

late universe solutions have a "sound horizon problem"

SOUNDS DISCORDANT: CLASSICAL DISTANCE LADDER & ACDM-BASED DETERMINATIONS OF THE COSMOLOGICAL SOUND HORIZON

KEVIN AYLOR,¹ MACKENZIE JOY,² LLOYD KNOX,¹ MARIUS MILLEA,^{3,4,5} SRINIVASAN RAGHUNATHAN,^{6,7} AND W. L. KIMMY WU⁸

arXiv:1811.00537v2 [astro-ph.CO] 25 Apr 2019

Assume that early universe is ACDM extract parameters from CMB (or BBN)

=> alwark sound horizon

= 147 ±1 Mpc

Delermine a conflicting value for rs from BAO + distance ladder from Riess et.d. (sepheids + SNIa)

 $r_{s}^{BAD} = 138 \pm 3.6 Mpc$ 15 = 14711 Mpc

Is from BAO: {rs 70840 $D_{\lambda}(z)$ $V_{3} = D_{A}(z) \sin \theta^{BAO}$ ~ measured Riess ladder -*

Geometry > Cepheids > SN1a luminosity calibration

SOUNDS DISCORDANT: CLASSICAL DISTANCE LADDER & ACDM-BASED DETERMINATIONS OF THE COSMOLOGICAL SOUND HORIZON

KEVIN AYLOR,¹ MACKENZIE JOY,² LLOYD KNOX,¹ MARIUS MILLEA,^{3,4,5} SRINIVASAN RAGHUNATHAN,^{6,7} AND W. L. KIMMY WU⁸

Early universe models with extra dark radiation to change the sound horizon

extra (dark) radiation

• Free-steaming: 76 Good idea, doesn't work. 73 • Self-interacting: H_0 Better idea, doesn't quite 70 work (Blinov, Marques-Tavares 2003.08387). 67 • But... looks like 3.2 3.5 3.8

 $N_{\rm eff}$

the right way to go ...

"A step in understanding the astro-ph Hubble tension " 2111.00014

dark radiation is self-interacting with massive + massless particle

THE ATACAMA COSMOLOGY TELESCOPE: DR4 MAPS AND COSMOLOGICAL PARAMETERS

Parameter	ACT	ACT+WMAP	ACT+Planck	Planck ^a
Ω_k	$-0.003^{+0.022}_{-0.014}$	$-0.001\substack{+0.014\\-0.010}$	$-0.018^{+0.013}_{-0.010}$	$-0.037^{+0.020}_{-0.014}$
$\Sigma m_{\nu} [\text{eV}]$	< 3.1	< 1.2	< 0.54	< 0.37
$N_{\rm eff}$	2.42 ± 0.41	$\textbf{2.46} \pm 0.26$	2.74 ± 0.17	2.97 ± 0.19
$dn_s/dlnk$	0.069 ± 0.029	0.0128 ± 0.0081	0.0023 ± 0.0063	-0.0067 ± 0.0067
$Y_{ m HE}$	0.211 ± 0.031	0.220 ± 0.018	0.232 ± 0.011	0.243 ± 0.013

Beyond ΛCDM parameters with 68% confidence level

arXiv:2007.07288v2 [astro-ph.CO] 3 Dec 2020

see talk by Melissa Joseph

What data will settle this? • Nis mergors? 10 years? • moe CMB precision? · an even better model? • TRGB vs cepheids !