

Tile Rear Extension (TREX) module for the Phase-I upgrade of the L1Calo Trigger

Damir Raßloff

Kirchhoff-Institut für Physik Ruprecht-Karls-Universität Heidelberg

HighRR BiWeekly Seminar, Vidyo, 13.05.2020

L1Calo system architecture Run2

- Sum up calorimeter data to trigger towers
- PreProcessor (PPM)
- Transmission to Cluster and Jet processor
- Find interesting events and provide the information to the CTP
- Find interesting event topologies through L1Topo
- Positive final trigger decision L1A

PreProcessor module (PPM)

- 64 incoming analogue trigger tower signals
- nMCMs: Digitisation, synchronisation, pile-up suppression, bunch crossing identification and calibration
- ReM FPGA: Readout, VME configuration and monitoring
- CAN module: Slow control (DCS)
- LCD: Duplicates signals for CP & JEP and drives all signals over LVDS cables

L1Calo Preprocessor In USA15

- 8 VME crates [6 LAr and 2 Tile]
- 496 analogue cables into 8 crates [4 cables on front of one 9U module]

- 124 PPMs in total, [~16 PPMs per crate]
- Dense digital cabling at backside of crates [LVDS to CP/JEP]

LAr Phase-I Upgrade

- Shower shape information lost in trigger towers
- Super Cells: Increase granularity and access to longitudinal shower shapes
- Additionally fine-granularity digital information via optical fibers

L1Calo system architecture

L1Calo system architecture Run3

- Three new feature identification subsystems:
 - eFEX: Identification of isolated e/ γ and τ
 - jFEX: Identification of energetic jets, т and computation of energy sums
 - gFEX: Identification of trigger features requiring the complete data
- Fibre-Optic Exchange (FOX)
- New readout interface: FELIX
- Tile Rear Extension Module (TREX)

PPM and TREX

Functional Overview

Functional Overview Run3

• pLCD

• DINO FPGAs

- PREDATOR FPGA
- FireFlys
- ZYNQ+ MPSoC

- In Run 2: Duplication and transmission to CP/JEP on the LCD card
- In Run 3: Duplication and transmission to CP/JEP and FEXs on the TREX module
 - Possibility to double the data rate to 960 MB/s (after decommissioning of CP/JEP)
 - LCD not capable of this speed!
- Passive LCD card (pLCD)
 - Simple PCB as a passive bridge
 - Extension of the VME programming interface

Functional Overview Run3

• pLCD

DINO FPGAs

• PREDATOR FPGA

• FireFlys

ZYNQ+ MPSoC

DINOs

- "LVDS Data In-Out"
- Xilinx Artix-7 XC7A35T
- Main task: Duplication and transmission to CP/JEP & new system
 - 48 diff. input signals
 - 121 diff. output signals
 - 40 to CP
 - 33 to JEP
 - 48 to new system
- Pre-Compensation of the signal losses due transmission
- Transmission via 11m long electrical cables to the legacy system

Functional Overview Run3

• pLCD

• DINO FPGAs

PREDATOR FPGA

• FireFlys

ZYNQ+ MPSoC

PREDATOR

- "PreProcessor Data Collector"
- Xilinx Kintex UltraScale XCKU085
- Central processing unit on TREX
- Real-Time Data Path:
 - 48 diff. input signals from DINO
 - Convertion of diff. signals to single-ended format
 - Deserialization, duplication & formatting
 - Serialization & transmission to each FEX system via optical fibres
- Readout Data Path:
 - 32 serial links from nMCMs
 - Deserialization, buffering & formatting
 - Transmission to ROD & FELIX via optical fibres

Functional Overview Run3

• pLCD

• DINO FPGAs

• PREDATOR FPGA

FireFlys

ZYNQ+ MPSoC

FireFlys

- FireFly modules coupled to 12-way male MTP connector
- Optical Transceivers (6x)
 - Samtec FireFly ECUO
 - (4x) 12-channel transmitters
 - (1x) 4-channel Duplex transceiver
 - (1x) 12-channel receiver (only for tests)
- FireFlys:
 - Realtime: Transmitter to FEXes
 - Readout: Transceiver to FELIX & ROD

Label	FireFly Device	Used Links	Link Rate (Gbps)	Destination	Source
Tx1	12-ch transmitter	12	11.2	eFEX	-
Tx2	12-ch transmitter	12	11.2	jFEX	-
Tx3	12-ch transmitter	1	11.2	gFEX	-
Tx4	12-ch transmitter	-	11.2	e/j/gFEX	-
Rx	12-ch receiver	12	11.2	-	TREX
DPX	4-ch transmitter	1	0.8	ROD	-
		1	9.6	FELIX	-
	4-ch receiver	1	4.8	-	FELIX

Functional Overview Run3

• pLCD

• DINO FPGAs

- PREDATOR FPGA
- FireFlys
- ZYNQ+ MPSoC

ZYNQ Ultrascale+

- Xilinx Zynq UltraScale+ (ZU3CG-1SFVC784E) MPSoC device
- Commercial pluggable module from Trenz Electronics
- Task: Slow control (DCS)
 - Collection of periodically environmental parameters from various locations on the TREX via I2C (e.g. temperatures, voltages, currents, etc.)
 - Is being implemented in both the Programmable Logic (PL) and Processing System (PS)
 - Connection to DCS via Ethernet

Real-Time Data Path to CP/JEP

- 48 input LVDS signals
 - 32 signals: 0.1 x 0.1 E_T values
 - 16 signals: 0.2 x 0.2 jet sums
- DINO: Duplication & Transmission
 - 40 signals to CP
 - (32 E_T values, 8 Fan-out E_T values)
 - 33 signals to JEP
 - (16 jet sums, 17 Fan-out jet sums)

Real-Time Data Path to FEXs

Readout Data Path

- nMCM data from the ReM FPGA through the VME backplane over 32 serial links
- TTC information (BC clock, L1A, etc.) from ReM FPGA or FELIX

PREDATOR: Processing & Formatting

- FireFlys: Transmission
 - One link running at 800 Mb/s to ROD
 - One link running at 9.6 Gb/s to FELIX

Control & Monitoring

- 8-bit Configuration Interface:
 - 8-bit bidirectional data bus
 - Six control signals for the communication
 - Between ReM and PREDATOR/ZYNQ

- I2C Interface:
 - Between ReM/ZYNQ and I2C devices
 - ZYNQ is master by default
 - ReM can request master via VME
 - I2C results from ZYNQ to ReM via 8-bit config interface

FPGA configuration

- Configuration with a bitfile
- 3 methods of configuration
 - JTAG Method
 - Slave SelectMAP Method
 - Master SPI Method

JTAG Method

- Access via micro-USB connector
- For use in the test-rig
- Fast configuration of FPGAs and SPI memories
- Debugging purposes

Slave SelectMAP Method (File Mode)

- Access via VME
- For use in test-rig and USA15
- 8-bit programming interface
- Routed through PPM

Master SPI Method (Flash Mode)

- Activation via VME
- For use in test-rig and USA15
- Fast configuration of FPGAs with binaries stored in SPI memories
- Target method
- Configuration of SPI memories only via JTAG possible

Qualification task: VME config of the SPI memories

- Use Slave SelectMAP method to update SPI memories
- Important to use Master SPI method in USA15

Qualification task: Firmware design idea

- Write bytewise into memory buffer module
- Send read command to control logic
- Write into FLASH
- Adapt the firmware code from the CALIPPR firmware design

Qualification task: Current development status

- Memory buffer module implemented into DINO design
- I2C readout instead of VME
- Tested succesfully with SW
- Implementation of write & read of WriteEnable status bit

Qualification task: Write & Read WriteEnable Status bit

Command Read: 0x05 (101) WriteEnable Status Register = 0

ILA Status: Idle		535			
Name	Value				
le FLASH/LOADER/ByteFrame	1				
FLASH/LOADER/ByteFrameDel	0				
LASH/LOADER/ChipSelect	0				
IL FLASH/LOADER/ATX_PRG_FCS_B	0				
> 😽 FLASH/LOADER/OutputReg[7:0]	00				
Id FLASH/LOADER/Dat_Buf_0_Out	0				
> 😽 FLASH/LOADER/InputReg[7:0]	ff	ff y f8 y st y 80 y 3f y ff			
18 FLASH/LOADER/Flashin	0				
> 😽 FLASH/LOADER/DataOutLoader[15:0]	00ff				
		Updated at: 2020-May-05 16:04:59			

Command Read: 0x05 (101) WriteEnable Status Register = 1

ILA Status: Idle		
Name	Value	
I FLASH/LOADER/ByteFrame	0	
ILASH/LOADER/ByteFrameDel	0	
FLASH/LOADER/ChipSelect	0	
IL FLASH/LOADER/ATX_PRG_FCS_B	0	
> 😽 FLASH/LOADER/OutputReg[7:0]	00	
I FLASH/LOADER/Dat_Buf_0_Out	0	
> 😽 FLASH/LOADER/InputReg[7:0]	ff	ff f f ff
🐻 FLASH/LOADER/FlashIn	0	
> 😽 FLASH/LOADER/DataOutLoader[15:0]	OOff	
		Updated at: 2020-May-05 16:07:06
	<	> <

13.05.2020 Damir Raßloff – TREX, HighRR BiWeekly Seminar, Vidyo

Qualification task: Next steps

- Development & tests of the control logic
- Tests with the whole design
- Implementation for the other FPGAs

Tests at Heidelberg

- Single-board testbench:
 - Custom VME crate

13.05.2020

- Homebrew VME crate controller (i7 CPU, Universe-II)
- Initial tests and power-up (e.g. LVDS transmission)

- Multi-board testbench:
 - Wiener crate with TREX modifications
 - Concurrent Technologies VME crate controller
 - Emulates crate setup at CERN
 - Long-term tests (e.g. Thermal test)

Damir Raßloff – TREX, HighRR BiWeekly Seminar, Vidyo

LVDS transmission to CP/JEP

- LVDS signal quality check before and after a 15m cable (in USA15 around 11m) using an oscilloscope
- Good results on prototype and pre-production module
- Similar results with Run2 system

Test results provided by Tigran Mkrtchyan (KIP)

Thermal Test

- 4 active TREX modules & PPMs
 Additional 6 passive PPMs and 2 TREX modules
- Test duration of multiple days
 - Temperature captured every 30 seconds
 - Stored in a time series database
 - Visualization via Grafana

- Test with two PREDATOR FW designs
 - Full-load
 - Current design

13.05.2020 Damir Raßloff – TREX, HighRR BiWeekly Seminar, Vidyo

Thermal Test: Results

- Temperature increase during the change to the full-load FW design
- Hottest devices nMCMs on the PPM ~54°C

Test results provided by Tigran Mkrtchyan (KIP)

13.05.2020 Damir Raßloff – TREX, HighRR BiWeekly Seminar, Vidyo

Thermal Test: Results

- PREDATOR temperature peak at < 54°C
- Comparison between prototype and pre-production: ~18°C difference
 - Improved heat sink
 - "Slimmer" FPGA (less GTHs)

Test results provided by Tigran Mkrtchyan (KIP)

TREX temperatures (Slot: 8, PPM: 145)

Integration tests at L1Calo Surface Test Facility (STF)

- System currently powered down
- Tests with prototype (v1) and pre-production (v2) module

- Readout path:
 - TREX (v1 & v2) to FELIX: Data transmission achieved, decoding and verification succesful
- Realtime path:
 - TREX (v1) to eFEX: Data transmission verified, no errors
 - TREX (v1 & v2) to jFEX: Data transmission verified, no errors
 - TREX (v1) to gFEX: Data transmission verified, some errors (cross-check with jFEX)

13.05.2020 Damir Raßloff – TREX, HighRR BiWeekly Seminar, Vidyo

Integration tests at B. 104 (Legacy System)

- System currently powered down
- Legacy system integration tests with pre-production (v2) module
- Readout path:
 - TREX (v2) to ROD:
 - Established a stable link to the ROD
 - Data incorrect, to be investigated
- Realtime path:
 - TREX (v2) to JEP:
 - Configuration of playback data via Online SW
 - Successfully detected on JEM
 - TREX (v2) to CP:
 - To be tested

Current Status

- Production Readiness Review (PRR) last thursday (07th of May)
- HW design finished (wait for outcome of PRR)
- FW development almost done (FLASH programming, minor functions of PREDATOR, debugging & ZYNQ)
- Essential tests done with the TREX prototype (v1) & preproduction module (v2); wait for CERN power up

	DURATI			
	START DATE	END DATE	DESCRIPTION	(days
	07/05/2020	08/05/2020	PRR	1
	08/05/2020	22/05/2020	Preparation for Production	14
	22/05/2020	12/07/2020	PCB Production	50
	12/07/2020	26/07/2020	Initial board assembly [~5pcs]	14
	26/07/2020	03/08/2020	Testing of initial boards	7
	03/08/2020	17/08/2020	Assembly of remaining boards	14
	17/08/2020	30/11/2020	Validation/QA @ KIP	103
	14/10/2020	21/10/2020	Installation of the 1st batch [16 pcs] @ CERN	7
	21/10/2020	31/12/2020	Testing @ CERN	70
	01/12/2020	08/12/2020	Installation of the 2nd batch [16 pcs] @ CERN	7

