
WIFI  SSID:Spark+AISummit | Password: UnifiedDataAnalytics 



Luca Canali, CERN

Deep Learning Pipelines 

for High Energy Physics 

using Apache Spark with 

Distributed Keras and 

Analytics Zoo

#UnifiedDataAnalytics #SparkAISummit



About Luca

3#UnifiedDataAnalytics #SparkAISummit

• Data Engineer at CERN

– Hadoop and Spark service, database services

– 19+ years of experience with data engineering

• Sharing and community

– Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali
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Experimental High Energy Physics
is Data Intensive
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Particle Collisions Physics Discoveries

Large Scale
Computing

https://twiki.cern.ch/twiki/pub/CMSPublic/Hig13002TWiki/HZZ4l_animated.gif

And https://iopscience.iop.org/article/10.1088/1742-6596/455/1/012027

https://twiki.cern.ch/twiki/pub/CMSPublic/Hig13002TWiki/HZZ4l_animated.gif


Key Data Processing Challenge
• Proton-proton collisions at LHC experiments happen at 40MHz. 

• Hundreds of TB/s of electrical signals that allow physicists to investigate 

particle collision events.

• Storage, limited by bandwidth

• Currently, only 1 every ~40K events stored to disk (~10 GB/s).

2018: 5 collisions/beam cross

Current LHC

2026: 400 collisions/beam cross

Future: High-Luminosity LHC upgrade



This can generate up to a petabyte of raw data per second

Reduced to GB/s by filtering in real time

Key is how to select potentially interesting events (trigger systems).
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Data Flow at LHC Experiments



R&D – Data Pipelines

• Improve the quality of filtering systems
• Reduce false positive rate

• From rule-based algorithms to classifiers based on 
Deep Learning 

• Advanced analytics at the edge
• Avoid wasting resources in offline computing

• Reduction of operational costs 



Particle Classifiers Using Neural Networks
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• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Identify events of interest for physics and reduce false positives 

• False positives have a cost, as wasted storage bandwidth and computing

• “Topology classification with deep learning to improve real-time event selection at the 

LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12



Deep Learning Pipeline for Physics Data
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Technology: the pipeline uses Apache Spark + Analytics Zoo and 

TensorFlow/Keras. Code on Python Notebooks.



Analytics Platform at CERN

HEP software

Experiments storage

HDFS

Personal storage

Integrating new “Big Data” 

components with existing 

infrastructure:

• Software distribution

• Data platforms

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj0r7aN3dThAhWCbVAKHb1hCsIQjRx6BAgBEAQ&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F538540%2Fcontributions%2F2187138%2Fattachments%2F1282513%2F1906054%2FIT-cernbox-2016-05-31.pdf&psig=AOvVaw2pMudr8fBzgEOu2GjfcgVp&ust=1555508026791340
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Hadoop and Spark Clusters at CERN

• Clusters: 

• YARN/Hadoop 

• Spark on Kubernetes

• Hardware: Intel based servers, continuous refresh and capacity expansion

Accelerator logging

(part of LHC 

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 65 nodes

(Cores – 2.2k, Mem – 20 TB, Storage – 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)



Extending Spark to Read Physics Data

• Physics data 

• Currently: >300 PBs of Physics data, increasing ~90 PB/year 

• Stored in the CERN EOS storage system in ROOT Format and 

accessible via XRootD protocol

• Integration with Spark ecosystem

• Hadoop-XRootD connector, HDFS compatible filesystem

• Spark Datasource for ROOT format

JNI

Hadoop

HDFS 

APIHadoop-

XRootD

Connector

EOS

Storage

Service XRootD

Client

C++ Java

https://github.com/cerndb/hadoop-xrootd

https://github.com/diana-hep/spark-root

https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root


Labeled Data for Training and Test

● Simulated events

● Software simulators are used to generate events 

and calculate the detector response

● Raw data contains arrays of simulated particles 

and their properties, stored in ROOT format

● 54 million events



Step 1: Data Ingestion

• Read input files: 4.5 TB from custom (ROOT) format

• Feature engineering

• Python and PySpark code, using Jupyter notebooks

• Write output in Parquet format

Output:

• 25 M events

• 950 GB in Parquet format

• Target storage (HDFS)

Input:

• 54 M events

~4.5 TB

• Physics data 

storage (EOS)

• Physics data 

format (ROOT)



● Filtering

● Multiple filters, keep only events of interest

● Example: “events with one electrons or muon with Pt > 23 Gev”

• Prepare “Low Level Features”

• Every event is associated to a matrix of particles and features (801x19)

• High Level Features (HLF)

• Additional 14 features are computed from low level particle features

• Calculated based on domain-specific knowledge

Feature Engineering



Step 2: Feature Preparation
Features are converted to formats 
suitable for training

• One Hot Encoding of categories 

• MinMax scaler for High Level Features

• Sorting Low Level Features: prepare input 
for the sequence classifier, using a metric 
based on physics. This use a Python UDF.

• Undersampling: use the same number of 
events for each of the three categories

Result
• 3.6 Million events, 317 GB

• Shuffled and split into training and test 
datasets

• Code: in a Jupyter notebook using 
PySpark with Spark SQL and ML



Performance and Lessons Learned

• Data preparation is CPU bound 

• Heavy serialization-deserialization due to Python UDF

• Ran using 400 cores: data ingestion took ~3 hours, 

• It can be optimized, but is it worth it ?

• Use Spark SQL, Scala instead of Python UDF 

• Optimization: replacing parts of Python UDF code with Spark SQL 

and higher order functions: run time from 3 hours to 2 hours



Neural Network Models and 

1. Fully connected feed-forward deep neural 
network
• Trained using High Level Features (~1 GB of data)

2. Neural network based on Gated Recurrent 
Unit (GRU)
• Trained using Low Level Features (~ 300 GB of 

data)

3. Inclusive classifier model
• Combination of (1) + (2)

Complexity +

Classifier 

Performance



Hyper-Parameter Tuning– DNN 

• Hyper-parameter tuning of the DNN model

• Trained with a subset of the data (cached in memory) 

• Parallelized with Spark, using spark_sklearn.grid_search

• And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn



Deep Learning at Scale with Spark

• Investigations and constraints for our exercise

• How to run deep learning in a Spark data pipeline?

• Neural network models written using Keras API

• Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)

• Distributed deep learning

• GRU-based model is complex

• Slow to train on a single commodity (CPU) server



Spark, Analytics Zoo and BigDL

• Apache Spark
• Leading tool and API for data processing at scale

• Analytics Zoo is a platform for unified analytics 
and AI 
• Runs on Apache Spark leveraging BigDL / Tensorflow

• For service developers: integration with infrastructure 
(hardware, data access, operations)

• For users: Keras APIs to run user models, integration 
with Spark data structures and pipelines

• BigDL is an open source distributed deep learning 
framework for Apache Spark



BigDL Run as Standard Spark Programs
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Standard Spark jobs

• No changes to the Spark or Hadoop clusters needed

Iterative

• Each iteration of the training runs as a Spark job

Data parallel

• Each Spark task runs the same model on a subset of the data (batch)

Source: Intel BigDL Team



BigDL Parameter Synchronization

Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md



Model Development – DNN for HLF

• Model is instantiated using the Keras-

compatible API provided by Analytics Zoo



Model Development – GRU + HLF
A more complex network topology, combining a GRU of Low Level Feature + a 

DNN of High Level Features



Distributed Training
Instantiate the estimator using Analytics Zoo / BigDL

The actual training is distributed to Spark executors

Storing the model for later use



Analytics Zoo/BigDL on Spark scales up in the ranges tested

Performance and Scalability of Analytics Zoo/BigDL

Inclusive classifier model DNN model, HLF features



Workload Characterization

• Training with Analytics zoo

• GRU-based model: Distributed training on YARN cluster

• Measure with Spark Dashboard: it is CPU bound



Results – Model Performance

• Trained models with 

Analytics Zoo and BigDL

• Met the expected results 

for model performance: 

ROC curve and AUC



Training with TensorFlow 2.0
• Training and test data

• Converted from Parquet to TFRecord format using Spark

• TensorFlow: data ingestion using tf.data and tf.io 

• Distributed training with tf.distribute + tool for K8S: https://github.com/cerndb/tf-spawner

Distributed training with TensorFlow 

2.0 on Kubernetes (CERN cloud)

Distributed training of the Keras

model with:
tf.distribute.experimental.

MultiWorkerMirroredStrategy

https://github.com/cerndb/tf-spawner


Performance and Lessons Learned
• Measured distributed training elapsed time

• From a few hours to 11 hours,  depending on model, number of epochs and batch 

size. Hard to compare different methods and solutions (many parameters)

• Distributed training with BigDL and Analytics Zoo

• Integrates very well with Spark

• Need to cache data in memory

• Noisy clusters with stragglers can add latency to parameter synchronization

• TensorFlow 2.0

• It is straightforward to distribute training on CPUs and GPUs with tf.distribute

• Data flow: Use TFRecord format, read with TensorFlow’s tf.data and tf.io

• GRU training performance on GPU: 10x speedup in TF 2.0

• Training of the Inclusive Classifier on a single P100 in 5 hours
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Recap: our Deep Learning Pipeline with Spark



Model Serving and Future Work

• Using Apache Kafka 

and Spark?

• FPGA serving DNN models

MODEL

Streaming 

platform

MODEL

RTL 

translation

FPGA
Output 

pipeline:

to storage 

/ further 

online 

analysis

Output

pipeline



Summary
• The use case developed addresses the needs for higher 

efficiency in event filtering at LHC experiments

• Spark, Python notebooks 
• Provide well-known APIs and productive environment for data preparation

• Data preparation performance, lessons learned: 
• Use Spark SQL/DataFrame API,  avoid Python UDF when possible

• Successfully scaled Deep Learning on Spark clusters 

• Using Analytics Zoo and BigDL

• Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud

• Good results also with Tensorflow 2.0, running on Kubernetes

• Continuous evolution and improvements of DL at scale 
• Data preparation and scalable distributed training are key
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