ELENA Source status and plans

A. Curcio, F. Di Lorenzo, D. Gamba, M. Gasior, R. Gebel, B. Lefort, F. Wenander

18th of Feb. 2019

- Beam status at the end of 2019
- Plans:
 - Hardware improvement/consolidation
 - Beam stability improvement/study
- Conclusions

Beam status

From Source to Ring

¹⁸th Feb. 2020 - ELENA Source Status and Plans

Typical acquisition end of 2019

Typical acquisition end of 2019 - zoom

Scan over some parameters

■ Basic parameters: 2650 V_{puller}; 6% filament; 70 V_{arc}

Baseline beam – end of 2019

¹⁸th Feb. 2020 - ELENA Source Status and Plans

Beam disappearing after some time

- Well known issue in 2018, it "disappeared" in 2019 when running the source in pulsed mode. It came back at end of 2019 when running in DC mode.
- Example of 16/12/2020 (<u>elogbook</u>)
 - □ Beam lost ⇒ Changed H₂ cartridge ⇒ beam came back "slowly" by itself in the center of BTV, but afterwards it moved again.
 - □ Trying to vent the source \Rightarrow the beam seemed to be stable, at least for a few hours.
 - □ **Trying to mess-up with source steering**, closing/opening valves.

Ongoing investigations and plans

Present working hypothesis

- We have a working (stable) low-current beam
 - □ we could access a much **high intensity** beam, but which is **unstable**
 - □ when source running with DC HV, long-term position drift observed
- So far, we have NO observations of the instability on measurable quantities in the source (e.g. arc current)
 - □ Instability could be in the H⁻ production mechanisms
 - □ **To be investigated** with:
 - Measurement of **H**⁺ **beam**
 - Measurement of e⁻ dumped on the puller electrode
 - □ Should be affected (**optimized**) by:
 - **Electro-magnetic configuration** of the source
 - Vacuum/H₂ purity in the source
 - H₂ ionization process stability
- Confident that orbit instability is due to charging up in the source
 Need to further investigate and probably optimize e⁻ dump

Backup: run the HV in pulsed mode at "low" intensity.

Future investigations: intra-pulse instability: some wrong configuration?

Gas injection control

10

Permanent decapole magnets for plasma confinement

Permanent magnets for "magnetic filter" and H⁻ production

Not so pure H_2 source?

"Bad" filament shape?

Future investigations: position instability: something charging in front of source?

(Before installation)

18th Feb. 2020 - ELENA Source Status and Plans

shielding

On the side: crowded HV cabinet

Figure 11: Front and rear view of the HV cabinet.

1. **Puller** power supplies

Begin replaced by smaller form-factor ones (Fug?)

- 2. Arc power supply
- 3. Filament power supply
- 4. Puller fast switch unit
 - Modified to have slightly longer switching time (order of 1 us), but no impact on beam stability.

 Idea to profit of smaller puller power supplies to ease interventions/measurements in the HV cabinet

(Outdated) pictures from EDMS <u>1720664</u>

Present Action Plan

- As soon as possible [ongoing]:
 - \square Measure **H**₂ cartridge purity
 - □ Improve **HV cabinet** spacing
 - □ Prepare **new Pearson housing** with additional Fraday-cup-like plate
 - Be also ready to improve in-vacuum cabling of the doublet in front of the source
 - When source accessible [March]:
 - □ Leak detection and RGA analysis of the source vacuum
 - □ Prepare (HV) **tooling** for measurement of voltages/currents next to the source.
 - Eventually replace Pearson housing and in-vacuum HV cables
- When possible to start the source [March-April]:
 - □ (Re-)measure all voltages/currents next to the source
 - Important to **measure electrons** being correctly dumped on the puller plate
 - □ Try pulsing the source in **proton mode** and measure instability with Pearson
 - □ Eventually try to **modify magnetic configuration, filament shape, etc**..
- When possible to send beam to the ring [April-]:
 - □ **Confirm charging up** occurs in the source sector (before differential pumping)
 - \Box Try adding magnets to better dump electrons(?)

Conclusions

- We know more and more our source
- We demonstrated to have a working H⁻ beam
 - □ **probably good enough** for most purposes
 - Transfer line commissioning
 - \Box SEM debug
 - Ring setup/optimization

Two main threats for the full exploitation of the source:
 Intra-pulse instability
 Long-term drift of beam position

Long-term drift of beam position

Not yet (extensively) investigated are the transverse beam properties and matching with the ring optics

□ If emittance reduction by scraping needed, having more intensity from the source will be desired, i.e. we need to continue our activities

Source cabling (partially outdated)

from Ana Megía-Macías - link

Source operation point

(with respect to source user manual graphs)

ELENA source Iarc=1-2 AUarc=70 VQ=0.006-0.018 Torr*l/s

General behavior of source parameters

Estimated pressure in the source

¹⁸th Feb. 2020 - ELENA Source Status and Plans

Mean FFT over 3 configurations

No specific frequency pops out, maybe tendency to move peak to higher frequencies for higher gas pressures?! Could it be compatible with plasma frequency?

• (Tried to looked at other data with shorter pulses, fewer shots, different conditions... difficult to conclude anything: to be repeated with longer pulses, scanning over arc voltage.)

Plasma frequency

- If $f_e = 1$ MHz, then plasma electron density of the order of 1e10 [m⁻³].
 - Is this plausible? It seems way too small!
- If we **double the gas injection**, we should double the plasma density.
 - If so, we should expect sqrt(2) higher plasma frequency.
- The same applies for the "ion" density. In our case we talk about protons, i.e.:

$$f_i = f_e \sqrt{\frac{m_e}{m_i}} \approx f_e \sqrt{\frac{0.511}{938}} \approx 0.023 \times f_e \approx 0.21 \sqrt{n_i}$$

• for $f_i = 1$ MHz we should then expect a plasma proton density of 2e13 [m⁻³].

All values way too far from estimated gas density in the source: 3e19 [m-3]