TDC in ACTEL FPGA

Tom Sluijk
Wilco Vink
Albert Zwart
Fabian Jansen

OT FE Upgrate proposal (40 MHz)

TDC in Actel FPGA

- Design of TDC in ACTEL Proasic3E FPGA because of the radiation properties
- 16 Channel 4 bit TDC (bin size 1570 ps)
- Zero Suppress or Raw data formats
- Output 20 bit LVDS @ 160 MHz to GBT
- I2C interface to set Mask Register, data format and read Histogrammer

Compile Report

Family : ProASIC3E

Device : A3PE1500

Package: 208 PQFP

CORE Used: 13780 Total: 38400 (35.89%)

IO (W/ clocks) Used: 89 Total: 147 (60.54%)

Differential IO Used: 26 Total: 65 (40.00%)

GLOBAL (Chip+Quadrant) Used: 8 Total: 18 (44.44%)

PLL Used: 1 Total: 2 (50.00%)

RAM/FIFO Used: 50 Total: 60 (83.33%)

Low Static ICC Used: 0 Total: 1 (0.00%)

FlashROM Used: 0 Total: 1 (0.00%)

User JTAG Used: 0 Total: 1 (0.00%)

TDC (1 Channel)

- PLL generates 3 clock signals; 8x Bx (320 MHz), 4x Bx (160MHz), 2x Bx (80 MHz)
- 2 Phase Shifters, one shifts on the positive edge and the other on the negative edge of the 320 MHz clock, dividing the Bx in 16 phases
- The Hit signal latches the state of the Phase shifters in the Hit Register
- The LUT translates the 8 bit Hit Register into 4 bit time info
- The Hit Logic decides if a valid hit occurred

Timing Diagram

- Hits in the first half period of Bx (yellow bar) are tested in the second half period
- Hits in the second half period are tested in the first half of Bx+1
- This causes a dead time of less then a Bx, only if a valid hit was detected
- The Output Register is clocked in the middle of Bx+1

FIFO Writer

- Adds Bx Counter to the TDC data
- Zero Suppresses the data
- Possibility to bypass the Zero Suppressor

Zero Suppress

4 Channel Zero Suppress mechanism:

Two registers per pipeline stage one with only valids and the second with data to be checked.

After 4 Bx periods only the TDC channels with a 'green' valid bit are left.

For 16 channels 16 Bx periods are needed

FIFO Reader

- Clocked by 2x Bx
- Can read two events in one Bx
- Truncates data when FIFO contains 448 events
- Latency:
 - ◆ In Zero_suppress mode from ca. 20 to 468 Bx
 - ◆ In Raw mode from 4 to 452 Bx

Data Format

16bit 4bit 5bit 3bit
Hitpattern Bx Cnt Length Status
27

- Status: SEU, Zero Supp, Truncate
- Length: number of channels hit

Data format Header

Ch15_time | Ch1_time | Ch0_time | 91 Data format TDC data raw mode | 28

n = number of channels hit

Data format TDC data zero_suppress mode

Histogrammer

- •For each Channel:
 - Histograms TDC data
 - Counts Bx without Hits
- Counts number of logged Bx, maximum is 2³²

Test Assembly

Results up to now

- Back-annotated simulations are performed and it works fine
- Delay Scans performed

Results up to now

- TDC Spectra of all 16 channels
- Differential non-linearity from 1.19 to 1.28 bin
 Bin size = 1570 ps

Results up to now

Worst case temperature drift

Conclusions and Outlook

- 16 channels 4-bits TDC implemented in ACTEL FPGA
 - control with I2C and DAQ system with GBT
 - zero suppression:

```
Data volume /Bx = 40bits + |((n-1.5)/2.5)|20bits
n = number of channels with a hit
```

- Performed a delay scan and read out data with DAQ system a la OT
 - TDC shows the expected linear response
 - correlations between the channels checked ok
 - Differential non-linearity (bin sizes) checked
 - Temperature stability checked
- Next steps
 - ◆ I2C interface with triple voting (SEU protection)
 - ◆ Interface to GBT
 - performance tests in combination with high-speed optical link
 - implementation on dedicated PCB

