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Introduction
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Precision measurements of electroweak parameters provide
stringent tests and an opportunity to overconstrain the
Standard Model
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Introduction

This talk: Introduction to recent extensive CMS measurement
of W production/decay properties: CMS-PAS-SMP-18-012

Deep dive into the technical/statistical aspects of the binned
maximum likelihood fit used to extract the results

Corresponding implementation details
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W mass: PDF Uncertainties
Eur. Phys. J. C 78 (2018) 110 (ATLAS)

mW = 80370± 7(stat.)±11(exp.)±8.3(QCD) ±5.5(EWK)±9.2(PDF) MeV

PDF Uncertainty (MeV)

per |η|-charge cat. 20-34
per-charge 14-15
full combination 9.2

PDFs are one of the largest
sources of uncertainty for mW

measurements at the LHC,

PDFs determine the W rapidity
spectrum and lepton decay angles
through W polarization

Well-defined correlations between
phase space regions and processes
which are already partly exploited
in present measurement to reduce
uncertainty. Can be further
exploited in the future
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In-situ PDF constraints: Weak Mixing Angle Case

CMS and ATLAS weak mixing angle measurements exploit
in-situ constraints to reduce PDF uncertainties with Bayesian
reweighting of Monte Carlo replicas/profiling of nuisance
parameters associated with Hessian representation
(numerically equivalent in the Gaussian limit)
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W Helicity/Rapidity at LHC

(a) left-handed W+ (b) right-handed W+ (c) W+ Rapidity

At tree level:
All W production at LHC is qq̄ induced
Direction of the W relative to the incoming quark determines the
helicity
Only two helicity amplitudes/polarization states
W has zero transverse momentum

Full information on valence quark PDF’s in the relevant x range

contained in dσ/dy broken down into the two helicity states

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

(a) left-handed W+ (b) right-handed W+ (c) W+ Rapidity

Direction of incoming quark depends even more on PDF’s in pp vs pp̄
collisions

gluon-induced contribution from higher order effects larger and more

uncertain (also due to higher Ecm compared to Tevatron)

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity/Rapidity at LHC

2D distribution of charged lepton pT and η can discriminate
between helicity states as well as rapidity of the W
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W Helicity/Rapidity at LHC
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2D distribution of charged lepton pT and η can discriminate
between helicity states as well as rapidity of the W
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W Helicity/Rapidity at LHC
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Left and right polarization components can be extracted simultaneously
as a function of W rapidity, using only charged lepton kinematics

Avoids dependence on less precisely measured missing transverse
momentum (at the cost of some statistical dilution)

Avoids circular dependence on PDFs since quark vs anti-quark fraction for

each rapidity is measured
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The Measurement

Measurement Strategy:
Measure dσ±

L/R/dy (single-differential cross section in terms of

boson rapidity, split in charge and left and right helicity) from 2D
distribution of charged lepton pT and η

Longitudinal component is partly regularized (constrained to ±30%

around predicted value)

Alternative Measurement strategy:
Measure double-differential cross section dσ±/dpTdη in terms of

(dressed) charged-lepton kinematics (from 2D distribution of

charged lepton pT and η)

Event Selection:
Basic single lepton selection (ID+isolation)
pT > 26 (30) GeV for muons(electrons)
Additional lepton veto with looser selection to suppress
Drell-Yan
Cut on MT > 40 GeV to suppress QCD
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The Measurement

Theoretical Ingredients:
Construction of signal templates (W production split in charge,
helicity, rapidity)
Electroweak background prediction

Experimental Ingredients:
Lepton efficiencies
Lepton energy/momentum scale
QCD Background Estimate
Extraction of cross sections
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Template Construction: Helicity/Rapidity

Monte Carlo generators cannot generally produce individual helicity
components1

Nominal signal MC for this analysis: MG5 aMC@NLO + Pythia 8 0+1+2
jets NLO (FXFX-merged) w/ NNPDF3.0 NLO (around 700M events with
15% negative weights, about 1/6th the statistical power of the data)

To construct polarized templates:

Bin Monte Carlo in (born) pWT , yW and fit cos θ∗ distribution
in each bin to extract helicity fractions
Reweight MC as a function of pWT , yW , cos θ∗ to construct
three individual components for left/right/longitudinal
Build two-dimensional templates in (detector-level) charged
lepton pT and η

1Upcoming verison of madgraph will support this at tree level: arXiv:1912.01725
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Summary of Uncertainties

Extremely detailed breakdown of systematic uncertainties
including

QCD Renormalization and factorization scales, decorrelated in
bins of WpT to allow shape variations, decorrelated in W
charge and helicity for conservative theory treatment
Lepton efficiencies in 48 bins of η, smoothed in pT , with 3
parameters per η bin for normalization and pT -dependence
variations
QCD background estimate and uncertainties (with correlated
and de-correlated components vs pT and η
Lepton energy/momentum scale uncertainties: Statistical
uncertainties from O(100) nuisance parameters per flavour
(from diagonalized bootstrap variations), plus systematic
variations
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All Together
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All Together

xkcd plot which is approximately as easy to read from my slides
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Maximum Likelihood Fit

Any template shape fit can be expressed as a many-channel counting
experiment, negative log likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(1)

nexp
ibin =

∑
jproc

µjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (2)

Extract cross sections from fully profiled maximum-likelihood fit

Some numbers for helicity fit:

40 measured cross sections (POI’s)
78 total processes
3320 bins
1354 systematics/nuisance parameters

Some challenges:

10’s of thousands of histograms entering the fit
gradients in minimization need to be known accurately
good convergence behaviour of fit must be maintained
time/memory of minimization need to be kept under control
uncertainties covariances need to be accurately computed
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Maximum Likelihood Fits in Tensorflow

TensorFlow is a library for high performance numerical
computation

Typical workflow:

Construct a computational graph using TensorFlow library in
python
Execute graph (transparent-to-user compilation and execution
on threaded/vectorized CPU’s, GPU’s, etc)

Originally developed at Google for deep learning applications

Efficient and numerically accurate semi-analytical
computation of gradients by back-propagation, needed for
Stochastic Gradient Descent in training of deep neural
networks

Currently using Tensorflow 1.x
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Likelihood Construction in TensorFlow

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(3)

nexp
ibin =

∑
jproc

µjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (4)

nexp
ibin,jproc is the expected yield per-bin per-process

µjproc is the signal strength multiplier per-process

θksyst are the nuisance parameters associated with each systematic
uncertainty

κibin,jproc,ksyst is the size of the systematic effect per-bin, per-process,
per-nuisance

In the above, all uncertainties are implicitly implemented as log-normal

variations on individual bin yields with appropriate correlation structure

encoded in κ’s (asymmetric log-normal uncertainties are allowed, but

details not explicitly written out here)
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Likelihood Construction in TensorFlow

Full contents of datacards can be represented by a few numpy
arrays:

nbin × nproc 2D tensor for expected yield per-bin per-process

nbin × nproc × nsyst 3D tensor for κ (actually lnκ) values

parameterizing size of systematic effect from each nuisance

parameter on each bin and process (actually a 4D tensor nbin ×
nproc × nsyst × 2 to accommodate lnκup and lnκdown to allow for

asymmetric uncertainties)

POI’s and nuisance parameters implemented as TensorFlow
Variables

Full likelihood constructed as TensorFlow computation graph
with observed data counts as input
Some details:

Precompute as much as possible with numpy arrays which are
loaded into graph via tf data api from h5py arrays on disk
Double precision everywhere

Offsetting of likelihood in optimal placement within the graph to

minimize precision loss
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Likelihood Construction in TensorFlow

Negative log-likelihood can be written as

L =
∑
ibin

(
−nobs

ibin ln nexp
ibin + nexp

ibin

)
+

1

2

∑
ksyst

(
θksyst − θ0ksyst

)2
(5)

nexp
ibin =

∑
jproc

µjprocn
exp
ibin,jproc

∏
ksyst

κ
θksyst
ibin,jproc,ksyst (6)

The above can be computed very efficiently in tensorflow with two tensor
contractions (matrix multiplications) plus a small number of element-wise
operations

ln r systibin,jproc = ln
∏
ksyst

κ
θksyst
ibin,jproc,ksyst =

∑
ksyst

θksyst lnκibin,jproc,ksyst (7)

nexp
ibin =

∑
jproc

µjprocn
exp
ibin,jproce

ln r
syst
ibin,jproc (8)

(plus some modest additional complexity for asymmetric uncertainties)
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Likelihood Construction in TensorFlow

github link

This is the core of the likelihood calculation (calculation of
nexpibin)
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Likelihood Construction in TensorFlow

github link

Rest of the likelihood construction is trivial (with some
protection for 0-observed bins + offsetting to preserve
numerical precision)
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Minimization

While the likelihood has a global minimum and is well
behaved in the vicinity, it is (apparently) NOT convex
everywhere in the parameter space

BFGS-type quasi-Newton methods are not appropriate since the
Hessian approximation can never capture non-convex features
Line search is not a good strategy even with a well-approximated
(or exact) Hessian, since this will tend to get stuck or have slow
convergence near saddle points/in non-convex regions
Major source of non-convexity is the polynomial interpolation of lnκ
for asymmetric log normal uncertainties

Minuit MIGRAD strategy (add constant to force Hessian

positive-definite) is probably suboptimal in such cases
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Minimization

Started with trust-region based minimizer with SR1 approximation for

hessian, as implemented in SciPy (minimal adaptation required for

existing TensorFlow-SciPy interface)

Bonus: this also supports arbitrary non-linear constraints
Caveat: Only likelihood and gradient evaluation done in
Tensorflow, rest of minimizer is in python/numpy

Current SR1 trust-region implementation in scipy based on conjugate
gradient method for solving the quadratic subproblem → large number of
inexpensive sub-iterations which don’t parallelize well

Have implemented native tensorflow minimizer based on L-SR1

Orthonormal basis minimization (arXiv:1506.07222), including a new

non-limited-memory variant with direct update to eigen-decomposition of

Hessian
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Minimizer Implementation

github link

The next block of
code continues on
for much longer
to implement the
SR1 update of
the eigendecom-
position

This is not the

most efficient

algorithm in

terms of flops,

but

vector-parallelizes

extremely well
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Some Performance Tests

Likelihood Likelihood+Gradient Hessian

Combine, TR1950X 1 Thread 10ms 830ms -
TF, TR1950X 1 Thread 70ms 430ms 165s

TF, TR1950X 32 Thread 20ms 71ms 32s
TF, 2x Xeon Silver 4110 32 Thread 17ms 54ms 24s

TF, GTX1080 7ms 13ms 10s
TF, V100 4ms 7ms 8s

(1444 bins, 96 POI’s, 70 nuisance parameters)
n.b. these numbers are with an older implementation, all have improved
Single-threaded CPU calculation of likelihood is 7x slower in Tensorflow
than in Roofit (to be understood and further optimized)
Gradient calculation in combine/Minuit is with 2n likelihood evaluations
for finite differences (optimized with caching)
Xeons are lower clocked than Threadripper, but have more memory
channels and AVX-512
Back-propagation calculation of gradients in Tensorflow is much more
efficient (in addition to being more accurate and stable)

Best-case speedup is already a factor of 100
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Some Performance Tests: Minimization with SciPy

Minimization
L+Gradient scipy trust-constr scipy cpu usage

TF, TR1950X 32 Thread 71ms/call 200ms/iteration 2107%
2x Xeon Silver 4110 32 Thread 54ms/call 237ms/iteration 2587%

TF, GTX1080 (+TR1950X) 13ms/call 84 ms/iteration 1081%
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 1558%

Each iteration of the SR1 trust-region algorithm requires
exactly 1 likelihood+gradient evaluation

Significant amount of processing power (and CPU bottleneck)
in scipy+numpy parts of the minimizer (non-trivial linear
algebra)

Josh Bendavid (CERN) TF Fits for Precision Measurements 28



Some Performance Tests: Native TF Minimization

Minimization
L+Gradient scipy trust-constr TF TrustSR1Exact

TF, TR1950X 32 T 71ms/call 200ms/iteration 89ms/iteration
2x Xeon Silver 4110 32 T 54ms/call 237ms/iteration 63ms/iteration

TF, GTX1080 (+TR1950X) 13ms/call 84ms/iteration 55ms/iteration
TF, V100 (+2x Xeon 4110) 7ms/call 78ms/iteration 51ms/iteration

Example here with iterative Cholesky decomposition to solve
TR subproblem (a la Nocedal and Wright algo 4.3)

Substantial reduction of overhead relative to bare
likelihood+gradient call

Relative remaining overhead much larger on GPU

n.b, this fit converges in about 500 iterations with the
TrustSR1Exact algorithm, about 25s/fit with GPU

Using gradient descent methods available in Tensorflow
requires O(10k) iterations
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Performance Tests (pfor)

(Newer TensorFlow, further optimized, but larger model)
Likelihood L+Grad Hessian MaxRSS

TF, TR1950X 1 Thread (pfor) 26ms 73ms 7.9s 3000MB
TF, TR1950X 32 Thread (pfor) 39ms 83ms 1.1s 3900MB

TF, GTX1080 (+TR1950X) (loop) 64ms 69ms 3.0s 2900MB
TF, GTX1080 (+TR1950X) (pfor) 64ms 69ms 0.8s 2900MB

(1824 bins, 101 processes, 96 POI’s, 257 nuisance parameters)

Size of raw arrays is 760MB

Josh Bendavid (CERN) TF Fits for Precision Measurements 30



Another Important Technical Detail

Running the same kind of likelihood fit to extract directly the
double-differential cross section for the charged lepton
kinematics has slightly different challenges:

648 measured cross sections (POI’s)
655 total processes
2448 bins
1051 systematics/nuisance parameters

(Slightly different binning and fewer theory nuisances
compared to helicity fit)

nbins × nproc × nsyst is much larger, but signal templates
are actually very sparse due to nearly diagonal response matrix

Full implementation of likelihood construction using sparse
tensors
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Sparse Tensor Likelihood Construction

github link

This is the equivalent calculation of nexpibin with sparse tensors

SimpleSparseTensor and simple sparse tensor dense matmul
are thin wrappers around standard TF implementations to
allow int32 indices (to save memory)
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Updated Performance Tests: Large/Sparse Model

Likelihood L+Grad Hessian MaxRSS

Sparse TF, TR1950X 1 Thread 24ms 40ms 52s 980MB
Sparse TF, TR1950X 32 Thread 40ms 70ms 3.7s 1200MB

Dense TF, TR1950X 1 Thread 245ms 540ms - 6800MB
Dense TF, TR1950X 32 Thread 237ms 534ms - 7000MB

Intermediate configuration with 1296 bins, 655 processes, 648 POI’s, 444
nuisance parameters

GPU not available with standard build (SparseTensorDenseMatMul)

Size of raw arrays in dense mode is 6GB

pfor for Hessian not available in Sparse case (SparseTensorDenseMatMul
not supported)

Hessian computation in dense mode caused OOM with pfor, and
“Already exists: Resource” errors without

Dense model too big for my GPU
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Optimizing Memory Consumption

This type of model has a peculiar feature of very large
constants (3-tensor representing systematic variations on
templates can be several GB especially in dense mode with
larger numbers of processes and systematic variations)

To optimize memory consumption for graphs with large
constants:

Don’t include large constants in the graph definition (there is
also a hardcoded 2GB limit in doing so)
Don’t read large numpy arrays from disk (unless using
memmapping, but then can’t use compression)
Don’t store large constants in tf Variables (because it’s
apparently impossible to initialize them without having at least
a second copy of the contents in memory)
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Optimizing Memory

Adopted solution

HDF5 arrays with chunked storage and compression
Numpy arrays are stored as flattened HDF5 arrays to allow
reading chunk by chunk while preserving the order of the array
and maintaining flexibility in choice of chunk size
Read chunk by chunk using tf data API with tf py func to
interface with h5py
Use batching to reassemble full array into a single tensor, then
use the in-memory cache so the read only happens once
(reshaping and possible truncation of the overflow from the
last batch have near-zero cpu or memory footprint)
Text+root histogram conversion has been adapted to write
hdf5 arrays instead of a tf graph with in-built constants

(Avoiding a second copy in memory took some patience and
was not obvious how to achieve)
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tf.data implementation for large constants from HDF5

github link

Read the
flattened array in
chunks

Reshape

batch chunks

pad and slice last
chunk as
necessary

Everything is

designed to avoid

more than one

copy of the full

array in memory
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Implementation

Code lives here: https://github.com/bendavid/

HiggsAnalysis-CombinedLimit/tree/tensorflowfit (not very
streamlined for the moment, since the priority has been on a particular set
of physics analyses in progress with it, and currently somewhat
intertwined with existing CMS fitting tools)

Two scripts:

scripts/text2hdf5.py: Create inputs to tensorflow graph from
datacards/ROOT histograms (outputs hdf5 file containing
flattened arrays for large constant tensors)
scripts/combinetf.py: Construct graph, load constant arrays
into tensors, run fits/toys/scans with graph

Some interesting bits related to reading hdf5 arrays, some sparse tensor
operations, and minimization in python area

Second order minimizers will be interesting to contribute upstream (and

some work already on L-SR1 algorithms for more conventional deep

learning applications, e.g arXiv:1807.00251)
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Implementation

To first order:

#convert txt+root datacard to hdf5 with properly formatted arrays

text2hdf5.py mydatacard.txt

#run single fit to observed data

combinetf.py mydatacard.hdf5

e.g. with simple example card: https://github.com/

bendavid/HiggsAnalysis-CombinedLimit/blob/

dfde59264abe7f5181aec5ff62a3dae7a5ae84ee/data/

tutorials/shapes/simple-shapes-TH1.txt
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Making our way back to physics...

TLDR: Full fit runs in a few minutes on a 16 core CPU, even faster on
GPU

Current covariance matrix calculation is not fully optimized, takes about
30 mins (explicit tensorflow loop over rows of the hessian)

Tensorflow pfor (or even migration to Jax) can help substantially with

this
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Making our way back to physics...

POI’s in fit are expressed in terms of signal multipliers µ a la Higgs
combination fit

In order to convert back to measured cross sections:

Predicted cross section from MC is kept track of (in an
additional “masked bin” which does not contribute to the
likelihood)
Systematic uncertainties which modify the cross section are
properly accounted for (e.g. the theory uncertainties)

Post-fit cross section is consistently calculated as µ̂σ(ˆ̄θ) for
post-fit values of signal multiplier µ and relevant nuisance
parameters θ̄
Post fit covariance matrix for measured cross sections
calculated using covariance matrix for (µ̄, θ̄) together with
jacobian (all constructed automatically by back-propagation in
tensorflow)

The same “trick” can be used to construct on the fly the full set of

normalized cross sections, charge asymmetries, integrated or partially

integrated cross sections
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Results: Helicity/Rapidity

ηlepton 
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

 (
G

eV
)

T
le

pt
on

 p

26

28

30

32

34

36

38

40

42

44

Simulation Preliminary CMS 13 TeV

| < 0.25
W
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+W | < 0.75

W
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+W | < 2.25
W

: 2.0 < |yleft
+W

Overlapping templates produce anti-correlations between neighbouring
bins in the helicity fit
Subset of correlation matrix shown here
Competition between statistical anti-correlations from neighbouring bins
and correlated systematic uncertainties

The “full” covariance matrix including systematic uncertainties is 1394 x

1394
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Results: Helicity/Rapidity: Polarized Cross Sections
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Correlated component of the uncertainty dominated by
luminosity

“oscillations” due to statistical (+MC stat) anti-correlations
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Uncertainty Breakdown : Impacts
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Correlated component of the uncertainty dominated by
luminosity
For this particular helicity-charge combination, data/MC
statistical uncertainties become relevant at high rapidity
(falling cross section and reduced acceptance from forward
lepton emission)
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Uncertainty Breakdown : Impacts: Technical Details
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Procedure for defining uncertainty breakdown for profile likelihood fits not
uniquely defined
“statistical” impact is stat-only uncertainty (covariance matrix with no
systematics, but post-fit nuisance values)

“MC Statistics” evaluated with Barlow-Beeston lite procedure as part of

likelihood construction, impact taken as difference in quadrature

(including systematics) with vs without MC stat uncertainties
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Uncertainty Breakdown : Impacts: Technical Details
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“Impact” for a single nuisance parameter defined as
Cov(nuisance,POI)/σ(nuisance) from post-fit covariance matrix

In the Gaussian limit, this is the equivalent of moving a nuisance
parameter by ±1σ of its post-fit uncertainty, and re-running the fit with
everything else profiled (this is how impacts for single nuisances are
defined in the Higgs combination)

In the presence of correlations, the impacts do not necessarily sum in
quadrature to the total uncertainty

An alternative would be to successively add systematic contributions (this

guarantees uncertainties sum in quadrature to the total, but depends on

an arbitrary ordering of uncertainties)
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Uncertainty Breakdown : Impacts: Technical Details

0 0.5 1 1.5 2 2.5

|
W

|Y

2−10

1−10

1

10

210

R
el

at
iv

e 
un

ce
rt

ai
nt

y 
(%

)
 [26, 45] GeV∈ l

T
     pν l→ +

rightUncertainties on cross section for W
lepton scale efficiency stat. luminosity efficiency syst.
other bkg fakes FSR

R
µ

F
µ, 

R
µ, 

F
µ

Sα ⊕PDFs other experimental statistical MC statistics
Total uncertainty

Preliminary CMS  (13 TeV)-135.9 fb

Impacts are generalized to groups of nuisances by diagonalizing nuisances
within a group from the post-fit covariance and computing total impact

If strongly correlated uncertainties are grouped together, this reduces the
effect of correlations on the breakdown

Impacts may still not sum in quadrature to total due to residual

correlations between groups
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Results: Helicity/Rapidity: Asymmetries
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For charge and polarization asymmetries, correlated experimental
systematics largely cancel, and predictions become dominated by PDF
uncertainties

Constraining power for PDFs (and possible tensions) become manifest

Charge asymmetry is comparable to W charge asymmetry from Tevatron,

but again, relevant helicity fractions are freely profiled
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Conclusions

W helicity measurement provides polarized differential cross
section measurements of W production, with significant
potential for PDF constraints, and is an important precursor
for future mW measurements

Analysis is designed to allow in-situ constraints of PDFs with
maximum statistical power considering experimental and other
theory uncertainties

Statistical interpretation required the development of new
tools and algorithms based on TensorFlow (also used by some
other CMS analyses)

Substantial gains in speed and numerical stability with respect
to traditional tools

Enables more sophisticated and accurate modelling of
systematic uncertainties which are crucial for future
measurements
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Backup
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Assessing Potential for PDF constraints

PDF uncertainties enter measured cross sections only as very small
residual acceptance effects, however they are fully implemented as part of
the fit
Can re-run the likelihood fit with cross sections fixed to prediction within
theory uncertainties
Nuisances associated with PDF uncertainties can then be considered the
parameters of interest
Technically this is done in the context of the helicity/rapidity fit, which
has slightly more conservative theory uncertainties due to the
de-correlation of scale variations by helicity

This is closely related to PDF profiling from unfolded cross sections, eg.

in ATLAS 7TeV W/Z paper, with some important differences:
Profiling is done at detector level
QCD accuracy is (in this case) limited to NLO
Re-summation corrections are included through in this case
MC@NLO matching to parton shower

PDF sets are limited to weights available in MC (in this case only

NNPDF 3.0 NLO)

Standard caveats about interpretation of results far from initial values still

apply
Josh Bendavid (CERN) TF Fits for Precision Measurements 50



Assessing Potential for PDF constraints
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Assessing Potential for PDF constraints

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

pd
f1

pd
f2

pd
f3

pd
f4

pd
f5

pd
f6

pd
f7

pd
f8

pd
f9

pd
f1

0
pd

f1
1

pd
f1

2
pd

f1
3

pd
f1

4
pd

f1
5

pd
f1

6
pd

f1
7

pd
f1

8
pd

f1
9

pd
f2

0
pd

f2
1

pd
f2

2
pd

f2
3

pd
f2

4
pd

f2
5

pd
f2

6
pd

f2
7

pd
f2

8
pd

f2
9

pd
f3

0
pd

f3
1

pd
f3

2
pd

f3
3

pd
f3

4
pd

f3
5

pd
f3

6
pd

f3
7

pd
f3

8
pd

f3
9

pd
f4

0
pd

f4
1

pd
f4

2
pd

f4
3

pd
f4

4
pd

f4
5

pd
f4

6
pd

f4
7

pd
f4

8
pd

f4
9

pd
f5

0
pd

f5
1

pd
f5

2
pd

f5
3

pd
f5

4
pd

f5
5

pd
f5

6
pd

f5
7

pd
f5

8
pd

f5
9

pd
f6

0

pdf1
pdf2
pdf3
pdf4
pdf5
pdf6
pdf7
pdf8
pdf9

pdf10
pdf11
pdf12
pdf13
pdf14
pdf15
pdf16
pdf17
pdf18
pdf19
pdf20
pdf21
pdf22
pdf23
pdf24
pdf25
pdf26
pdf27
pdf28
pdf29
pdf30
pdf31
pdf32
pdf33
pdf34
pdf35
pdf36
pdf37
pdf38
pdf39
pdf40
pdf41
pdf42
pdf43
pdf44
pdf45
pdf46
pdf47
pdf48
pdf49
pdf50
pdf51
pdf52
pdf53
pdf54
pdf55
pdf56
pdf57
pdf58
pdf59
pdf60

Preliminary CMS  (13 TeV)-135.9 fb

Correlation matrix doesn’t look very interesting at first glance, but

strongest anti-correlations correspond to the two most constrained

eigenvectors, and this is relevant
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Assessing Potential for PDF constraints (expected)

Post-fit nuisance values and covariance matrix can be used to recompute

central value and uncertainties for parton distributions in LHAPDF with

dramatic expected constraints
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Assessing Potential for PDF constraints (observed)
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Oscillations in part related to anti-correlations between different x values
arising from the statistical uncertainties in the measurement

Still clear tensions with the input PDF set

Can be related to limitations of profiling at this level of constraint,

limitations of NLO accuracy, limitations of the input PDF set/underlying

parameterization (e.g. NNPDF3.0 uses perturbatively generated charm,

but NNPDF3.1 fits the charm distribution from data)
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Assessing Potential for PDF constraints (observed)
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Oscillations in part related to anti-correlations between different x values
arising from the statistical uncertainties in the measurement

Still clear tensions with the input PDF set

Can be related to limitations of profiling at this level of constraint,

limitations of NLO accuracy, limitations of the input PDF set/underlying

parameterization (e.g. NNPDF3.0 uses perturbatively generated charm,

but NNPDF3.1 fits the charm distribution from data)
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Assessing Potential for PDF constraints

A much more detailed study of the implications of this data
for PDFs is clearly needed (NNLO accuracy, wider range of
PDF sets, full QCD analysis, etc)

Some non-trivial challenges in producing suitable predictions

Releasing results from detector level profiling allows a
comparison point when interpreting unfolded cross sections in
the future
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