

WIFI SSID:Spark+AlSummit | Password: UnifiedDataAnalytics

Deep Learning Pipelines for High Energy Physics using Apache Spark with **Distributed Keras and Analytics Zoo**

Luca Canali, CERN

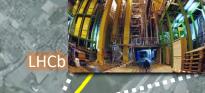
#UnifiedDataAnalytics #SparkAlSummit

About Luca

- Data Engineer at CERN
 - Hadoop and Spark service, database services
 - 19+ years of experience with data engineering
- Sharing and community
 - Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali

CERN: Particle Accelerators (LHC) High Energy Physics Experiments

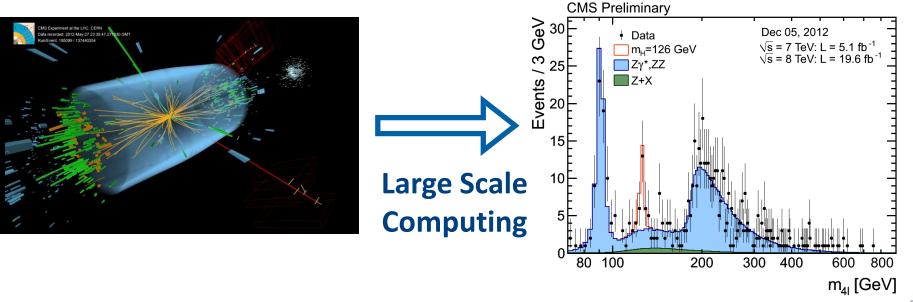


CERN

Experimental High Energy Physics is Data Intensive

Particle Collisions

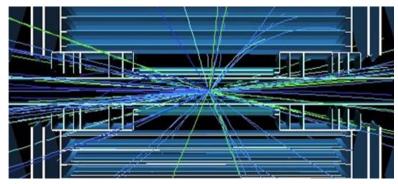
Physics Discoveries

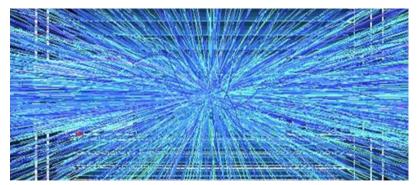


https://twiki.cern.ch/twiki/pub/CMSPublic/Hig13002TWiki/HZZ4I_animated.gib And https://iopscience.iop.org/article/10.1088/1742-6596/455/1/012027

Key Data Processing Challenge

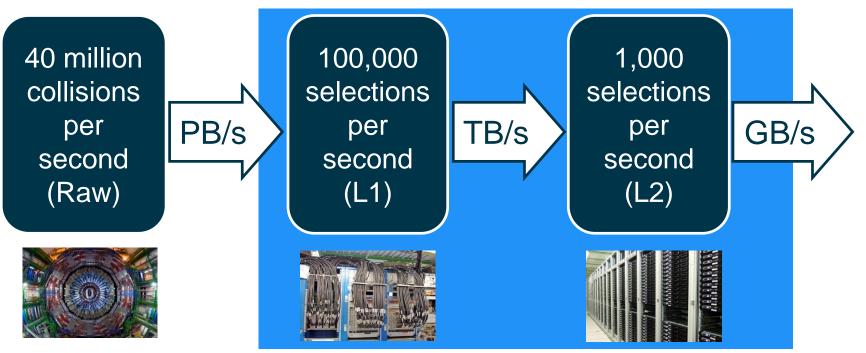
- Proton-proton collisions at LHC experiments happen at 40MHz.
 - Hundreds of TB/s of electrical signals that allow physicists to investigate particle collision events.
- Storage, limited by bandwidth
 - Currently, only 1 every ~40K events stored to disk (~10 GB/s).





2026: 400 collisions/beam cross Future: High-Luminosity LHC upgrade

Data Flow at LHC Experiments

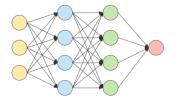


This can generate up to a petabyte of raw data per second Reduced to GB/s by filtering in real time Key is how to select potentially interesting events (trigger systems).

R&D – Data Pipelines

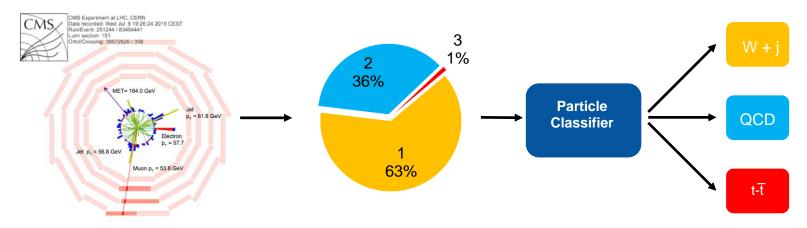
Improve the quality of filtering systems

- Reduce false positive rate
- From rule-based algorithms to classifiers based on Deep Learning
- Advanced analytics at the edge
 - Avoid wasting resources in offline computing
 - Reduction of operational costs

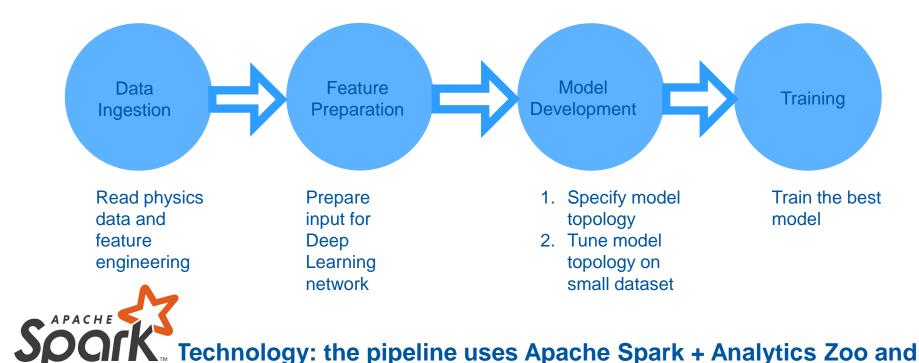


Particle Classifiers Using Neural Networks

- R&D to improve the quality of filtering systems
 - Develop a "Deep Learning classifier" to be used by the filtering system
 - Goal: Identify events of interest for physics and reduce false positives
 - False positives have a cost, as wasted storage bandwidth and computing
 - "Topology classification with deep learning to improve real-time event selection at the LHC", Nguyen et al. **Comput.Softw.Big Sci. 3 (2019) no.1, 12**



Deep Learning Pipeline for Physics Data



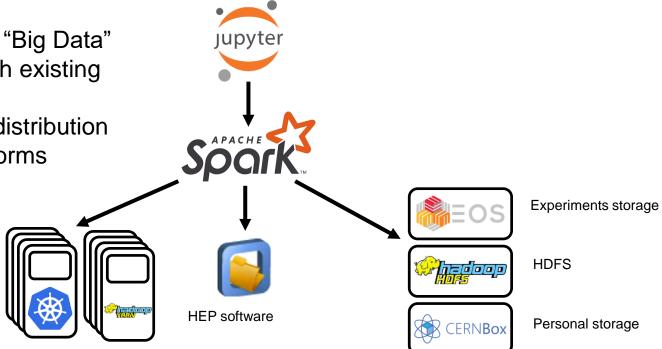
SPORK Technology: the pipeline uses Apache Spark + Analytics Zoo and TensorFlow/Keras. Code on Python Notebooks.

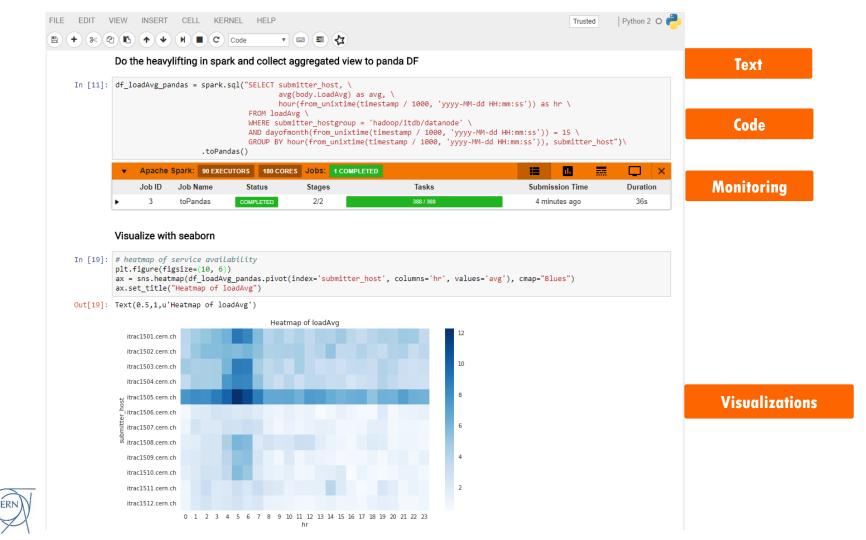
CERN

Analytics Platform at CERN

Integrating new "Big Data" components with existing infrastructure:

- Software distribution
- Data platforms





Hadoop and Spark Clusters at CERN

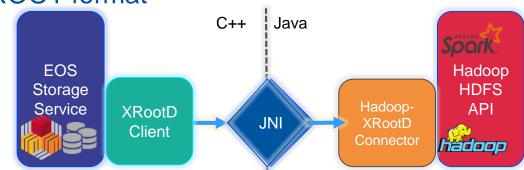
- Clusters:
 - YARN/Hadoop
 - Spark on Kubernetes
- Hardware: Intel based servers, continuous refresh and capacity expansion

	Accelerator logging (part of LHC infrastructure)	Hadoop - YARN - 30 nodes (Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)
	General Purpose	Hadoop - YARN, 65 nodes (Cores – 2.2k, Mem – 20 TB, Storage – 12.5 PB)
	Cloud containers	Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB Storage: remote HDFS or EOS (for physics data)

Extending Spark to Read Physics Data

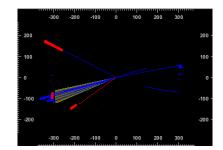
- Physics data
 - Currently: >300 PBs of Physics data, increasing ~90 PB/year
 - Stored in the CERN EOS storage system in ROOT Format and accessible via XRootD protocol
- Integration with Spark ecosystem
 - Hadoop-XRootD connector, HDFS compatible filesystem
 - Spark Datasource for ROOT format

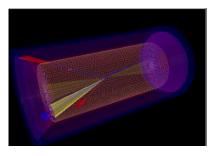
https://github.com/cerndb/hadoop-xrootd https://github.com/diana-hep/spark-root



Labeled Data for Training and Test

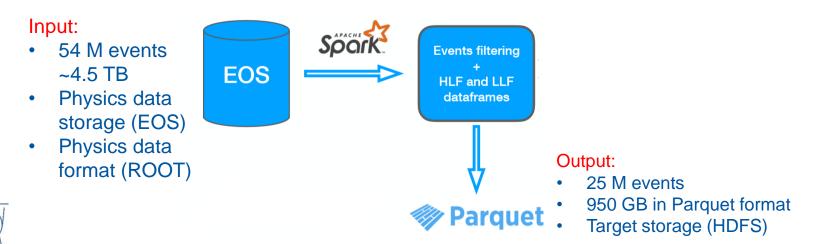
- Simulated events
 - Software simulators are used to generate events and calculate the detector response
 - Raw data contains arrays of simulated particles and their properties, stored in ROOT format
 - 54 million events





Step 1: Data Ingestion

- Read input files: 4.5 TB from custom (ROOT) format
- Feature engineering
 - Python and PySpark code, using Jupyter notebooks
- Write output in Parquet format



Feature Engineering

- Filtering
 - Multiple filters, keep only events of interest
 - Example: "events with one electrons or muon with Pt > 23 Gev"
- Prepare "Low Level Features"
 - Every event is associated to a matrix of particles and features (801x19)

```
features = [
    'Energy', 'Px', 'Py', 'Pz', 'Pt', 'Eta', 'Phi',
    'vtxX', 'vtxY', 'vtxZ', 'ChPFIso', 'GammaPFIso', 'NeuPFIso',
    'isChHad', 'isNeuHad', 'isGamma', 'isEle', 'isMu', 'Charge'
]
```

- High Level Features (HLF)
 - Additional 14 features are computed from low level particle features
 - Calculated based on domain-specific knowledge

Step 2: Feature Preparation

Features are converted to formats suitable for training

- One Hot Encoding of categories
- MinMax scaler for High Level Features
- Sorting Low Level Features: prepare input for the sequence classifier, using a metric based on physics. This use a Python UDF.
- Undersampling: use the same number of events for each of the three categories

Result

- 3.6 Million events, 317 GB
- Shuffled and split into training and test datasets
- Code: in a Jupyter notebook using PySpark with Spark SQL and ML

Feature preparation

Elements of the hfeatures column are list, hence we need to convert them into Vectors.Dense

```
In [10]: from pyspark.ml.linalg import Vectors, VectorUDT
from pyspark.sql.functions import udf
```

```
vector_dense_udf = udf(lambda r : Vectors.dense(r),VectorUDT())
data = data.withColumn('hfeatures_dense',vector_dense_udf('hfeatures'))
```

Now we can build the pipeline to scale HLF and encode the labels

```
In [11]: from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoderEstimator
from pyspark.ml.feature import MinMaxScaler
```

pipeline = Pipeline(stages=[encoder, scaler])

```
%time fitted_pipeline = pipeline.fit(data)
```

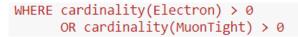
CPU times: user 294 ms, sys: 293 ms, total: 587 ms Wall time: 1min 34s

In [12]: data = fitted_pipeline.transform(data)

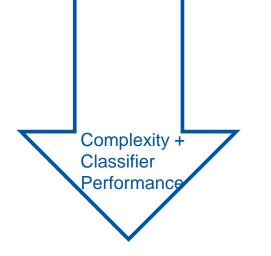
Performance and Lessons Learned

- Data preparation is CPU bound
 - Heavy serialization-deserialization due to Python UDF
- Ran using 400 cores: data ingestion took ~3 hours,
- It can be optimized, but is it worth it ?
 - Use Spark SQL, Scala instead of Python UDF
 - Optimization: replacing parts of Python UDF code with Spark SQL and higher order functions: run time from 3 hours to 2 hours

```
FILTER(Electron,
      electron -> electron.PT > 23
) Electron,
FILTER(MuonTight,
      muon -> muon.PT > 23
) MuonTight
```



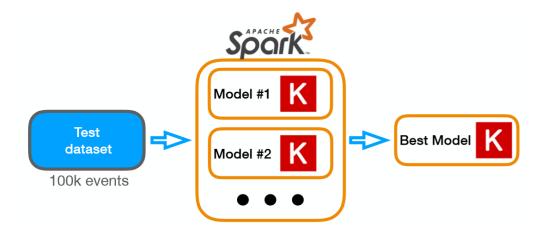
Neural Network Models and



- 1. Fully connected feed-forward deep neural network
 - Trained using High Level Features (~1 GB of data)
- 2. Neural network based on Gated Recurrent Unit (GRU)
 - Trained using Low Level Features (~ 300 GB of data)
- 3. Inclusive classifier model
 - Combination of (1) + (2)

Hyper-Parameter Tuning– DNN

- Hyper-parameter tuning of the DNN model
 - Trained with a subset of the data (cached in memory)
 - Parallelized with Spark, using spark_sklearn.grid_search
 - And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn



Deep Learning at Scale with Spark

- Investigations and constraints for our exercise
- How to run deep learning in a Spark data pipeline?
 - Neural network models written using Keras API
 - Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)
- Distributed deep learning
 - GRU-based model is complex
 - Slow to train on a single commodity (CPU) server

Spark, Analytics Zoo and BigDL

- Apache Spark
 - Leading tool and API for data processing at scale
- Analytics Zoo is a platform for unified analytics and Al
 - Runs on Apache Spark leveraging BigDL / Tensorflow
 - For service developers: integration with infrastructure (hardware, data access, operations)
 - For users: Keras APIs to run user models, integration with Spark data structures and pipelines
- BigDL is an open source distributed deep learning framework for Apache Spark

BigDL Run as Standard Spark Programs

Standard Spark jobs

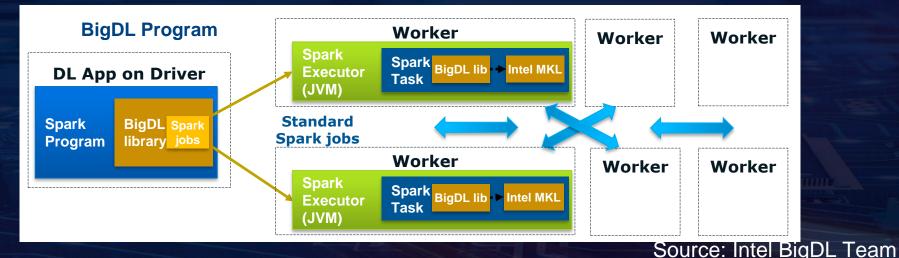
No changes to the Spark or Hadoop clusters needed

Iterative

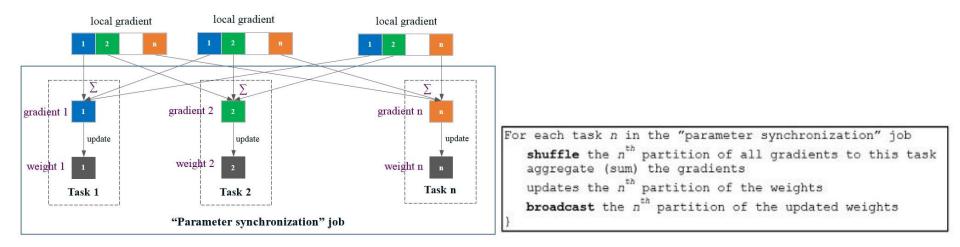
• Each iteration of the training runs as a Spark job

Data parallel

Each Spark task runs the same model on a subset of the data (batch)



BigDL Parameter Synchronization



Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md

Model Development – DNN for HLF

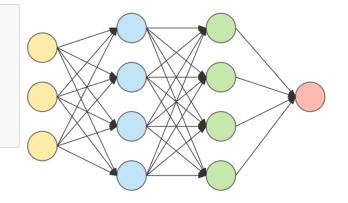
 Model is instantiated using the Kerascompatible API provided by Analytics Zoo

In [7]: # Create keras like zoo model. # Only need to change package name from keras to zoo.pipeline.api.keras

from zoo.pipeline.api.keras.optimizers import Adam
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import Dense, Activation

```
model = Sequential()
model.add(Dense(50, input_shape=(14,), activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(3, activation='softmax'))
```

creating: createZooKerasSequential creating: createZooKerasDense creating: createZooKerasDense creating: createZooKerasDense creating: createZooKerasDense



Model Development – GRU + HLF

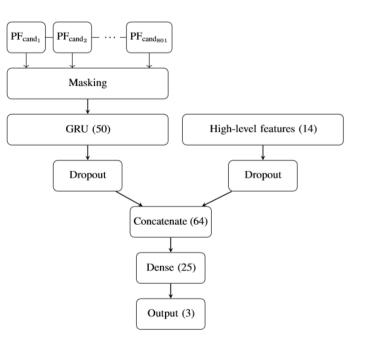
A more complex network topology, combining a GRU of Low Level Feature + a DNN of High Level Features

```
from zoo.pipeline.api.keras.optimizers import Adam
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import *
from zoo.pipeline.api.keras.layers.recurrent import GRU
from zoo.pipeline.api.keras.engine.topology import Merge
```

```
## GRU branch
gruBranch = Sequential() \
    .add(Masking(0.0, input_shape=(801, 19))) \
    .add(GRU(
        output_dim=50,
        activation='tanh'
    )) \
    .add(Dropout(0.2)) \
```

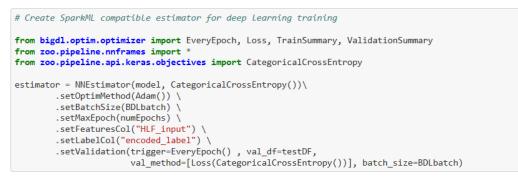
```
## Concatenate the branches
branches = Merge(layers=[gruBranch, hlfBranch], mode='concat')
```

```
## Create the model
model = Sequential() \
    .add(branches) \
    .add(Dense(25, activation='relu')) \
    .add(Dense(3, activation='softmax'))
```



Distributed Training

Instantiate the estimator using Analytics Zoo / BigDL

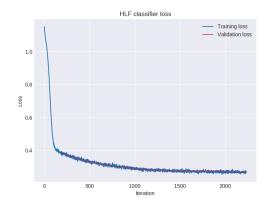


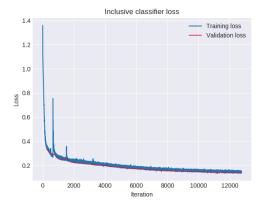
The actual training is distributed to Spark executors

%%time
trained_model = estimator.fit(trainDF)

Storing the model for later use

modelDir = logDir + '/nnmodels/HLFClassifier'
trained_model.save(modelDir)



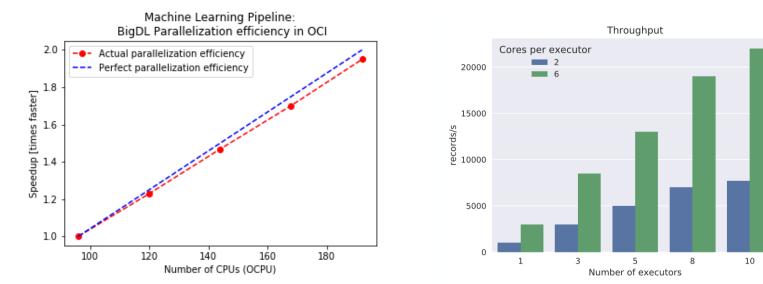


Performance and Scalability of Analytics Zoo/BigDL

Analytics Zoo/BigDL on Spark scales up in the ranges tested

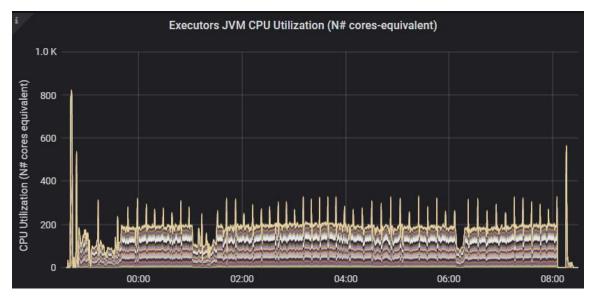
Inclusive classifier model

DNN model, HLF features



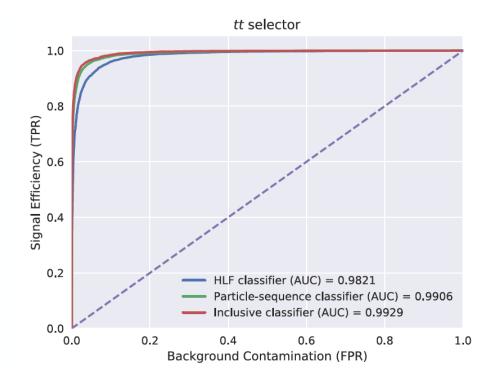
Workload Characterization

- Training with Analytics zoo
 - GRU-based model: Distributed training on YARN cluster
 - Measure with Spark Dashboard: it is CPU bound



Results – Model Performance

- Trained models with Analytics Zoo and BigDL
- Met the expected results for model performance: ROC curve and AUC



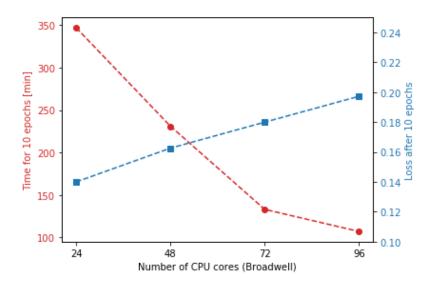
Training with TensorFlow 2.0

- Training and test data
 - Converted from Parquet to TFRecord format using Spark
 - TensorFlow: data ingestion using tf.data and tf.io
- Distributed training with tf.distribute + tool for K8S: <u>https://github.com/cerndb/tf-spawner</u>

Distributed training with TensorFlow 2.0 on Kubernetes (CERN cloud)

Distributed training of the Keras model with: tf.distribute.experimental.

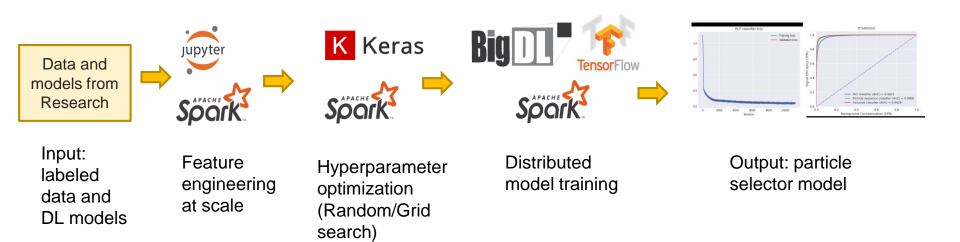
MultiWorkerMirroredStrategy



Performance and Lessons Learned

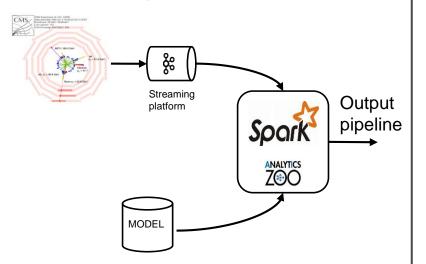
- Measured distributed training elapsed time
 - From a few hours to 11 hours, depending on model, number of epochs and batch size. Hard to compare different methods and solutions (many parameters)
- Distributed training with BigDL and Analytics Zoo
 - Integrates very well with Spark
 - Need to cache data in memory
 - Noisy clusters with stragglers can add latency to parameter synchronization
- TensorFlow 2.0
 - It is straightforward to distribute training on CPUs and GPUs with tf.distribute
 - Data flow: Use TFRecord format, read with TensorFlow's tf.data and tf.io
 - GRU training performance on GPU: 10x speedup in TF 2.0
 - Training of the Inclusive Classifier on a single P100 in 5 hours

Recap: our Deep Learning Pipeline with Spark

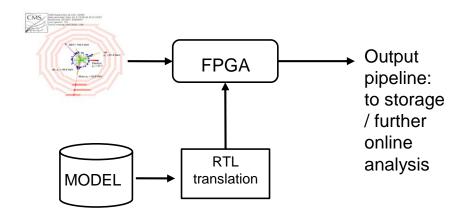


Model Serving and Future Work

 Using Apache Kafka and Spark?



FPGA serving DNN models



Summary

- The use case developed addresses the needs for higher efficiency in event filtering at LHC experiments
- Spark, Python notebooks
 - Provide well-known APIs and productive environment for data preparation
- Data preparation performance, lessons learned:
 - Use Spark SQL/DataFrame API, avoid Python UDF when possible
- Successfully scaled Deep Learning on Spark clusters
 - Using Analytics Zoo and BigDL
 - Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud
- Good results also with Tensorflow 2.0, running on Kubernetes
- Continuous evolution and improvements of DL at scale
 - Data preparation and scalable distributed training are key

Acknowledgments

- Matteo Migliorini, Marco Zanetti, Riccardo Castellotti, Michał Bień, Viktor Khristenko, CERN Spark and Hadoop service, CERN openlab
- Authors of "Topology classification with deep learning to improve real-time event selection at the LHC", notably Thong Nguyen, Maurizio Pierini
- Intel team for BigDL and Analytics Zoo: Jiao (Jennie) Wang, Sajan Govindan
 - Analytics Zoo: <u>https://github.com/intel-analytics/analytics-zoo</u>
 - BigDL: https://software.intel.com/bigdl

References:

- Data and code: <u>https://github.com/cerndb/SparkDLTrigger</u>
- Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics <u>http://arxiv.org/abs/1909.10389</u>

DON'T FORGET TO RATE AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

