
Integrated Data Acquisition
PyHEP 2020

C. D. Burton

University of Texas at Austin

17 July 2020

1



Outline

2

• What do I mean by 
“integrated”? With the help of 
stable and simple Python 
libraries, you can:
• Control and operate the 

equipment on your test bench.

• Read and capture data from 
your research apparatus.

• Provide a usable graphical 
interface for the experimenter.

• Analyze your data.

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



60 Seconds of Background: The Plot

• Prototype electronics for the 
ATLAS Liquid Argon (LAr) 
Calorimeter in the HL-LHC era 
are being developed.

• Need a high-speed, wide-
range, radiation-hard analog-
to-digital converted (ADC) 
being developed for signals.

3



60 Seconds of Background: The Cast

4

COLUTA (ADC)FPGAUSB
Clock

PSU

Pulse or 
Sinusoid 
inputs



60 Seconds of Background: The Stage

5

Test Board

Power Supply

Signal 
Generator

Clock 
Generator

Computer



Controlling the Test Bench

• Nearly every modern lab device 
on the market offers digital 
control through GPIB, LAN, 
and/or some other standard.

• This allows for both automated 
testing, as well as remote control.

• And with python, this can often 
be a rather trivial amount of 
effort.

6

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



Controlling the Test Bench

• First, we will try to control our 
signal generator with PyVISA

• Physically connect the device to 
the computer with an Ethernet 
cable.

• Tasks
1. Connect to device with TCP.
2. Read the current state.
3. Change the input voltage and 

frequency.
4. Verify the changes.

7



Controlling the Test Bench

8



Controlling the Test Bench

9

• The same process was done to 
control the power supply.

• For example, if your system gets 
into some strange state, and you 
need to power cycle the system, 
you can perform this task 
remotely.

• Additionally, we took readings 
from the temperature sensor 
using Keysight’s scripts.



Reading Data

10

• Communicating with your USB  
devices is extremely straightforward 
with pySerial.

• Encapsulates access for the serial 
port.

• Includes backends for all operating 
systems, automatically choosing the 
appropriate one.

• The developer-facing API remains 
consistent irrespective of backend.

• Simple file-like access with read()
and write() functions.

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



Reading Data

• Prototype boards typically 
communicate with the 
computer through some kind 
of USB interface

• Many companies will include 
proprietary drivers and 
libraries to communicate with 
their chip.

• There’s no need when you 
have pySerial!

11



Reading Data

12

• For this set of commands, 
what does the developer see? 
Just write().

• Waiting for this task to 
complete will hold the GUI, 
read/write operations are 
performed in a background 
thread.

• For safety, I have implemented 
mutex access to the Serial 
objects.



Reading Data

13

• After creating the serial 
connection, we pass commands 
that the board’s firmware 
understands.

• Then read back any data in the 
USB buffer.



Reading Data

14

• Tells the FPGA to listen

• Read 1024 points

• Move data to buffer A

• Read buffer A



User Interface

• In many cases, your users may 
not be comfortable with doing 
their own software development 
(nor should they).

• For our chip, we could not rely on 
users being able to write scripts.

• Enter, PyQt.

15

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



User Interface

16

Page tabs

Data-taking

Data-storage

Serial
Connections

Immediate Display



User Interface

17

User-friendly checkboxes, 
drop-down menus, and
text entry. All are converted
to commands to the chip.



Data Analysis

18

• Analysis should be performed in 
multiple stages at different levels 
of detail.

1. Immediate feedback to the user 
while experimentation is in 
progress.

2. Detailed analysis from an 
organized set of data.

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



Data Analysis

• When experimenting, it is 
ideal—and perhaps even 
necessary—to have rapid 
feedback for preliminary 
analysis.

• Not only can we use 
matplotlib to show 
preliminary plots of the 
data, but we can also 
perform simple analysis.

• In this case, we use scipy.fft
to perform the check.

19



Data Analysis

• For long periods of 
data-taking, it makes 
sense to have 
continually-updating 
plots.

• Yet another 
straightforward 
implementation with 
matplotlib + PyQt for 
dynamic plots.

20

https://gitlab.cern.ch/coluta/COLUTA65/-/blob/master/monitoring.py#L70


Data Analysis

• Different tasks call for 
different tools: for 
complicated collider-physics 
event data, things like ROOT 
(and all the surrounding 
python infrastructure—
pyROOT, uproot, etc.) may be 
necessary.

• What if your data is a small 
set of single-stream 
measurements?

• HDF5 may be an answer.

21

HDF5

Test 0

Device0

data 
array

Device1

data 
array

Test 1

Device0

data 
array

Device1

data 
array

…



Data Analysis

• There’s a package for that, too!

• H5PY is a user-friendly tool to read and write files in the HDF5 file 
format.

• Navigate the data hierarchy in a python-dictionary way.

• Demo: read_hdf5.ipynb

22



Summary

With python libraries, you can have 
everything-in-one.
1. Control your equipment with 

PyVISA (or another 
manufacturer-provided python 
library)

2. Read data over USB with 
pySerial.

3. Build an easy-to-design, easy-
to-use UX in PyQt5.

4. Analyze data in real-time, as 
well as store data for python-
friendly formats using H5PY.

23

Python 
Libraries

Instrument 
Control

Reading 
Data

User 
Interface

Data 
Analysis



24

Lake Granby, 
Colorado

Questions?


