
WIFI SSID:Spark+AISummit | Password: UnifiedDataAnalytics

Luca Canali, CERN

Deep Learning Pipelines

for High Energy Physics

using Apache Spark with

Distributed Keras and

Analytics Zoo

#UnifiedDataAnalytics #SparkAISummit

About Luca

3#UnifiedDataAnalytics #SparkAISummit

• Data Engineer at CERN

– Hadoop and Spark service, database services

– 19+ years of experience with data engineering

• Sharing and community

– Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali

CMS

ALICE

ATLAS

LHCb

CERN:

Particle Accelerators (LHC)

High Energy Physics Experiments

Experimental High Energy Physics
is Data Intensive

5

Particle Collisions Physics Discoveries

Large Scale
Computing

https://twiki.cern.ch/twiki/pub/CMSPublic/Hig13002TWiki/HZZ4l_animated.gif

And https://iopscience.iop.org/article/10.1088/1742-6596/455/1/012027

https://twiki.cern.ch/twiki/pub/CMSPublic/Hig13002TWiki/HZZ4l_animated.gif

Key Data Processing Challenge
• Proton-proton collisions at LHC experiments happen at 40MHz.

• Hundreds of TB/s of electrical signals that allow physicists to investigate

particle collision events.

• Storage, limited by bandwidth

• Currently, only 1 every ~40K events stored to disk (~10 GB/s).

2018: 5 collisions/beam cross

Current LHC

2026: 400 collisions/beam cross

Future: High-Luminosity LHC upgrade

This can generate up to a petabyte of raw data per second

Reduced to GB/s by filtering in real time

Key is how to select potentially interesting events (trigger systems).

PB/s

40 million

collisions

per

second

(Raw)

100,000

selections

per

second

(L1)

TB/s

1,000

selections

per

second

(L2)

GB/s

Data Flow at LHC Experiments

R&D – Data Pipelines

• Improve the quality of filtering systems
• Reduce false positive rate

• From rule-based algorithms to classifiers based on
Deep Learning

• Advanced analytics at the edge
• Avoid wasting resources in offline computing

• Reduction of operational costs

Particle Classifiers Using Neural Networks

1
63%

2
36%

3
1%

Particle

Classifier

W + j

QCD

t-t̅

• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Identify events of interest for physics and reduce false positives

• False positives have a cost, as wasted storage bandwidth and computing

• “Topology classification with deep learning to improve real-time event selection at the

LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

Deep Learning Pipeline for Physics Data

Data

Ingestion

Feature

Preparation

Model

Development
Training

Read physics

data and

feature

engineering

Prepare

input for

Deep

Learning

network

1. Specify model

topology

2. Tune model

topology on

small dataset

Train the best

model

Technology: the pipeline uses Apache Spark + Analytics Zoo and

TensorFlow/Keras. Code on Python Notebooks.

Analytics Platform at CERN

HEP software

Experiments storage

HDFS

Personal storage

Integrating new “Big Data”

components with existing

infrastructure:

• Software distribution

• Data platforms

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj0r7aN3dThAhWCbVAKHb1hCsIQjRx6BAgBEAQ&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F538540%2Fcontributions%2F2187138%2Fattachments%2F1282513%2F1906054%2FIT-cernbox-2016-05-31.pdf&psig=AOvVaw2pMudr8fBzgEOu2GjfcgVp&ust=1555508026791340
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiutqHg3dThAhUCPFAKHVErDuQQjRx6BAgBEAU&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F656157%2F&psig=AOvVaw3qNP_2iQRsdOTIFWOKfk_F&ust=1555508199266077

Text

Code

Monitoring

Visualizations

Hadoop and Spark Clusters at CERN

• Clusters:

• YARN/Hadoop

• Spark on Kubernetes

• Hardware: Intel based servers, continuous refresh and capacity expansion

Accelerator logging

(part of LHC

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 65 nodes

(Cores – 2.2k, Mem – 20 TB, Storage – 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)

Extending Spark to Read Physics Data

• Physics data

• Currently: >300 PBs of Physics data, increasing ~90 PB/year

• Stored in the CERN EOS storage system in ROOT Format and

accessible via XRootD protocol

• Integration with Spark ecosystem

• Hadoop-XRootD connector, HDFS compatible filesystem

• Spark Datasource for ROOT format

JNI

Hadoop

HDFS

APIHadoop-

XRootD

Connector

EOS

Storage

Service XRootD

Client

C++ Java

https://github.com/cerndb/hadoop-xrootd

https://github.com/diana-hep/spark-root

https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

Labeled Data for Training and Test

● Simulated events

● Software simulators are used to generate events

and calculate the detector response

● Raw data contains arrays of simulated particles

and their properties, stored in ROOT format

● 54 million events

Step 1: Data Ingestion

• Read input files: 4.5 TB from custom (ROOT) format

• Feature engineering

• Python and PySpark code, using Jupyter notebooks

• Write output in Parquet format

Output:

• 25 M events

• 950 GB in Parquet format

• Target storage (HDFS)

Input:

• 54 M events

~4.5 TB

• Physics data

storage (EOS)

• Physics data

format (ROOT)

● Filtering

● Multiple filters, keep only events of interest

● Example: “events with one electrons or muon with Pt > 23 Gev”

• Prepare “Low Level Features”

• Every event is associated to a matrix of particles and features (801x19)

• High Level Features (HLF)

• Additional 14 features are computed from low level particle features

• Calculated based on domain-specific knowledge

Feature Engineering

Step 2: Feature Preparation
Features are converted to formats
suitable for training

• One Hot Encoding of categories

• MinMax scaler for High Level Features

• Sorting Low Level Features: prepare input
for the sequence classifier, using a metric
based on physics. This use a Python UDF.

• Undersampling: use the same number of
events for each of the three categories

Result
• 3.6 Million events, 317 GB

• Shuffled and split into training and test
datasets

• Code: in a Jupyter notebook using
PySpark with Spark SQL and ML

Performance and Lessons Learned

• Data preparation is CPU bound

• Heavy serialization-deserialization due to Python UDF

• Ran using 400 cores: data ingestion took ~3 hours,

• It can be optimized, but is it worth it ?

• Use Spark SQL, Scala instead of Python UDF

• Optimization: replacing parts of Python UDF code with Spark SQL

and higher order functions: run time from 3 hours to 2 hours

Neural Network Models and

1. Fully connected feed-forward deep neural
network
• Trained using High Level Features (~1 GB of data)

2. Neural network based on Gated Recurrent
Unit (GRU)
• Trained using Low Level Features (~ 300 GB of

data)

3. Inclusive classifier model
• Combination of (1) + (2)

Complexity +

Classifier

Performance

Hyper-Parameter Tuning– DNN

• Hyper-parameter tuning of the DNN model

• Trained with a subset of the data (cached in memory)

• Parallelized with Spark, using spark_sklearn.grid_search

• And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn

Deep Learning at Scale with Spark

• Investigations and constraints for our exercise

• How to run deep learning in a Spark data pipeline?

• Neural network models written using Keras API

• Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)

• Distributed deep learning

• GRU-based model is complex

• Slow to train on a single commodity (CPU) server

Spark, Analytics Zoo and BigDL

• Apache Spark
• Leading tool and API for data processing at scale

• Analytics Zoo is a platform for unified analytics
and AI
• Runs on Apache Spark leveraging BigDL / Tensorflow

• For service developers: integration with infrastructure
(hardware, data access, operations)

• For users: Keras APIs to run user models, integration
with Spark data structures and pipelines

• BigDL is an open source distributed deep learning
framework for Apache Spark

BigDL Run as Standard Spark Programs

Spark

Program

DL App on Driver

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

Standard
Spark jobs

Worker

Worker Worker

Worker

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

BigDL

library
Spark

jobs

BigDL Program

Standard Spark jobs

• No changes to the Spark or Hadoop clusters needed

Iterative

• Each iteration of the training runs as a Spark job

Data parallel

• Each Spark task runs the same model on a subset of the data (batch)

Source: Intel BigDL Team

BigDL Parameter Synchronization

Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md

Model Development – DNN for HLF

• Model is instantiated using the Keras-

compatible API provided by Analytics Zoo

Model Development – GRU + HLF
A more complex network topology, combining a GRU of Low Level Feature + a

DNN of High Level Features

Distributed Training
Instantiate the estimator using Analytics Zoo / BigDL

The actual training is distributed to Spark executors

Storing the model for later use

Analytics Zoo/BigDL on Spark scales up in the ranges tested

Performance and Scalability of Analytics Zoo/BigDL

Inclusive classifier model DNN model, HLF features

Workload Characterization

• Training with Analytics zoo

• GRU-based model: Distributed training on YARN cluster

• Measure with Spark Dashboard: it is CPU bound

Results – Model Performance

• Trained models with

Analytics Zoo and BigDL

• Met the expected results

for model performance:

ROC curve and AUC

Training with TensorFlow 2.0
• Training and test data

• Converted from Parquet to TFRecord format using Spark

• TensorFlow: data ingestion using tf.data and tf.io

• Distributed training with tf.distribute + tool for K8S: https://github.com/cerndb/tf-spawner

Distributed training with TensorFlow

2.0 on Kubernetes (CERN cloud)

Distributed training of the Keras

model with:
tf.distribute.experimental.

MultiWorkerMirroredStrategy

https://github.com/cerndb/tf-spawner

Performance and Lessons Learned
• Measured distributed training elapsed time

• From a few hours to 11 hours, depending on model, number of epochs and batch

size. Hard to compare different methods and solutions (many parameters)

• Distributed training with BigDL and Analytics Zoo

• Integrates very well with Spark

• Need to cache data in memory

• Noisy clusters with stragglers can add latency to parameter synchronization

• TensorFlow 2.0

• It is straightforward to distribute training on CPUs and GPUs with tf.distribute

• Data flow: Use TFRecord format, read with TensorFlow’s tf.data and tf.io

• GRU training performance on GPU: 10x speedup in TF 2.0

• Training of the Inclusive Classifier on a single P100 in 5 hours

Data and

models from

Research

Input:

labeled

data and

DL models

Feature

engineering

at scale

Distributed

model training

Output: particle

selector model
Hyperparameter

optimization

(Random/Grid

search)

Recap: our Deep Learning Pipeline with Spark

Model Serving and Future Work

• Using Apache Kafka

and Spark?

• FPGA serving DNN models

MODEL

Streaming

platform

MODEL

RTL

translation

FPGA
Output

pipeline:

to storage

/ further

online

analysis

Output

pipeline

Summary
• The use case developed addresses the needs for higher

efficiency in event filtering at LHC experiments

• Spark, Python notebooks
• Provide well-known APIs and productive environment for data preparation

• Data preparation performance, lessons learned:
• Use Spark SQL/DataFrame API, avoid Python UDF when possible

• Successfully scaled Deep Learning on Spark clusters

• Using Analytics Zoo and BigDL

• Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud

• Good results also with Tensorflow 2.0, running on Kubernetes

• Continuous evolution and improvements of DL at scale
• Data preparation and scalable distributed training are key

Acknowledgments
• Matteo Migliorini, Marco Zanetti, Riccardo Castellotti, Michał Bień, Viktor

Khristenko, CERN Spark and Hadoop service, CERN openlab

• Authors of “Topology classification with deep learning to improve real-time

event selection at the LHC”, notably Thong Nguyen, Maurizio Pierini

• Intel team for BigDL and Analytics Zoo: Jiao (Jennie) Wang, Sajan Govindan

– Analytics Zoo: https://github.com/intel-analytics/analytics-zoo

– BigDL: https://software.intel.com/bigdl

References:

– Data and code: https://github.com/cerndb/SparkDLTrigger

– Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics

http://arxiv.org/abs/1909.10389

#UnifiedDataAnalytics #SparkAISummit 37

https://github.com/intel-analytics/analytics-zoo
https://software.intel.com/bigdl
https://github.com/cerndb/SparkDLTrigger
http://arxiv.org/abs/1909.10389

DON’T FORGET TO RATE

AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

