No Wedge Upstream

No Wedge Upstream

[^0]No Wedge (left) and Wedge (right)

Wedge Upstream

Wedge Upstream
Small preference for larger magnitude x not to make it downstream

Wedge case shows slight directional bias as well. The Wedge does not transmit up to 15% of particles that would have made it downstream otherwise.

X Density

X Distribution (Top) and Density (Bottom)

Blue - Full Upstream Sample Red - Upstream Sample which makes it Downstream Green - Upstream Sample which does not make it Downstream

Tanaz (left) vs Francois (right) 6-140 LiH analysis

Figure 4: Evolution of the core phase-space density for the $6-140$ beam setting.

(9\%) Contour density evolution (kNN)

 6-mm 140-MeV/c beam - LiH - flip

TKU density (blue) vs TKD density (red)

Me (left) vs Francois (right) 10-140 No absorber

MICE internal SIS Cycle 2017/03

- Bottom Right: Change in density through cooling channel
- Top left: Upstream (blue) which made it downstream (red) at reference planes (100\% Transmission, biased sample)
- Bottom left: Full Upstream sample (blue) vs downstream (red) (Unbiased Upstream sample, ~50-60\% Transmission)

Empty

Tanaz and Francois analysis (why the numbers don'† match)

To produce the core density evolution plot, the kernel density estimator is used to (the process of summing the kernel functions centered at each data point) re-estimate the density over the core muons, once a core contour is found. The idea is to first estimate the density everywhere (not just at the core of the beam) by summing over kernel functions of fixed widths centered at each muon. The widths of the kernel functions are selected such that the resulting estimated distribution has the smallest deviation from the true density (true density is assumed to be Gaussian). Such kernel width, known as optimal bandwidth parameter (explained in detail in Section 3.2), ${ }^{27}$ ensures that the resulting estimated density is not overly smooth or noisy. Once the core contour is found, the transverse phase-space coordinates of core muons (muons with densities higher the density of the core contour density) are saved, and the Gaussian kernel functions are re-evaluated over them. However, this time, because the core has higher occupancy (data points are more closely spaced) than the tail, the optimal kernel width is now smaller than when the tail of the distribution was included in the density estimation process; this leads to an estimated distribution that has, on average higher density than when the density is estimated everywhere in the distribution. A comparison between the evolution plots (Figs. 4.6 and 4.7) and

- I had agreement with Francois, difference with Tanaz
- Accounting for change in units, factor of 10,000 difference
- Tanaz and Francois results look similar bar the 10,000 difference, however, she actually does calculate the density differently:
- Tanaz finds the 9% core and isolates those particles. From those particles she recalculates the density with the remaining sample. This has changed the particle distribution, as well as the volume over which it has been calculated.
- Isolating the core can be advantageous to aid with transmission, however it appears the 9-th percentile density is calculated on the 9% core.
- $\sim 10 \%$ for each of four dimensions would give a factor of $\sim 10,000$
- Effectively $<1 \%$ of particles are chosen, which can result in significant statistical fluctuations
- It also doesn't deal with transmission losses and if the same particles are being compared

Top Left: No absorber Top Right: Wedge Bottom Left: LiH Bottom Right: LH2

Blue - Full Upstream Sample Red - Full Downstream Sample
Orange - Upstream Sample which made it Downstream Green - Upstream Sample which doesn't make it downstream

Tanaz's 6-1 40 transverse 4D results - IPAC2018

- Tanaz 6-140 Wedge plo†
- Analysis is based on comparing the reference planes where it claims a decrease in density.
- Liouville - change in density only through dissipative forces, therefore change in density should only occur across the absorber (the wedge in this case)
- Before and after the density should remain constant (for the case where transverse components can be isolated from the Iongitudinal components)
- However a change is seen (something has gone wrong)
- Either the transmission losses are heavily biasing the results, or the statistical errors of choosing too small a sample size haven't been accounted for.
- In either case, Emittance Exchange can't be claimed here

Not only low density

56

 particles are eliminatedBlue - Full Upstream Sample Orange - Upstream Sample which makes it Downstream
Green - Upstream Sample which doesn't make it Downstream

The full upstream distribution (blue) can be divided into the upstream distribution which makes it downstream (orange) and upstream distribution which doesn' \dagger make it downstream (green) calculated over the full Upstream distribution volume.

[^0]: 1D Density (mm^-1)

