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ABSTRACT
Type Ia Supernovae, calibrated by classical distance ladder methods, can be used, in conjunction with galaxy survey two-point

correlation functions, to empirically determine the size of the sound horizon rs. Assumption of the ⇤CDM model, together
with data to constrain its parameters, can also be used to determine the size of the sound horizon. Using a variety of cosmic
microwave background (CMB) datasets to constrain ⇤CDM parameters, we find the model-based sound horizon to be larger than
the empirically-determined one with a statistical significance of between 2 and 3�, depending on the dataset. If reconciliation
requires a change to the cosmological model, we argue that change is likely to be important in the two decades of scale factor
evolution prior to recombination. Future CMB observations will therefore likely be able to test any such adjustments; e.g., a third
generation CMB survey like SPT-3G can achieve a three-fold improvement in the constraints on rs in the ⇤CDM model extended
to allow additional light degrees of freedom.
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30 Riess et al.

Figure 12. Complete distance ladder. The simultaneous agreement of distance pairs: geometric and Cepheid-based (lower
left), Cepheid- and SN-based (middle), and SN- and redshift-based (top right) provides the measurement of H0. For each step,
geometric or calibrated distances on the abscissa serve to calibrate a relative distance indicator on the ordinate through the
determination of MB or H0. Results shown are an approximation to the global fit as discussed in the text. Red SNe points are at
0.0233 < z < 0.15 with the lower redshift bound producing the appearance of asymmetric residuals when plotted against distance.
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Figure 1. Comoving angular-diameter distance measurements,
DA(z), together with best-fit models. BAO results have been con-
verted from DA(z)/rs to DA(z) by assumption of rs = 138.09
Mpc. Supernovae distance moduli have been converted to DA(z)
assuming M = �19.26. In the residuals panel, �DA(z) =
DA(z) � DA,⇤CDM(z) where DA,⇤CDM(z) is the comoving
angular-diameter distance for the best-fit ⇤CDM cosmology. The
gray band shows the 68% confidence interval for the spline model.

Figure 2. Expansion rate measurements together with best-fit mod-
els. BAO data have been converted to H(z) by assumption of
rs = 138.09 Mpc. The gray band shows the 68% confidence in-
terval for the spline model.

R18), used for calibrating the Pantheon binned distance mod-
uli (“SNe”, Scolnic et al. 2018), which in turn are used to
calibrate the BAO distance and H(z) constraints from BOSS
galaxies (“BAO”, Alam et al. 2017). The CDL based rs re-
sults are shown as blue circles in the top panel of Fig. 3.

3.1.1. CDL + ⇤CDM

First, we have assumed the ⇤CDM model – using it to pro-
vide the parameterized shape of H(z)/H0. We find

rs = (137.6 ± 3.45) Mpc. (10)

As a point of comparison we mention a result from Ad-
dison et al. (2018). They take a more comprehensive set of
BAO data, including constraints at lower redshift from galaxy
surveys (Beutler et al. 2011; Ross et al. 2015), and higher
redshift constraints from BOSS Lyman-↵ (Font-Ribera et al.
2014; Delubac et al. 2015; Bautista et al. 2017) and find, from
the BAO data themselves, assuming the ⇤CDM model, that
H0rs = (10119±138) km/sec. Combining this with the R18
result for H0 it becomes

rs = (137.7 ± 3.7) Mpc (11)

This result is nearly the same, in mean and standard devia-
tion, as our own CDL + ⇤CDM result. The lack of reduction
in uncertainty, despite the much greater amount of BAO data,
is due in part to the lack of use of the SNeIa data, which in-
creases uncertainty in ⌦m, and therefore the shape of DA(z).
The other important factor in the lack of reduction is that the
BOSS galaxy data are unmatched in precision.

Our second CDL + ⇤CDM result comes from replacing
Cepheids (R18) with the SLTD data from H0LiCOW (Birrer
et al. 2018) like explained in §2.2. From our SNeIa + BAO
data we have �BAO ⌘ c/(rsH0) = 29.7 ± 0.37. Combining
this with H0 = 72.5+2.1

�2.3 km/s/Mpc from Birrer et al. (2018)
we find

rs = 139.3+4.8
�4.4 Mpc. (12)

That uncalibrated supernovae, combined with BAO data, put
a strong constraint on the product rsH0(= c/�BAO) was pre-
viously mentioned in Verde et al. (2017b).

3.1.2. CDL + Spline

To explore the model-dependence of the CDL method for
rs inference, we now drop the assumption of ⇤CDM for pa-
rameterization of the shape of H(z)/H0 and replace it with
our Spline model. Because our BAO results span such a small
range of redshift, we can expect that there is very little sen-
sitivity of the inferred rs to the choice of parameterization,
as long as it is not varying rapidly on redshift intervals com-
parable to the redshift span of the BAO measurements. With
the four-parameter model described in the previous section
we indeed find a very similar result to the ⇤CDM result:

rs = (138.0 ± 3.59) Mpc. (13)

That this sound horizon result is a little bit larger is con-
sistent with what we see in the residuals panel of Fig. 1.
Namely, the SNe data largely sit above the ⇤CDM best-fit
curve in the redshift interval with the BAO data. The in-
creased freedom of the empirical model reduces the influ-
ence of the SNe outside of this redshift range, boosting D(z)
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range of redshift, we can expect that there is very little sen-
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parable to the redshift span of the BAO measurements. With
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Figure 3. Sound horizon determinations from existing data (solid symbols) and forecasts (open symbols). The numbers down the middle give
the difference with the Cepheids+SNe+BAO Spline model result for rs in units of the standard deviation, with the standard deviation computed
via quadrature sum. We see that the classical distance ladder constraints (top panel) on rs come out systematically lower than the ⇤CDM-based
constraints (biggest panel). The three model extensions considered in the three remaining panels do not significantly weaken the discrepancy.
Code and data for this figure is available here: �

in this interval with the result that rs is slightly larger. Note
though that statistically, this is a very small shift of less than
0.2�.

More importantly, because the ⇤CDM and Spline results
for rs are basically the same, including in the uncertainty,
we can conclude that the CDL sound-horizon determina-
tion is highly model independent. In particular, it is, at
most, very weakly dependent on any assumptions about
the shape of the distance-redshift relationship. As a fur-
ther check, we performed an analysis with Spline points
moved to z ={0, 0.2, 0.5, 0.8, 1.1} away from our base-
line z = {0, 0.2, 0.57, 0.8, 1.3} (see §2.1) and obtain rs =
137.7 ± 3.60 Mpc indicating that our results are not highly
sensitive to the choice of pivotal redshift points.

Before closing this subsection we comment on the depen-
dence of the CDL result for rs on curvature. Using R16 for
the H0 constraint, Betoule et al. (2014) for the SNeIa data,
and the same BOSS BAO data, Verde et al. (2017b) found,
also for a phenomenological parameterization of H(z), that
rs = 138.5 ± 4.3 Mpc assuming ⌦k = 0. This is consistent
with our result to within 0.2�. When they marginalize over
⌦k they find rs = 140.8 ± 4.9 Mpc. This is a ⇠ 0.5� shift,
which indicates that were we to relax our zero curvature as-
sumption, it might have some impact on the significance of
our results. We caution against seeing this small shift as pos-
sibly leading to a resolution between the CMB and CDL data.

To get the full magnitude of this shift requires the curvature
to be quite far from zero. The Verde et al. (2017b) constraint
on ⌦k in this analysis is ⌦k = 0.49±0.64. Such a large value
of ⌦k is highly disfavored by CMB data; in the ⇤CDM+ ⌦k

model the Planck temperature and polarization power spectra
lead to ⌦k = �0.044 ± 0.034.

3.2. ⇤CDM-based constraints with and without CMB data

We now turn to the model-based determinations of the
sound horizon, focusing first on the ⇤CDM model results.
To examine robustness of sound-horizon determination we
show results for many choices of CMB datasets (orange cir-
cles in the biggest panel of Fig. 3). We see some scatter in
these inferences of rs, with all of them between 2 and 3�

larger than the spline-based CDL result.
A curious feature of the scatter in the ⇤CDM results is that

those datasets that lead to lower values of H0, such as using
Planck temperature power spectrum (TT) data restricted to
l > 800 (+ lowE), which are thus more discrepant with the
CDL value of H0, also lead to values of rs that are less dis-
crepant with the CDL, and vice versa. This pattern can be un-
derstood as follows. First, recall that the comoving size of the
sound horizon is given by Eq. 9, which, in the ⇤CDM model
depends only on the baryon-to-photon ratio and the matter
density !m. The fluctuations in ⇤CDM-based rs inferences
from CMB data are almost entirely driven by fluctuations in
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TABLE 5
Beyond ⇤CDM parameters with 68% confidence level or 95% upper limits from ACT, ACT+WMAP, and ACT+Planck.

Parameter ACT ACT+WMAP ACT+Planck Plancka

⌦k �0.003+0.022
�0.014 �0.001+0.014

�0.010 �0.018+0.013
�0.010 �0.037+0.020

�0.014
⌃m⌫ [eV] < 3.1 < 1.2 < 0.54 < 0.37
Ne↵ 2.42± 0.41 2.46± 0.26 2.74± 0.17 2.97± 0.19
dns/dlnk 0.069± 0.029 0.0128± 0.0081 0.0023± 0.0063 �0.0067± 0.0067
YHE 0.211± 0.031 0.220± 0.018 0.232± 0.011 0.243± 0.013

aPlanck alone results (TTTEEE with the same ⌧ prior) are reported for reference.
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plitude of structure will be suppressed, and the smaller
the lensing signal will be. The limit on the neutrino
mass sum from ACT and WMAP is

P
m⌫ < 1.2 eV

at 95% confidence. This upper limit is higher than
Planck from the power spectrum alone, and is also con-
nected to ACT’s inferred lensing signal being slightly
lower than Planck’s. When combining with other ex-
ternal datasets (for example lensing potential measure-
ments from Planck (Planck Collaboration VIII 2018) and
baryon acoustic oscillations from BOSS DR12 consen-
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cies, in particular with the cold dark matter density, we
find consistent constraints to Planck (see Fig. 21) with
ACT+WMAP combined with external datasets givingP
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Here we investigate the running of the spectral index,
the e↵ective number of relativistic species, and the pri-
mordial Helium abundance. The high-ns region allowed
by the ACT data tilts the spectrum so that the ACT

data by themselves show a mild preference for having
less damping in the small-scale power spectrum than in
the ⇤CDM model. Since the dominant e↵ect of all three
of these extension parameters is to a↵ect the degree of
damping, this is reflected in the ACT data alone prefer-
ring a number of species Ne↵ that is less than 3.046, a
running of the spectral index dns/dlnk that is greater
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abundance, YHE, that is less than the Big Bang Nucle-
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eling and the best-fit model moves depending on whether
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ters, MBAC is contributing to better measuring the am-
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ABSTRACT

We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and
polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013–2016
at 98 and 150GHz. The maps cover more than 17,000 deg2, the deepest 600 deg2 with noise levels
below 10µK–arcmin. We use the power spectrum derived from almost 6,000 deg2 of these maps to
constrain cosmology. The ACT data enable a measurement of the angular scale of features in both
the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density
at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer
the local expansion rate, H0. By combining ACT data with large-scale information from WMAP we
measure H0 = 67.6±1.1 km/s/Mpc, at 68% confidence, in excellent agreement with the independently-
measured Planck satellite estimate (from ACT alone we find H0 = 67.9±1.5 km/s/Mpc). The ⇤CDM
model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial
curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1�;
the number of relativistic species, the primordial Helium fraction, and the running of the spectral index
are consistent with ⇤CDM predictions to within 1.5–2.2�. We compare ACT, WMAP, and Planck at
the parameter level and find good consistency; we investigate how the constraints on the correlated
spectral index and baryon density parameters readjust when adding CMB large-scale information that
ACT does not measure. The DR4 products presented here will be publicly released on the NASA
Legacy Archive for Microwave Background Data Analysis.
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ieŕıa
,
F
a
c-

u
lta

d
d
e
F̀
ısica

,
P
o
n
tifi

cia
U
n
iversid

a
d

C
a
tó
lica

d
e
C
h
ile,

A
v
.

V
icu

ñ
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