

EASISchool 3

Superconductivity and its applications

Dates: 28/9/2020-9/10/2020

Genoa, Italy

Cavity Design

Elliptical and non-elliptical cavities

Erk JENSEN, CERN

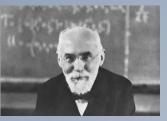
https://cernbox.cern.ch/index.php/s/E4qimjeXzf67RLS

Password: easischool

Outline

- From waveguide to cavity
- Characterizing a cavity
- Multipactor
- Many gaps
- Elliptical cavities
- Higher Order Modes
- Non-elliptical cavities
- Power couplers
- Tuners

From Waveguide to Cavity



Hendrik A. Lorentz 1853 – 1928

Lorentz force

- A charged particle moving with velocity $\vec{v} = \frac{\vec{p}}{m \, \gamma}$ through an electromagnetic field in vacuum experiences the Lorentz force $\frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$.
- The total energy of this particle is $W=\sqrt{(mc^2)^2+(pc)^2}=\gamma\ mc^2$, the kinetic energy is $W_{kin}=mc^2(\gamma-1)$.
- The role of acceleration is to increase W.
- Change of W (by differentiation):

$$WdW = c^{2}\vec{p} \cdot d\vec{p} = qc^{2}\vec{p} \cdot (\vec{E} + \vec{v} \times \vec{B})dt = qc^{2}\vec{p} \cdot \vec{E}dt$$
$$dW = q\vec{v} \cdot \vec{E}dt$$

Note: Only the electric field can change the particle energy!

James Clerk Maxwell 1831 – 1879

Maxwell's equations in vacuum

Source-free:

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = 0 \quad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \qquad \nabla \cdot \vec{E} = 0$$

curl (rot, $\nabla \times$) of 3rd equation and $\frac{\partial}{\partial t}$ of 1st equation:

$$\nabla \times \nabla \times \vec{E} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0.$$

Using the vector identity $\nabla \times \nabla \times \vec{E} = \nabla \nabla \cdot \vec{E} - \nabla^2 \vec{E}$ and the 4th Maxwell equation, this yields:

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0,$$

i.e. the 4-dimensional Laplace equation.

Homogeneous plane wave

$$\vec{E} \propto \vec{u}_y \cos(\omega t - \vec{k} \cdot \vec{r})$$

$$\vec{B} \propto \vec{u}_x \cos(\omega t - \vec{k} \cdot \vec{r})$$

$$\vec{k} \cdot \vec{r} = \frac{\omega}{c} (z \cos \varphi + x \sin \varphi)$$

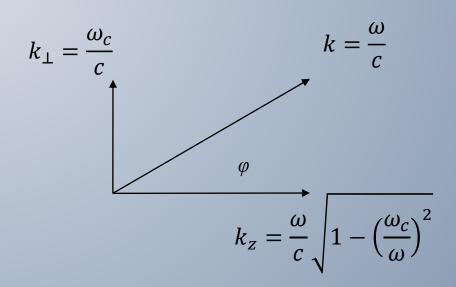
E_{y}

Wave vector \vec{k} :

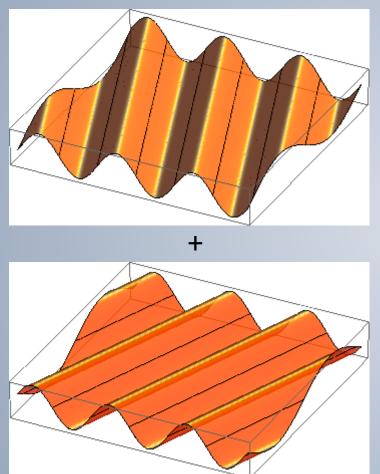
the direction of \vec{k} is the direction of propagation,

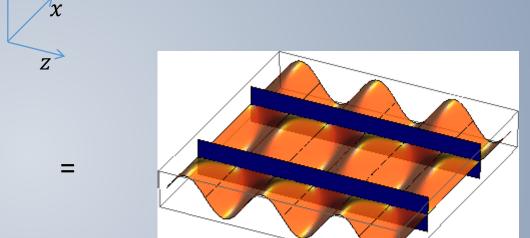
the length of \vec{k} is the phase shift per unit length.

 \vec{k} behaves like a vector.



Superposition of 2 homogeneous plane waves





Metallic walls may be inserted where $E_y \equiv 0$ without perturbing the fields.

Note the standing wave in x-direction!

This way one gets a hollow rectangular waveguide.

Rectangular waveguide

Fundamental (TE₁₀ or H₁₀) mode in a standard rectangular waveguide.

Example 1: "S-band": 2.6 GHz ... 3.95 GHz,

Waveguide type WR284 (2.84" wide), dimensions: 72.14 mm x 34.04 mm.

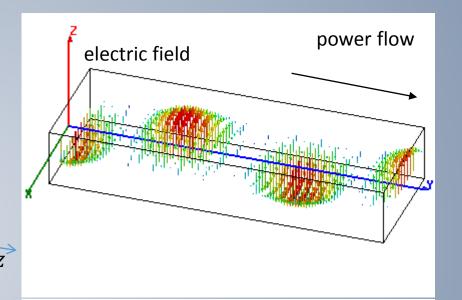
cut-off: $f_c = 2.078 \text{ GHz}.$

Example 2: "L-band": 1.13 GHz ... 1.73 GHz,

Waveguide type WR650 (6.5" wide), dimensions: 165.1 mm x 82.55 mm. cut-off: $f_c = 0.908$ GHz.

Both these pictures correspond to operation at 1.5 f_c .

power flow: $\frac{1}{2} \operatorname{Re} \left\{ \iint \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\}$



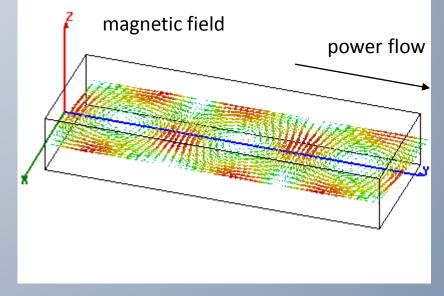
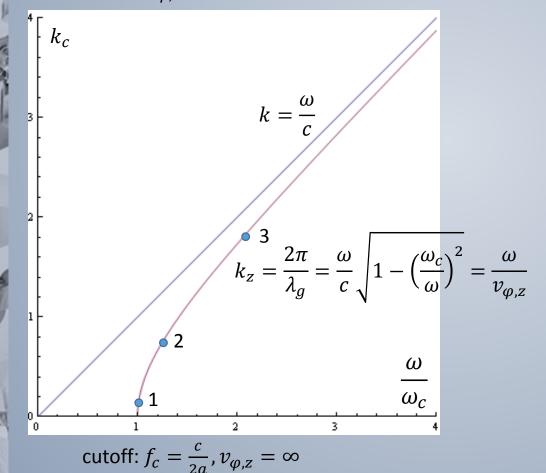


Photo:

Waveguide dispersion – phase velocity $v_{\varphi,z}$

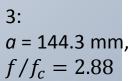
The phase velocity $v_{\varphi,z}$ is the speed at which the crest (or zero-crossing) travels in z-direction.

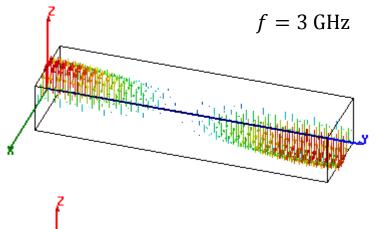
Note on the 3 animations on the right that, at constant f, $v_{\varphi,z} \propto \lambda_g$. Note also that at $f=f_c$, $v_{\varphi,z}=\infty!$ With $f\to\infty$, $v_{\varphi,z}\to c!$

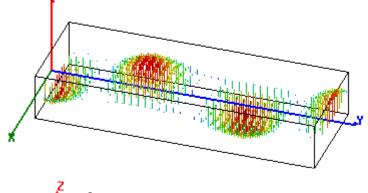


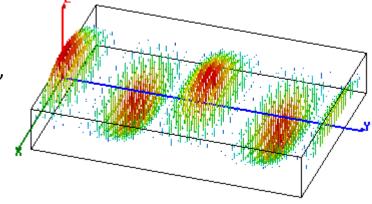
1: a = 52 mm, $f/f_c = 1.04$

2: a = 72.14 mm, $f/f_c = 1.44$









Summary waveguide dispersion and phase velocity:

In a **general** cylindrical waveguide:

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - k_\perp^2} = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$

Propagation in *z*-direction: $\propto e^{j(\omega t - k_z z)}$

$$Z_0 = \frac{\omega\mu}{k_z}$$
 for TE, $Z_0 = \frac{k_z}{\omega\varepsilon}$ for TE

$$k_Z = \frac{2\pi}{\lambda_g}$$

Example: TE10-mode in a rectangular waveguide of width a:

$$k_{\perp} = \frac{\pi}{a}$$

$$\gamma = j\sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{\pi}{a}\right)^2}$$

$$Z_0 = \frac{\omega\mu}{k_z}$$

$$\lambda_{\text{cutoff}} = 2a.$$

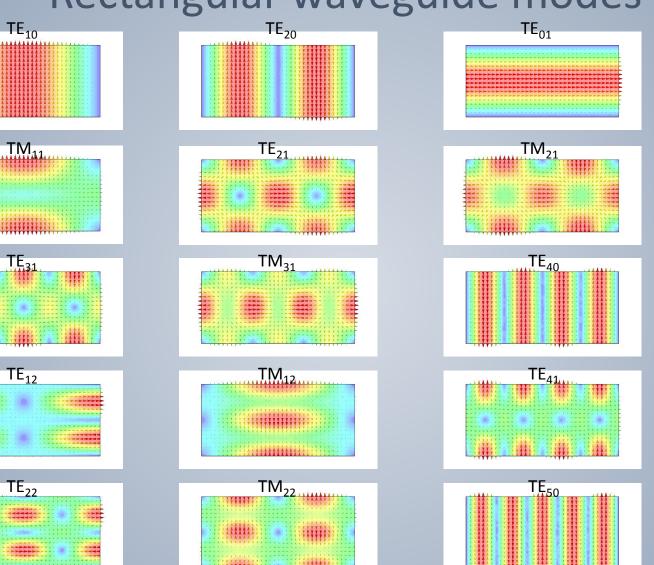
$$Z_0 = \frac{\omega \mu}{k_z}$$

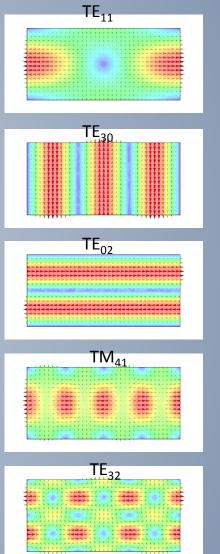
$$\lambda_{\rm cutoff} = 2a$$

In a hollow waveguide: phase velocity $v_{\varphi}>c$, group velocity $v_{qr}< c$, $v_{qr}\cdot v_{\varphi}=c^2$.

Reidar Hahn

Rectangular waveguide modes

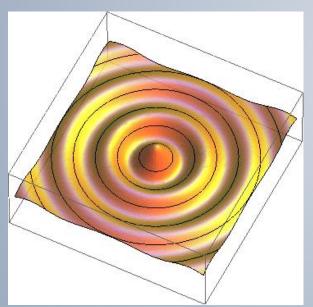


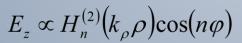


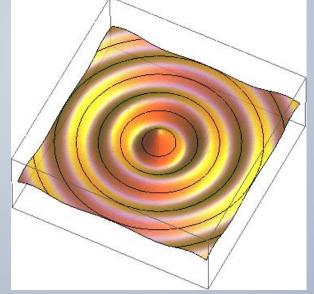
plotted: E-field

Radial waves

Also radial waves may be interpreted as superposition of plane waves. The superposition of an outward and an inward radial wave can result in the field of a round hollow waveguide.









 $E_z \propto J_n(k_\rho \rho)\cos(n\varphi)$

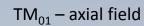
28-Sep-20

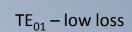
Round waveguide

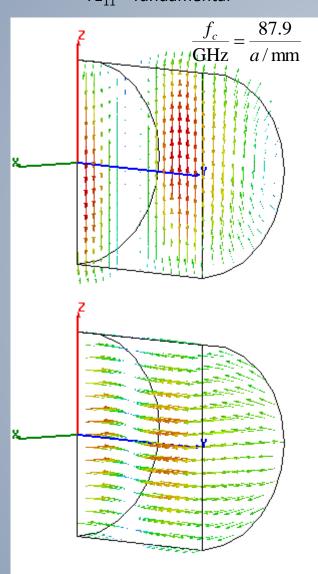
 $f/f_c = 1.44$

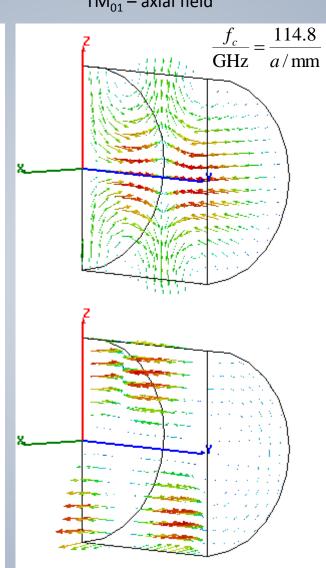
TE₁₁ – fundamental

Photo: Reidar Hahn









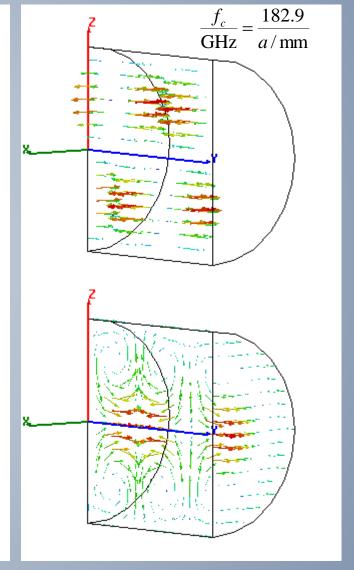
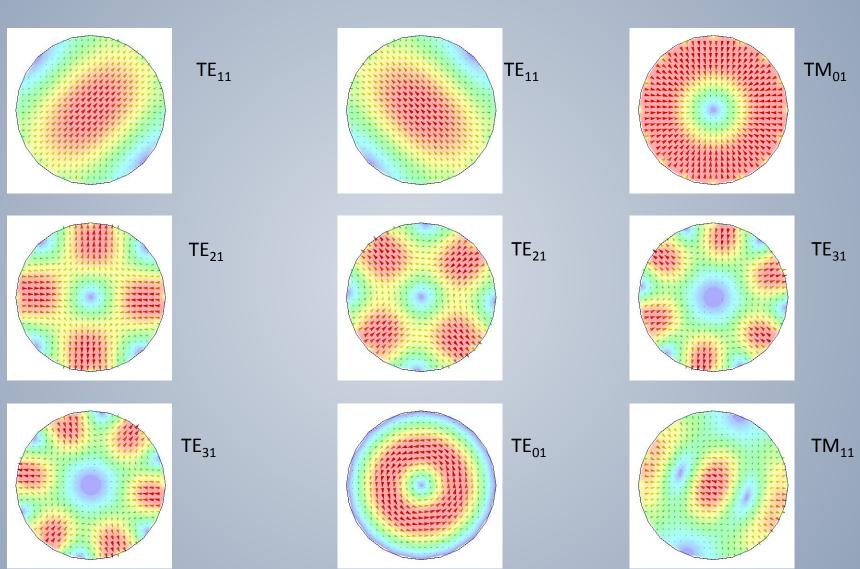


Photo: Reidar Hahn

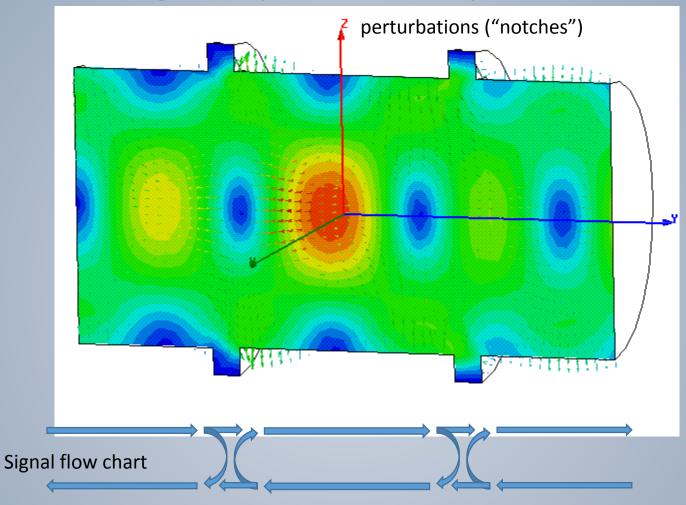
Circular waveguide modes



plotted: E-field

Photo: Reidar Hahr

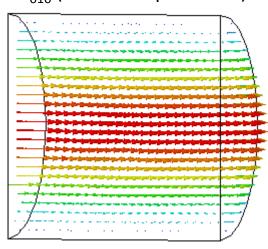
Waveguide perturbed by notches

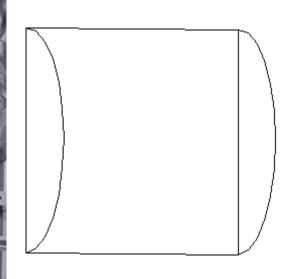


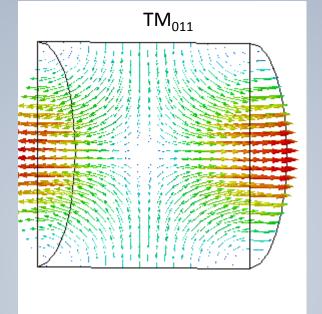
Reflections from notches lead to a superimposed standing wave pattern. "Trapped mode"

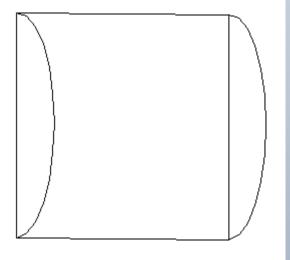
Short-circuited waveguide

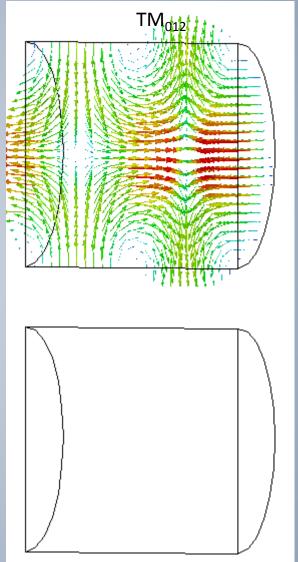
TM₀₁₀ (no axial dependence)



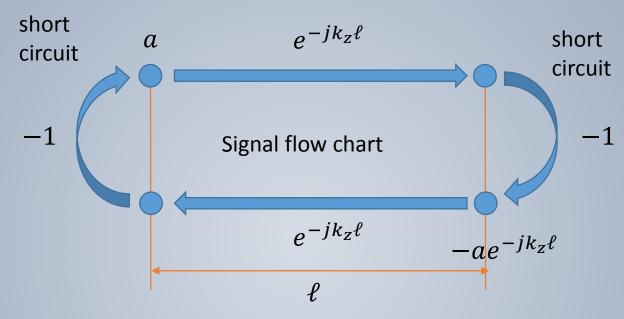








Single WG mode between two shorts



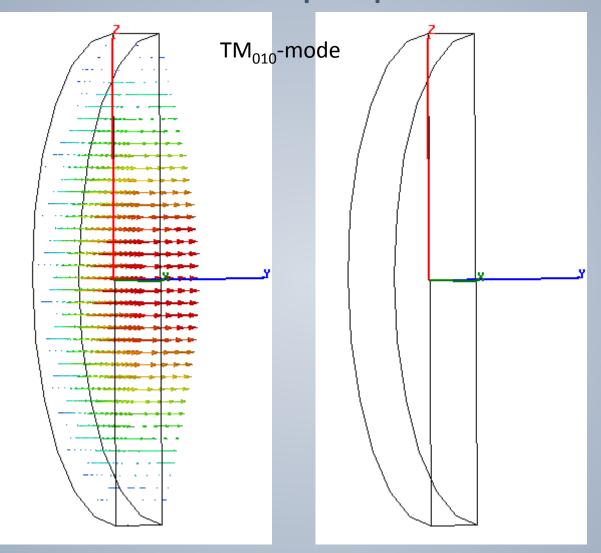
Eigenvalue equation for field amplitude *a*:

$$a = e^{-jk_z 2\ell}a$$

Non-vanishing solutions exist for $2k_z\ell=2\pi m$:

With
$$k_z = \frac{\omega}{c} \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2}$$
, this becomes $f_0^2 = f_c^2 + \left(c\frac{m}{2\ell}\right)^2$.

Simple pillbox (only 1/2 shown)

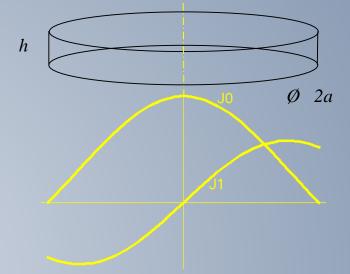


electric field (purely axial)

magnetic field (purely azimuthal)

Pillbox cavity field (w/o beam tube)

$$T(\rho, \varphi) = \sqrt{\frac{1}{\pi}} \frac{J_0\left(\frac{\chi_{01}\rho}{a}\right)}{\chi_{01}J_1\left(\frac{\chi_{01}}{a}\right)}$$
 with $\chi_{01} = 2.40483...$



The only non-vanishing field components:

$$E_{z} = \frac{1}{j\omega\varepsilon} \frac{\chi_{01}}{a} \sqrt{\frac{1}{\pi} \frac{J_{0}\left(\frac{\chi_{01}\rho}{a}\right)}{aJ_{1}\left(\frac{\chi_{01}}{a}\right)}}$$

$$B_{\varphi} = \mu_{0} \sqrt{\frac{1}{\pi} \frac{J_{1}\left(\frac{\chi_{01}\rho}{a}\right)}{aJ_{1}\left(\frac{\chi_{01}\rho}{a}\right)}}$$

$$\omega_0|_{\text{pillbox}} = \frac{\chi_{01}c}{a}, \quad \eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \,\Omega$$

$$Q \Big|_{\text{pillbox}} = \frac{\sqrt{2a\eta\sigma\chi_{01}}}{2\left(1 + \frac{a}{h}\right)}$$

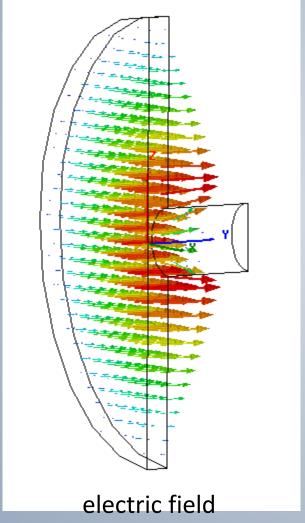
$$\frac{R}{Q}\Big|_{\text{pillbox}} = \frac{4\eta}{\chi_{01}^3\pi J_1^2(\chi_{01})} \frac{\sin^2(\frac{\chi_{01}}{2}\frac{h}{a})}{h/a}$$

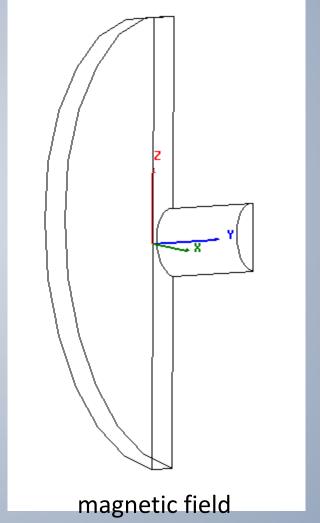
Photo: Reidar Hahr

Pillbox with beam pipe

TM₀₁₀-mode (only 1/4 shown)

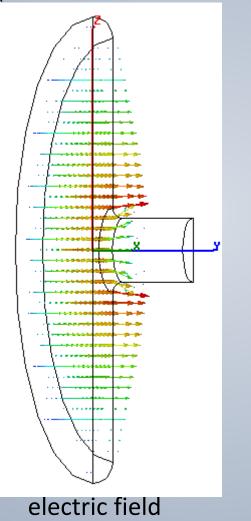
One needs a hole for the beam passage – circular waveguide below cutoff



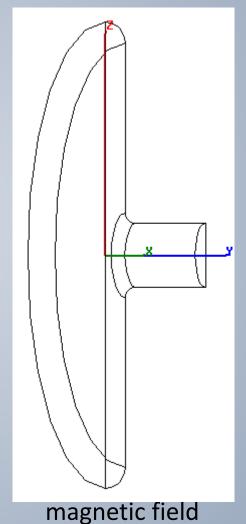


A more practical pillbox cavity

Rounding of sharp edges (to reduce field enhancement!)

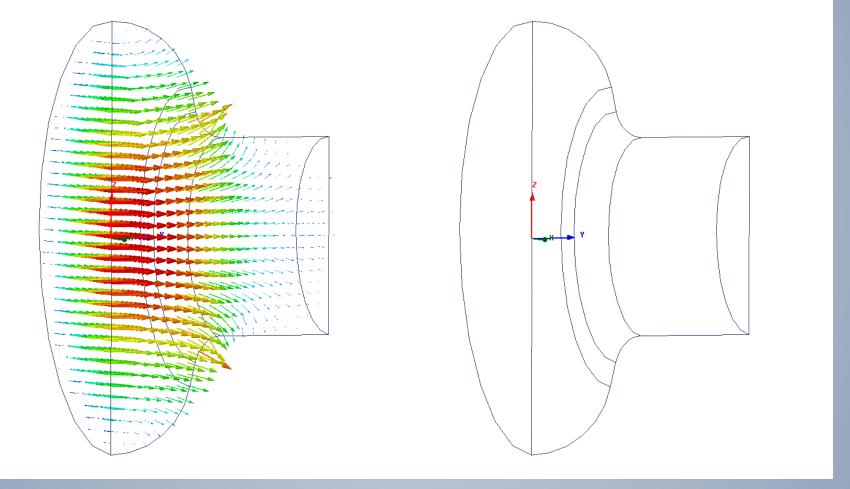


TM₀₁₀-mode (only 1/4 shown)



A (real) elliptical cavity

TM₀₁₀-mode (only 1/4 shown)



electric field

magnetic field

Characterizing a Cavity

Acceleration voltage and R/Q

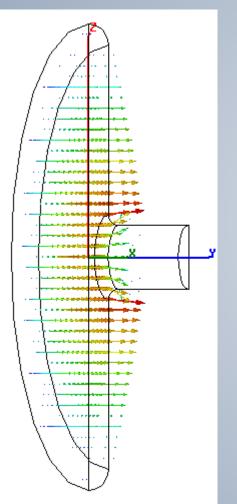
I define

$$V_{\rm acc} = \int_{-\infty}^{\infty} E_z e^{j\frac{\omega}{\beta c}z} dz.$$

- The exponential factor accounts for the variation of the field while particles with velocity βc are traversing the cavity gap.
- With this definition, V_{acc} is generally complex this becomes important with more than one gap (cell).
- For the time being we are only interested in $|V_{acc}|$.
- The square of the acceleration voltage $|V_{acc}|^2$ is proportional to the stored energy W; the proportionality constant defines the quantity called "R-upon-Q":

$$\frac{R}{Q} = \frac{|V_{\rm acc}|^2}{2\omega_0 W}.$$

Attention – different definitions are used in literature!



electric field

Transit time factor

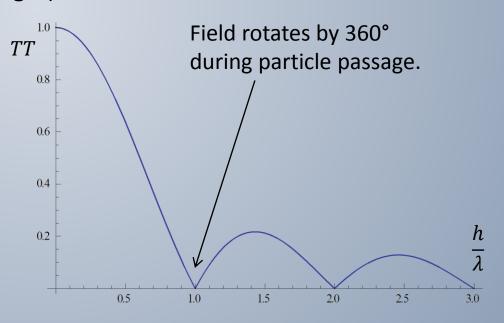
 The transit time factor is the ratio of the acceleration voltage to the (non-physical) voltage a particle with infinite velocity would see:

$$TT = \frac{|V_{acc}|}{\left|\int E_z \, dz\right|} = \frac{\left|\int E_z e^{j\frac{\omega}{\beta c}z} \, dz\right|}{\left|\int E_z \, dz\right|}.$$

• The transit time factor of an ideal pillbox cavity (no axial field dependence) of height (gap length) h is:

$$TT = \frac{\sin\left(\frac{\chi_{01}h}{2a}\right)}{\frac{\chi_{01}h}{2a}}$$

(remember:
$$\omega_0 = \frac{2\pi c}{\lambda} = \frac{\chi_{01}c}{a}$$
)



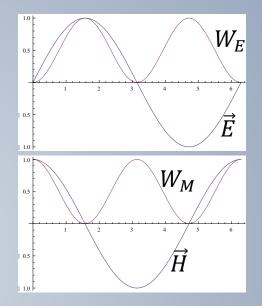
Stored energy

The energy stored in the electric field is

$$W_E = \iiint_{\text{cavity}} \frac{\varepsilon}{2} |\vec{E}|^2 dV$$
.

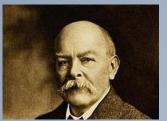
The energy stored in the magnetic field is

$$W_M = \iiint_{\text{cavity}} \frac{\mu}{2} \left| \vec{H} \right|^2 dV.$$



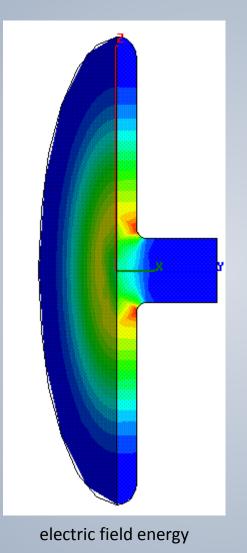
- Since \vec{E} and \vec{H} are 90° out of phase, the stored energy continuously swaps from electric energy to magnetic energy.
- On average, electric and magnetic energy must be equal.
- In steady state, the Poynting vector describes this energy flux.
- In steady state, the total energy stored (constant) is

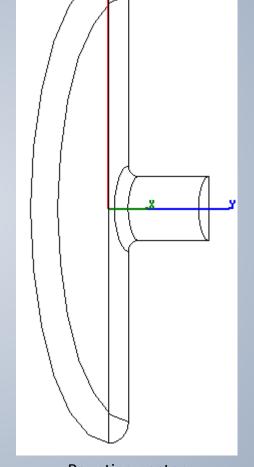
$$W = \iiint\limits_{cavity} \left(\frac{\varepsilon}{2} \left| \vec{E} \right|^2 + \frac{\mu}{2} \left| \vec{H} \right|^2 \right) dV.$$

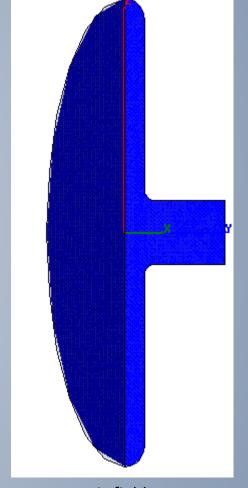


John Henry Poynting 1852 – 1914

Stored energy and Poynting vector







Poynting vector

magnetic field energy

Wall losses & Q_0

- The losses P_{loss} are proportional to the stored energy W.
- The tangential \vec{H} on the surface is linked to a surface current $\vec{J}_A = \vec{n} \times \vec{H}$ (flowing in the skin depth $\delta = \sqrt{2/(\omega\mu\sigma)}$).
- This surface current \vec{J}_A sees a surface resistance R_S , resulting in a local power density $R_S |H_t|^2$ flowing into the wall.
- R_s is related to skin depth δ as $\delta \sigma R_s = 1$.
 - Cu at 300 K has $\sigma \approx 5.8 \cdot 10^7$ S/m, leading to $R_s \approx 8$ m Ω at 1 GHz, scaling with $\sqrt{\omega}$.
 - Nb at 2 K has a typical $R_s \approx 10~{\rm n}\Omega$ at 1 GHz, scaling with ω^2 .
- The total wall losses result from $P_{loss} = \iint_{wall} R_s |H_t|^2 dA$.
- The cavity Q_0 (caused by wall losses) is defined as $Q_0 = \frac{\omega_0 W}{P_{\mathrm{loss}}}$.
- Typical Q_0 values:

No! Anomalous skin effect!

- Cu at 300 K (normal-conducting): $\mathcal{O}(10^3 \dots 10^5)$, should improves only by a factor $\approx 10^{10}$ RR.
- Nb at 2 K (superconducting): $\mathcal{O}(10^9 \dots 10^{11})$

Shunt impedance

• Also the power loss $P_{\rm loss}$ is also proportional to the square of the acceleration voltage $|V_{\rm acc}|^2$; the proportionality constant defines the "shunt impedance"

$$R = \frac{|V_{\rm acc}|^2}{2 P_{\rm loss}}.$$

- Attention, also here different definitions are used!
- Traditionally, the shunt impedance is the quantity to optimize in order to minimize the power required for a given gap voltage.
- Now the previously introduced term "R-upon-Q" makes sense:

$$\left(\frac{R}{Q}\right) = R/Q$$

Geometric factor

With

$$Q_0 = \frac{\omega_0 W}{\iint\limits_{\text{Wall}} R_s |H_t|^2 dA},$$

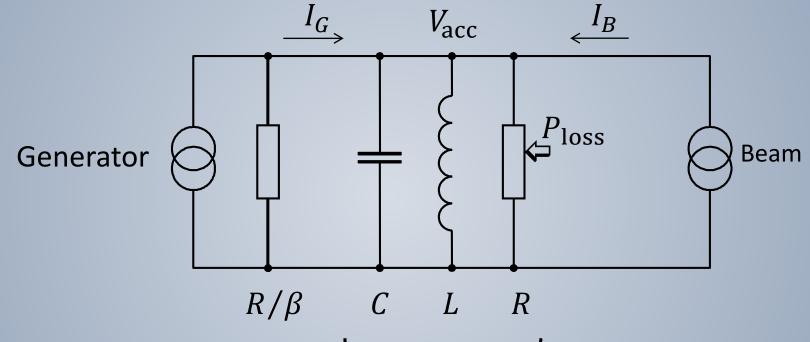
and assuming an average surface resistance R_s , one can introduce the "geometric factor" G as

$$G = Q_0 \cdot R_S = \frac{\omega_0 W}{\iint\limits_{Wall} |H_t|^2 dA}.$$

- G has dimension Ohm, depends only on the cavity geometry (as the name suggests) and typically is $\mathcal{O}(100~\Omega)$.
- Note that $R_S \cdot R = G \cdot (R/Q)$ (dimension Ω^2 , purely geometric)
- G is only used for SC cavities.

Cavity resonator – equivalent circuit

Simplification: single mode



 β : coupling factor

R: shunt impedance

$$\sqrt{L/C} = \frac{R}{Q}$$
: R-upon-Q

Power coupling - Loaded Q

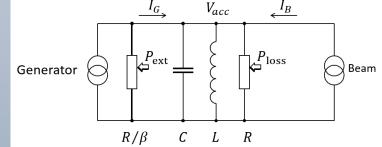
- Note that the generator inner impedance also loads the cavity for very large Q_0 more than the cavity wall losses.
- To calculate the loaded $Q(Q_L)$, losses have to be added:

$$\frac{1}{Q_L} = \frac{P_{\text{loss}} + P_{\text{ext}} + \dots}{\omega_0 W} = \frac{1}{Q_0} + \frac{1}{Q_{\text{ext}}} + \frac{1}{\dots}.$$

- The coupling factor β is the ratio $P_{\rm ext}/P_{\rm loss}$.
- With β , the loaded Q can be written

$$Q_L = \frac{Q_0}{1+\beta}.$$

• For NC cavities, often $\beta=1$ is chosen (power amplifier matched to empty cavity); for SC cavities, $\beta=\mathcal{O}(10^4 \dots 10^6)$.



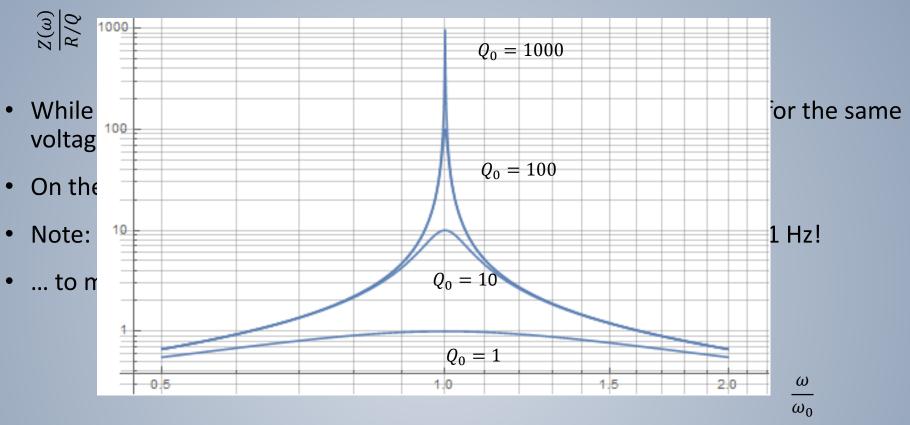


Photo:

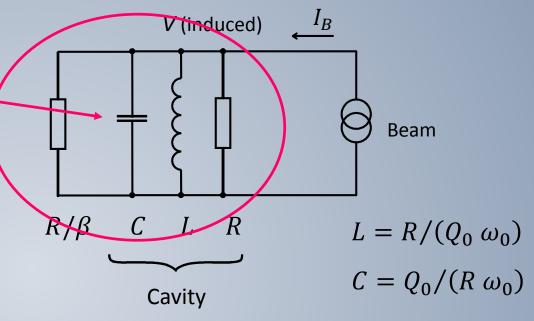
Loss factor

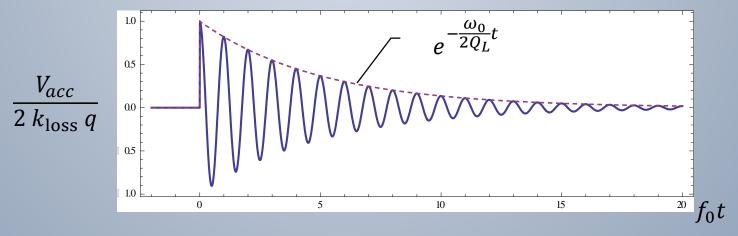
$$k_{\text{loss}} = \frac{\omega_0}{2} \left(\frac{R}{Q} \right) = \frac{|V_{\text{acc}}|^2}{4 W} = \frac{1}{2C}$$

Energy deposited by a single $k_{\rm loss}q^2$ charge q:

Voltage induced by a single $2 k_{loss} q$ charge q:

Impedance seen by the beam





Summary: relations V_{acc} , W and P_{loss}

Attention

different

definitions

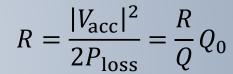
literature!

 $V_{\rm acc}$

Accelerating voltage

$$\frac{R}{Q} = \frac{|V_{\rm acc}|^2}{2\omega_0 W}$$

$$k_{\text{loss}} = \frac{\omega_0}{2} \frac{R}{Q} = \frac{|V_{\text{acc}}|^2}{4W}$$



 \overline{W}

Energy stored

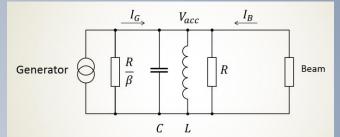
$$Q_0 = \frac{\omega_0 W}{P_{\text{loss}}}$$

 $P_{\rm loss}$

wall losses

Beam loading

The beam current "loads" the cavity, in the equivalent circuit this appears as an impedance in parallel to the shunt impedance.

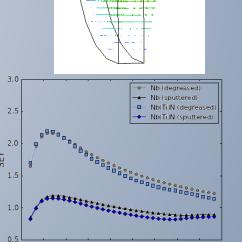


- If the generator is matched to the unloaded cavity $\frac{c}{(\beta = 1)}$, beam loading will (normally) cause the accelerating voltage to decrease.
- The power absorbed by the beam is $-\frac{1}{2}\Re\{V_{\rm acc}I_B^*\}$.
- For high power transfer efficiency RF → beam, beam loading must be high!
- For SC cavities (very large β), the generator is typically matched to the beam impedance!
- Variation in the beam current leads to transient beam loading, which requires special care!
- Often the "impedance" the beam presents is strongly reactive this leads to a detuning of the cavity.

Multipactor

The words "multipactor", "to multipact" and "multipacting" are artificially composed of "multiple" "impact".

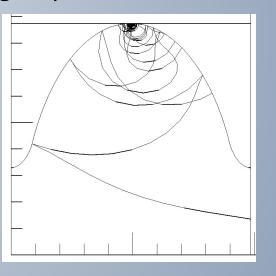
- Multipactor describes a resonant RF phenomenon in vacuum:
 - Consider a free electron in a simple cavity it gets accelerated by the electric field towards the wall
 - when it impacts the wall, secondary electrons will be emitted, described by the secondary emission yield (SEY)
 - in certain impact energy ranges, more than one electron is emitted for one electron impacting! So the number of electrons can increase
 - When the time for an electron from emission to impact takes exactly ½ of the RF period, resonance occurs with the SEY>1, this leads to an avalanche increase of electrons, effectively taking all RF power at this field level, depleting the stored energy and limiting the field!
- For this simple "2-point MP", this resonance condition is reached at $\frac{1}{4\pi} \frac{e}{m} V = (fd)^2$ or $\frac{V}{112 \text{ V}} = \left(\frac{f}{\text{MHz}} \frac{d}{\text{m}}\right)^2$. There exist other resonant bands.



courtesy: Sarah Aull/CERN

Multipactor (contd.)

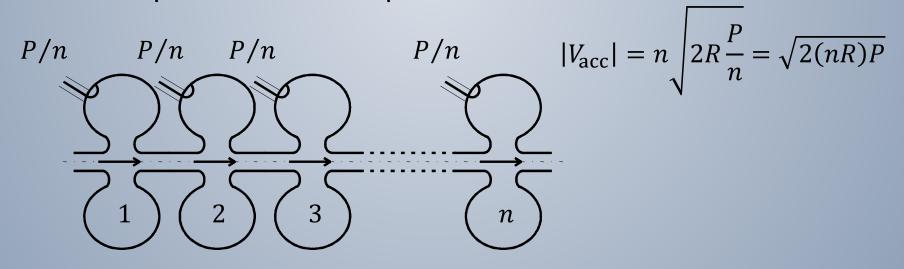
- Unfortunately, good metallic conductors (Cu, Ag, Nb) all have SEY>1!
- 1-point MP occurs when the electron impact where they were emitted
- Electron trajectories can be complex since both \vec{E} and \vec{B} influence them; computer simulations allow to determine the MP bands (barriers)
- To reduce or suppress MP, a combination of the following may be considered:
 - Use materials with low SEY
 - Optimize the shape of your cavity (→ elliptical cavity)
 - Conditioning (surface altered by exposure to RF fields)
 - Coating (Ti, TiN, NEG, amorphous C ...)
 - Clearing electrode (for a superimposed DC electric field)
 - Rough surfaces



Many gaps

What do you gain with many gaps?

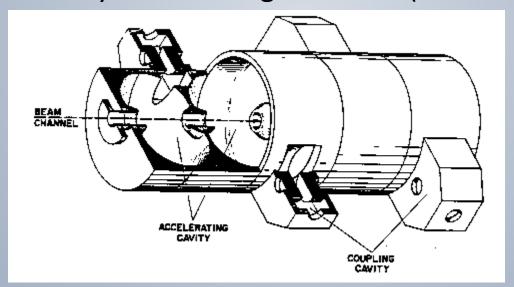
• The R/Q of a single gap cavity is limited to some $100 \,\Omega$. Now consider to distribute the available power to n identical cavities: each will receive P/n, thus produce an accelerating voltage of $\sqrt{2RP/n}$. (Attention: phase important!) The total accelerating voltage thus increased, equivalent to a total equivalent shunt impedance of nR.



Standing wave multi-cell cavity

 Instead of distributing the power from the amplifier, one might as well couple the cavities, such that the power automatically distributes, or have a cavity with many gaps (e.g. drift tube linac).

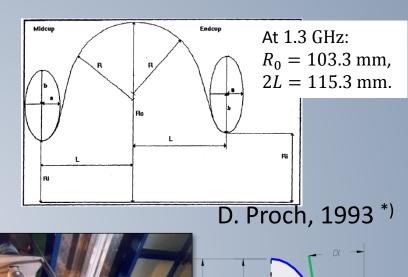
Coupled cavity accelerating structure (side coupled)

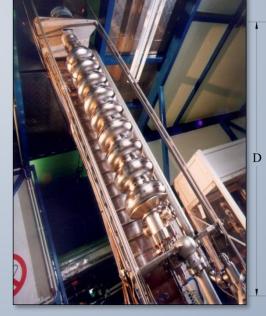


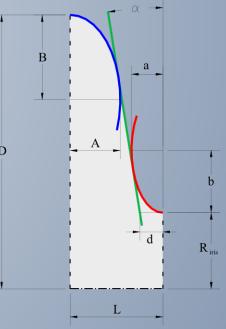
The phase relation between gaps is important!

The elliptical cavity

- The elliptical shape was found as optimum compromise between
 - maximum gradient ($E_{\rm acc}/E_{\rm surface}$)
 - suppression of multipactor
 - mode purity
 - machinability
- A multi-cell elliptical cavity is typically operated in π -mode, i.e. cell length is exactly $\beta \lambda/2$.
- It has become de facto standard, used for ions and leptons! E.g.:
 - ILC/X-FEL: 1.3 GHz, 9-cell cavity
 - SNS (805 MHz)
 - SPL/ESS (704 MHz)
 - LHC (400 MHz)







^{*):} http://accelconf.web.cern.ch/AccelConf/SRF93/papers/srf93g01.pdf

Elliptical cavities

Photo: Reidar Hahr

Elliptical cavities – the *de facto* standard for SRF

FERMI 3.9 GHz

S-DALINAC 3 GHz

CEBAF 1.5 GHz

HEPL 1.3 GHz

KEK-B 0.5 GHz

CESR 0.5 GHz

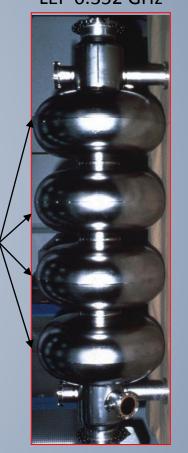
TESLA/ILC 1.3 GHz

SNS $\beta = 0.61, 0.81, 0.805 \, \mathrm{GHz}$

HERA 0.5 GHz

TRISTAN 0.5 GHz

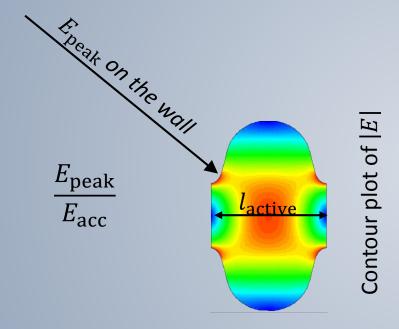
LEP 0.352 GHz

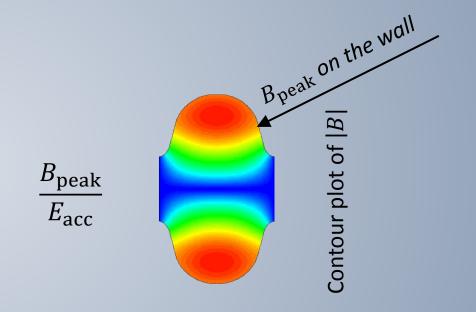


cells

Practical RF parameters 1

• Average accelerating gradient: $E_{\rm acc} = \frac{\sqrt{\omega W(R/Q)}}{l_{\rm active}}$





The ratio shows sensitivity of the shape to the **field emission** of electrons.

The ratio shows limit in E_{acc} due to the breakdown of superconductivity (quench, Nb: $\approx 190 \text{ mT}$).

Practical RF parameters 2

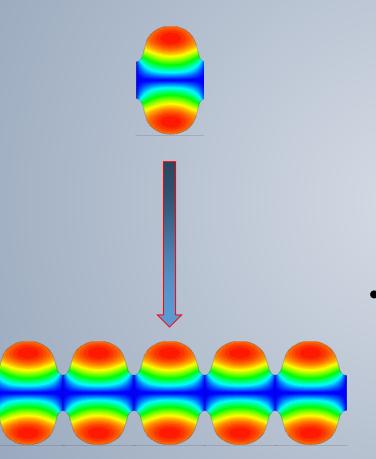
$$G \cdot (R/Q)$$

- Both G and R/Q are purely geometric parameters.
- Like the shunt impedance R, the product $G \cdot (R/Q)$ is a measure of the power loss for given acceleration voltage $V_{\rm acc}$ and surface resistance $R_{\rm S}$.

$$P_{\rm loss} = \frac{|V_{\rm acc}|^2 R_s}{2 \ G \cdot (R/Q)}$$
 Minimize R_s :
operation at lower T ,
better surface cleanliness,
lower residual resistance

Optimize geometry maximizing $G \cdot (R/Q)$.

Single-cell versus multi-cell cavities

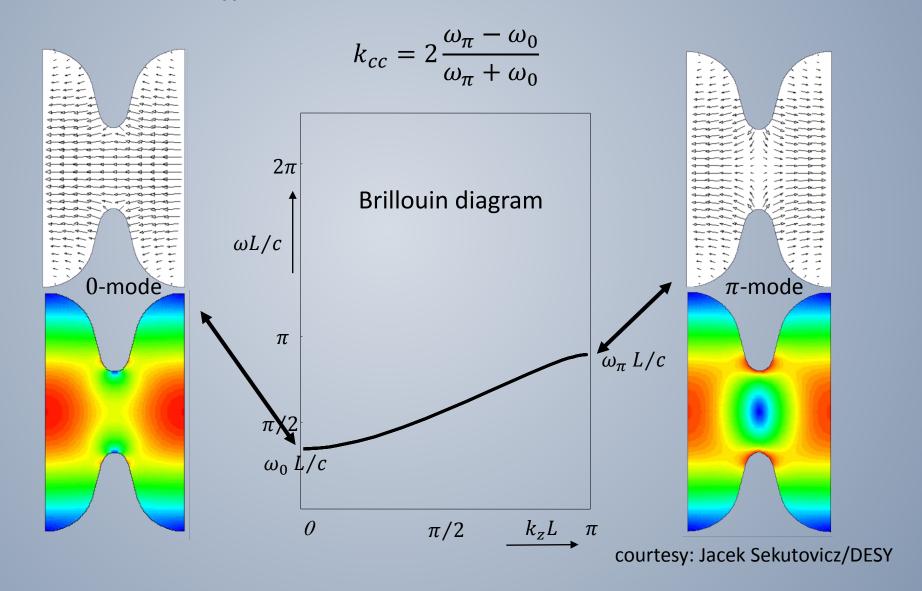


- Advantages of single-cell cavities:
 - It is easier to manage HOM damping
 - There is no field flatness problem.
 - Input coupler transfers less power
 - They are easy for cleaning and preparation

- Advantages of multi-cell cavities:
 - much more acceleration per meter!
 - better use of the power $(R \rightarrow n R)$
 - more cost-effective for most applications

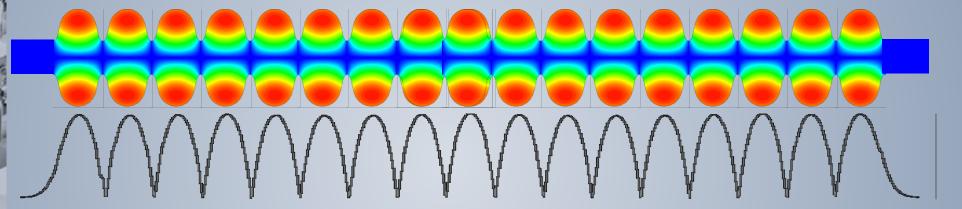
Practical RF parameters 3

• Cell-to-cell coupling k_{cc} will determine the width of the passbands in multi-cell cavities.



Field flatness

- Field amplitude variation from cell to cell in a multi-cell structure
- Should be small for maximum acceleration.



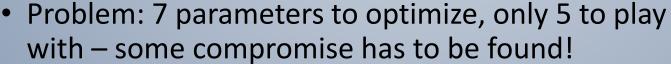
• Field flatness sensitivity factor a_{ff} for a structure made of N cells:

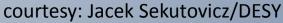
$$\frac{\Delta A_i}{A_i} = a_{ff} \frac{\Delta f_i}{f_i}$$

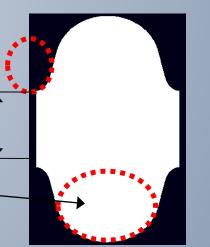
 a_{ff} is related to the cell-to-cell coupling as $a_{ff}=\frac{N^2}{k_{cc}}$ and describes the sensitivity of the field flatness on the errors in individual cells. courtesy: Jacek Sekutovicz/DESY

Criteria for Cavity Design (1)

- Here: Inner cells of multi-cell structures
- Parameters for optimization:
 - Fundamental mode: $\frac{R}{Q}$, G, $\frac{E_{\text{peak}}}{E_{\text{acc}}}$, $\frac{B_{\text{peak}}}{E_{\text{acc}}}$, k_{cc} .
 - Higher order modes: k_{\perp} , k_{z} .
- The elliptical cavity design has distinct advantages:
 - easy to clean (rinse)
 - little susceptible to MP can be conditioned ...
- Geometric parameters for optimization:
 - iris ellipse half axes: *a*, *b*:
 - iris aperture radius: r_i ,
 - equator ellipse half axes: A, B







Criteria for Cavity Design (2)

Criterion	RF parameter	Improves if	examples
high gradient	$E_{\rm peak}/E_{\rm acc}$ $B_{\rm peak}/E_{\rm acc}$	r_i	ILC,
operation	$B_{\rm peak}/E_{\rm acc}$,	CEBAF 12 GeV HG
low cryogenic losses	$\frac{R}{Q} \cdot G$	r_i	CEBAF LL
High I_{beam}	k_{\perp}, k_{z}	r_i	B-factory RHIC cooling LHeC

We see here that r_i is a very "powerful" variable to trim the RF-parameters of a cavity. Of course it has to fit the aperture required for the beam!

28-Sep-20

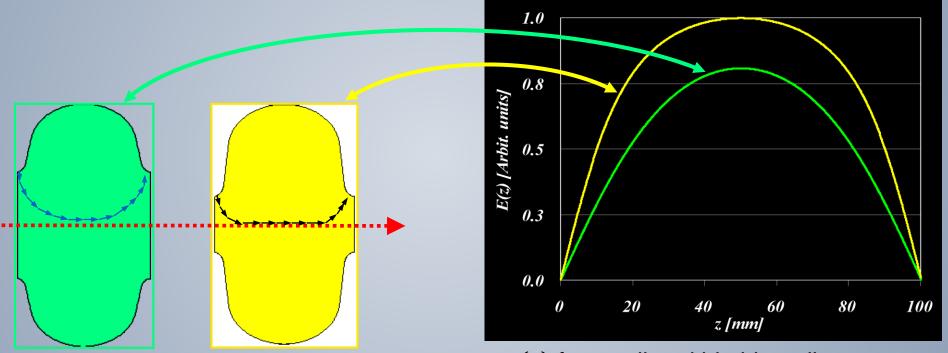
Effect of r_i

• Smaller r_i allows to concentrate E_z where it is needed for acceleration

Photo: Reidar Hahr

 $r_i = 40 \text{ mm}$

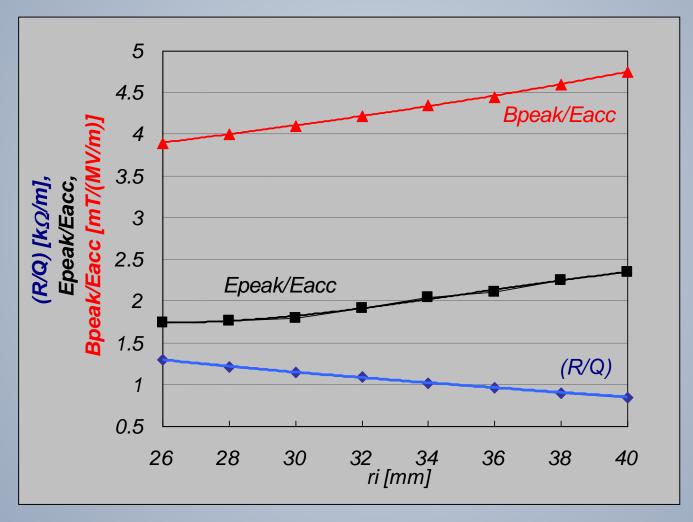
 $r_i = 20 \text{ mm}$



 $E_z(z)$ for small and big iris radius

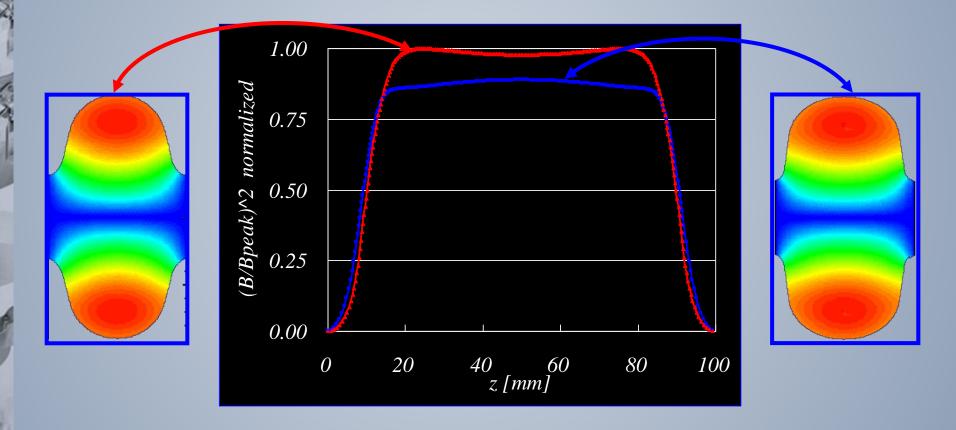
Photo:

Example: cell optimization at 1.5 GHz



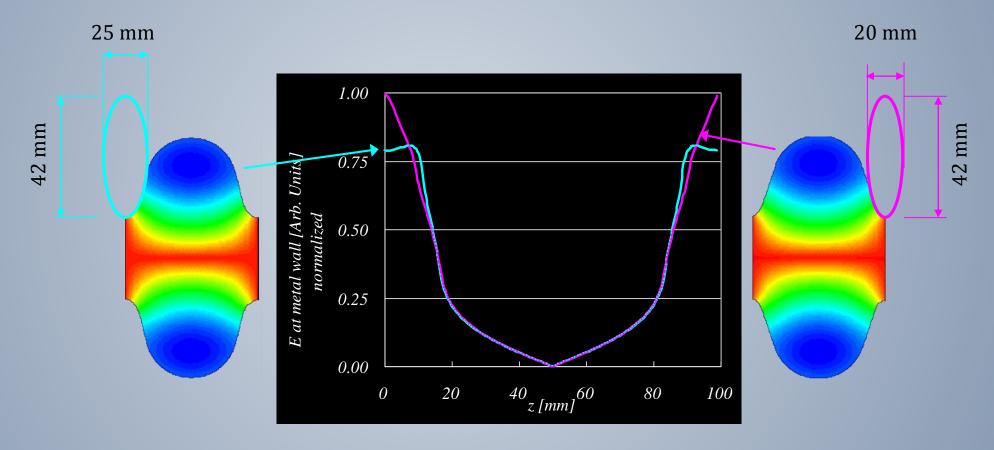
Equator shape optimization

• $B_{\text{peak}}/E_{\text{acc}}$ (and G) change when changing the equator shape.



Iris shape optimization

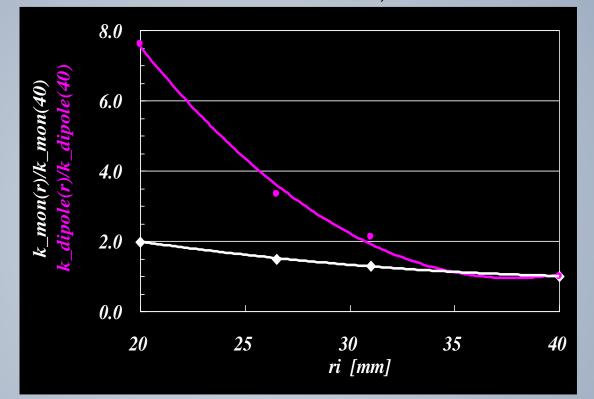
• $E_{\rm peak}/E_{\rm acc}$ changes with the iris shape

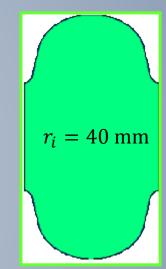


Both cells have the same: f_0 , R/Q, and r_i .

Minimizing HOM excitation

HOMs loss factors $(k_{\rm loss,\perp}$, $k_{\rm loss})$





$$R/Q = 152 \Omega$$

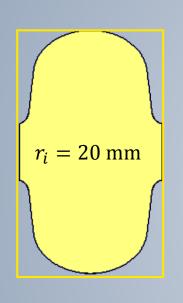
 $B_{\text{peak}}/E_{\text{acc}} = 3.5 \,\text{mT/(MV/m)}$
 $E_{\text{peak}}/E_{\text{acc}} = 1.9$

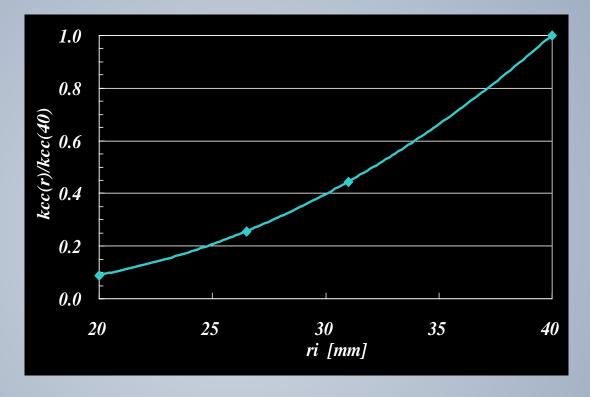
 $r_i = 20 \text{ mm}$

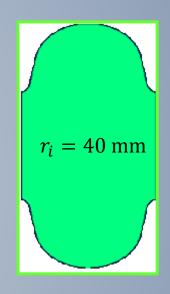
$$R/Q = 86 \Omega$$

 $B_{\text{peak}}/E_{\text{acc}} = 4.6 \,\text{mT/(MV/m)}$
 $E_{\text{peak}}/E_{\text{acc}} = 3.2$

Cell-to-cell coupling k_{cc}







$$R/Q = 152 \Omega$$

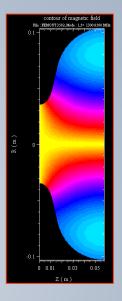
 $B_{\text{peak}}/E_{\text{acc}} = 3.5 \,\text{mT/(MV/m)}$
 $E_{\text{peak}}/E_{\text{acc}} = 1.9$

$$R/Q = 86 \Omega$$

 $B_{\text{peak}}/E_{\text{acc}} = 4.6 \,\text{mT/(MV/m)}$
 $E_{\text{peak}}/E_{\text{acc}} = 3.2$

Scaling the frequency

$$\times 2 =$$



f_{π}	[MHz]	2600
R/Q	[Ω]	57
r/Q	[Ω/m]	2000
G	[Ω]	271

$$r/Q = (R/Q)/l \propto f$$

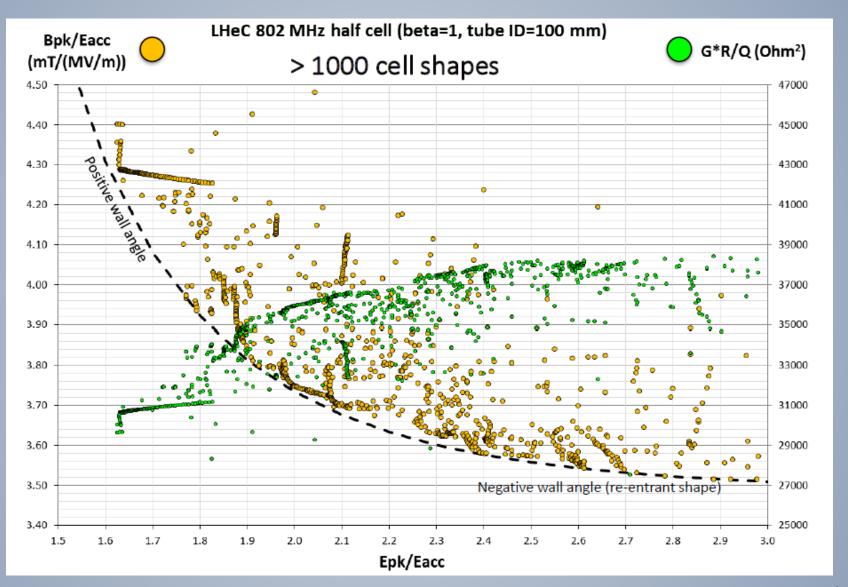
f_{π}	[MHz]	1300
R/Q	[Ω]	57
r/Q	[Ω/m]	1000
G	[Ω]	271

(or
$$(R/Q)/\lambda$$
 = const)

Historic evolution of inner cell geometry. Example: ILC optimized E_{peak}/E_{acc} optimized E_{peak}/E_{acc} optimized E_{peak}/E_{acc} optimized E_{peak}/E_{acc} optimized E_{peak}/E_{acc}

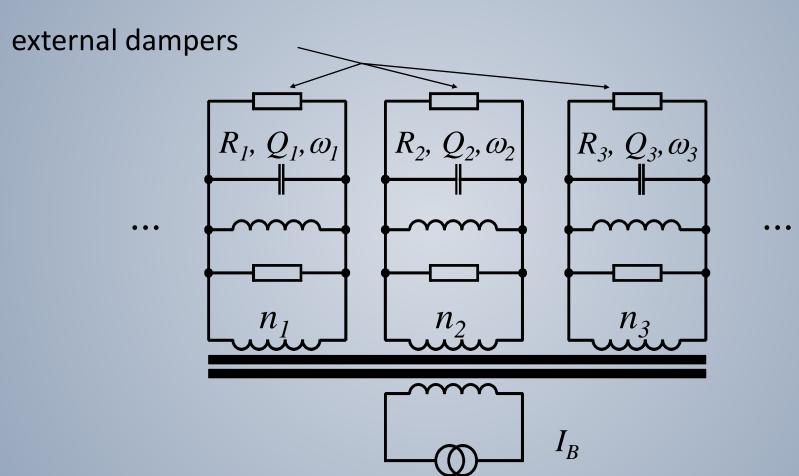
орентигой прешку писс	реакт - исс	peak = peak = acc
1992	2002/04	2002/04
35	30	30

r_i	[mm]	35	30	30
k_{cc}	[%]	1.9	1.56	1.52
$E_{\rm peak}/E_{\rm acc}$	ı	1.98	2.30	2.36
$B_{\rm peak}/E_{\rm acc}$	[mT/(MV/m)]	4.15	3.57	3.61
R/Q	[Ω]	113.8	135	133.7
G	[Ω]	271	284.3	284
$R/Q \cdot G$	$[\Omega^*\Omega]$	30840	38380	37970
$k_{\mathrm{loss},\perp}$ ($\sigma_z = 1 \mathrm{mm}$)	[V/pC/cm ²]	0.23	0.38	0.38
$k_{\rm loss}$ ($\sigma_z = 1$ mm)	[V/pC]	1.46	1.75	1.72



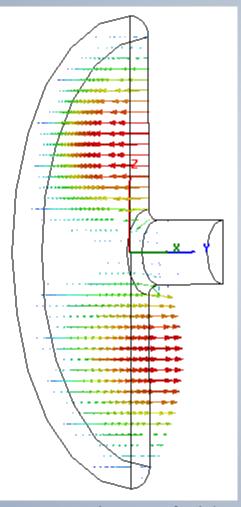
Higher Order Modes

Higher order modes

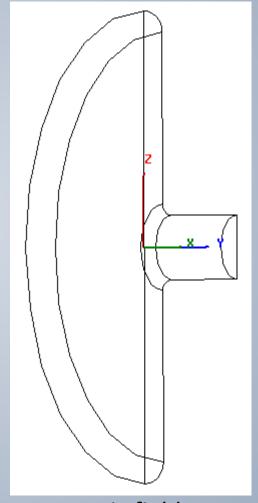


Pillbox: 1st dipole mode

TM₁₁₀-mode (only 1/4 shown)

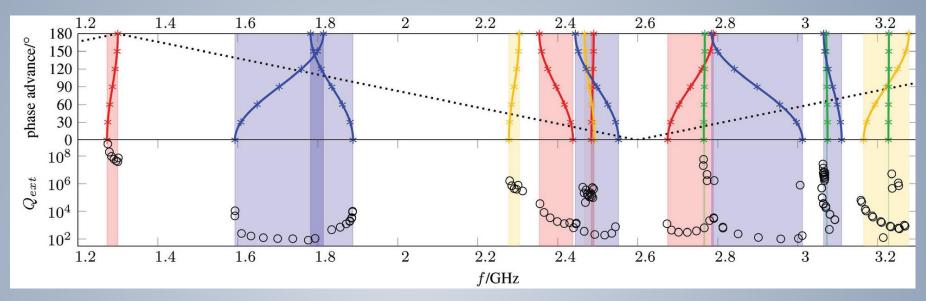


electric field



magnetic field

7-cell 1.3 GHz structure for bERLinPro

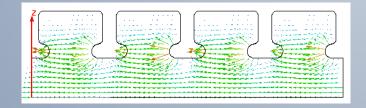


Band diagram (top) and Q-factors (bottom)

Galek et al.: IPAC2013

Reminder:

0-mode



π -mode

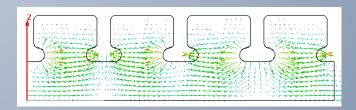
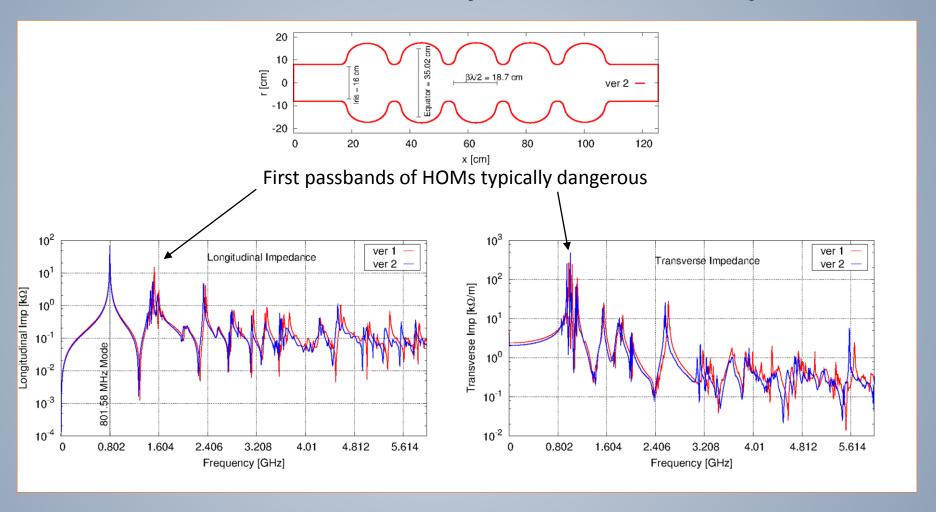


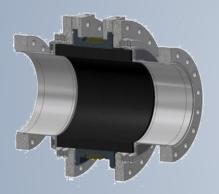
Photo: Reidar Hahr

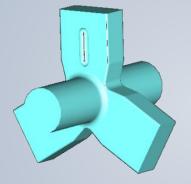
HOMs: Example 5-cell cavity

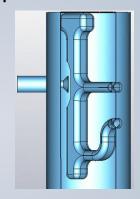


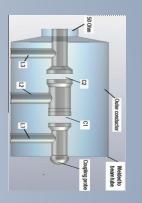
HOM dampers

- Ferrite absorbers: broadband damper, room temperature
- Waveguides: better suited for higher frequencies (size!)
- Notch filters: narrow-band; target specific mode









ferrite absorber

waveguides

notch filter

bandpass filter double notch

• Multi-cell cavities require broadband dampers!

Non-elliptical cavities

Special thanks to R. Laxdal (TRIUMF) and A. Facco (INFN & FRIB)

Useful relations

Protons/H- (A = 1, Q = 1)

$$p = \gamma \beta m_0 c = \frac{\gamma \beta E_0}{c}$$

$$E = E_{\rm kin} + E_0 = \gamma E_0$$

$$E_{\rm kin} = (\gamma - 1)E_0$$

$$E_{\rm kin} = |e|V_{\rm eff}\cos\varphi$$

Heavy Ions (A, Q)

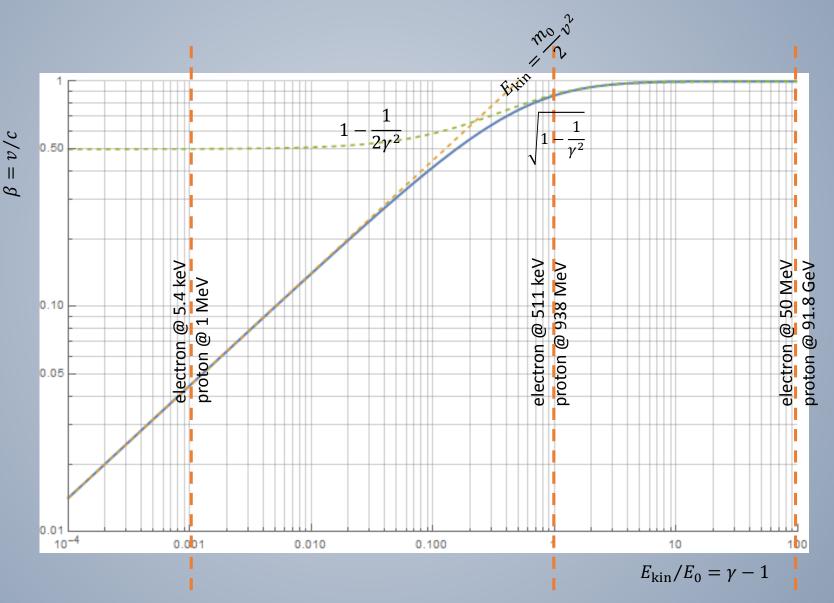
$$p = \gamma \beta A m_0 c = \frac{\gamma \beta A E_0}{c}$$

$$E = E_{\rm kin} + AE_0 = \gamma AE_0$$

$$E_{\rm kin}/A = (\gamma - 1)E_0$$

$$E_{\rm kin}/A = (Q/A) V_{\rm eff} \cos \varphi$$

Particle velocity vs. kinetic energy



Accelerating electrons vs. accelerating ions

Example: a 300kV DC bias is enough to get electrons going at a relativistic speed (ie E_o =511keV so y=1.58, v/c= β =0.78) – for protons a 300kV bias only produces v/c= β =0.025 – for A=30 v/c= β =0.005

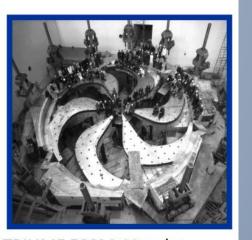
- Electron 0.511MeV/c²
 - 300kV γ =1.58, v/c= β =0.78
 - 550MeV γ =1011, v/c= β =1

8 gm

ARIEL 300kV e-gun

- Protons 938 MeV/c²
 - $300kV y=1.003, v/c=\beta=0.025$
 - $550 \text{MeV} \text{y=1.58}, \text{v/c=}\beta = 0.78$

160 kgm

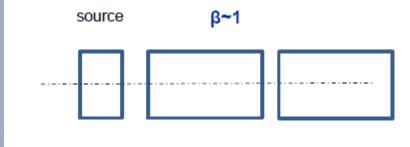


TRIUMF 500MeV cyclotron

Accelerating electrons vs. accelerating ions

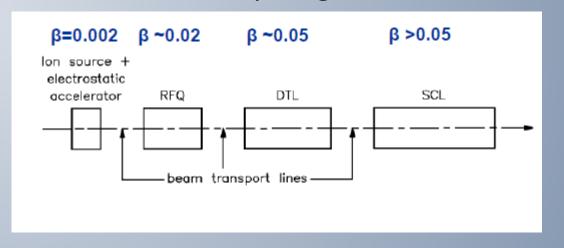
Electrons

Common building blocks – all designed for $\beta = 1$.



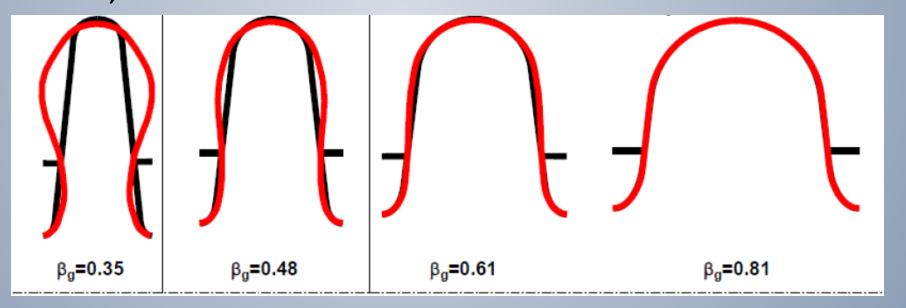
Ions

Various building blocks – different technologies, each optimized for a certain velocity range

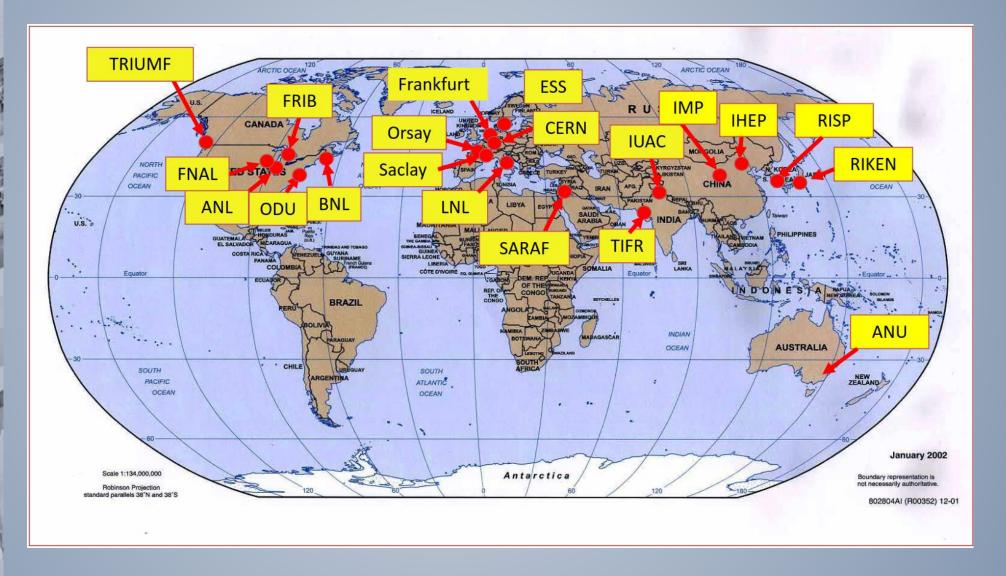


Limitations of elliptical cavities

- Elliptical cavities have been designed starting at $\beta \geq 0.5$ for CW applications, for $\beta \geq 0.6$ for pulsed (SNS, ESS).
- The π -mode requires cell-to-cell distance of $\beta \lambda/2$, but outer diameter $\approx 0.9 \, \lambda$, i.e. at low β the cavity looks more like bellows, sensitive to LFD!

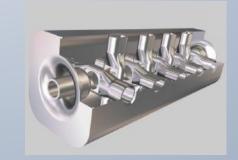


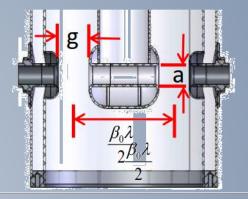
Non-elliptical SRF Community around the world

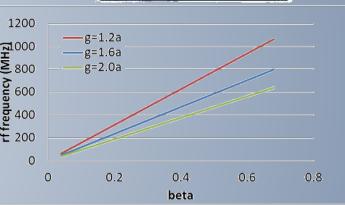


Resonator types for low beta acceleration

- Quarter wave resonator (QWR) $\beta \approx 0.04 \dots 0.2$
- Half wave resonator (HWR) $\beta \approx 0.1 \dots 0.5$
- Single spoke resonator (SSR) $\beta \approx 0.15 \dots 0.7$
- Multi-spoke resonator (MSR) $\beta \approx 0.06 \dots 1$
- For comparison: Elliptical cavities $\beta \approx 0.5 \dots 1$







Coaxial resonator

- Consider a coaxial geometry with grounded end plates, an inner conductor with radius a and an outer conductor with radius b.
- A standing wave occurs with E_r vanishing on the end walls at z=0 and z=d.
- The remaining non-zero field components are

$$B_{\theta} = \frac{\mu_0 I_0}{\pi r} \cos\left(\frac{p\pi z}{d}\right),$$

$$E_r = -j2\sqrt{\frac{\mu_0}{\varepsilon_0} \frac{I_0}{2\pi r}} \sin\left(\frac{p\pi z}{d}\right),$$
where $\omega = \frac{p\pi c}{d}$, $p = 1,2,3,...$

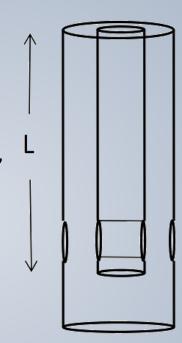
Peak voltage:

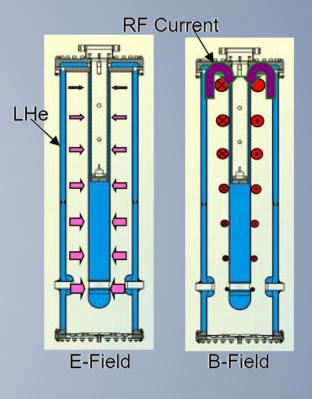
$$\widehat{V}(z) = \int_{a}^{b} E_{r}(z) dr = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{I_{0}}{\pi} \ln \frac{b}{a} \sin \left(\frac{p\pi z}{d}\right)$$



Quarter-wave resonator (QWR)

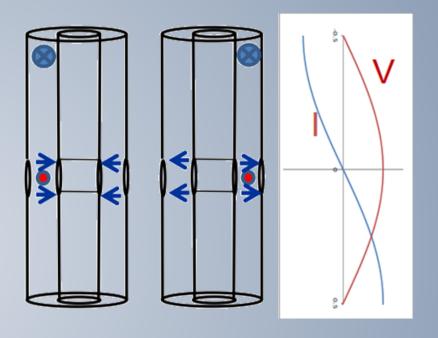
- The most popular coaxial TEM mode cavity is the quarter wave resonator capacitively loaded $\lambda/4$ transmission line
- The inner conductor is open at one end with a resonant length of $(1+2p)\lambda/4$, p=0,1,2,...
- For acceleration, p = 0 is chosen.
- The maximum voltage builds up on the open tip – the maximum current at the root.
- A beam tube is arranged near the end of the tip.





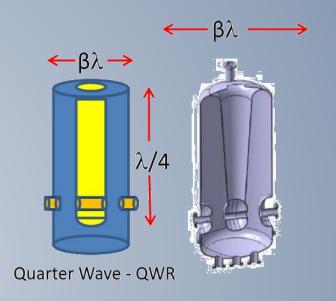
Half-wave resonator (HWR)

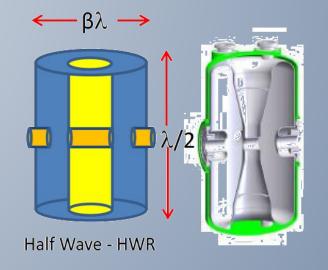
- In the HWR the beam port is at the centre of the inner conductor of a coaxial resonator, coincident with the maximum voltage for p=1.
- Magnetic fields loop around the inner conductor with peak fields at the shorted ends.
- For acceleration, p = 1 is chosen.



QWR vs. HWR

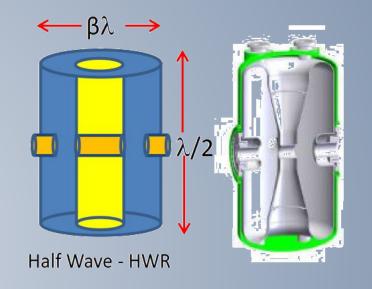
- QWR is the cavity of choice for low beta applications where a low frequency is needed
 - requires ~50% less structure compared to HWR for the same frequency rf power loss is ~50% of HWR for same frequency and β_0 .
 - allows low frequency choice giving larger longitudinal acceptance.
 - R/Q twice that of HWR.
 - Asymmetric field pattern introduces vertical steering especially for light ions that increases with velocity avoid use for $\beta_0 > 0.2$.
 - Less mechanically stable than HWR due to unsupported end (microphonics).
- HWR is chosen in mid velocity range ($\beta_0 > 0.2$) or where steering must be eliminated (i.e. high intensity light ion applications)
 - produces twice rf losses for the same β_0 and λ .
 - is 2x longer for the same frequency.
 - Pluses are the symmetric field pattern and increased mechanical rigidity.

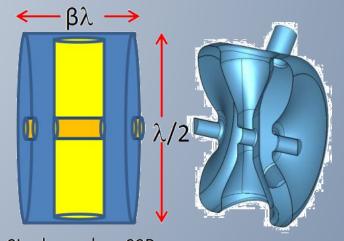




HWR vs. Single Spoke Resonator (SSR)

- A single spoke resonator (SSR) is another variant of the half-wave TEM mode cavity class.
- In HWR the outer conductor is coaxial with the inner conductor (with diameter $\beta_0\lambda$) while in the spoke cavities the outer cylinder is co-axial with the beam tube with diameter $\lambda/2$. It means that for $\beta_0<0.5$ the SSR has a larger overall physical envelop than the HWR for the same frequency.
- Thus for low beta applications (0.1 $< \beta <$ 0.25) HWRs are chosen at \approx 160 MHz, while SSRs are preferred at \approx 320 MHz.
- The spoke geometry allows an extension along the beam path to provide multiple spokes in a single resonator giving higher effective voltage, but with a narrower transit time acceptance.



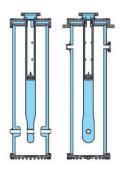


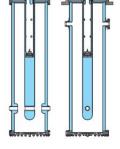
Single spoke - SSR

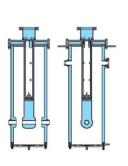
Photo: Reidar Hahr

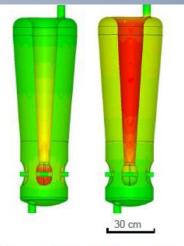
Cavity types – QWRs

TRIUMF ISAC-II Resonators









SCB low β (5.7%) 106.08 MHz

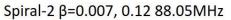
SCB medium β (7.1%) 106.08 MHz

SCC high β (11%) 141.44 MHz

FRIB β=0.041, 0.085 80.5MHz

ANL β=0.077, 0.085 72.5MHz



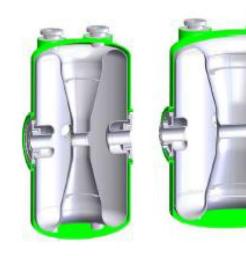


RAON β=0.047, 81.25 MHz

Typical range: $0.04 < \beta < 0.2$ $50 \text{ MHz} \le f \le 160 \text{ MHz}$

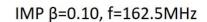
Cavity types – HWRs

Photo: Reidar Hahn



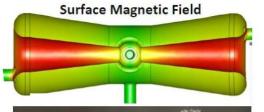
FRIB β=0.29, 0.53 f=322MHz

FRIB β =0.29, 0.53 f=322MHz





IFMIF β =0.11, f=175MHz

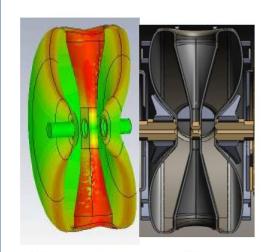


ANL β =0.112, f=162.5MHz

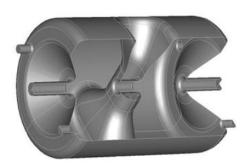
Typical range: $0.1 < \beta < 0.5$ $140~\mathrm{MHz} \leq f \leq 325~\mathrm{MHz}$

Photo: Reidar Hahr

Cavity types – SSRs

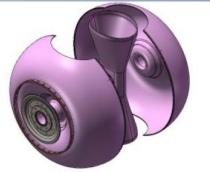


IHEP β=0.12, f=325MHz



325 MHz, $\beta_0 = 0.82$ Single-Spoke Cavity

FNAL β=0.215, f=325MHz



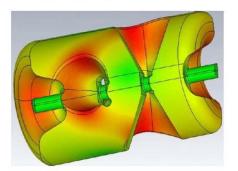
TRIUMF/RISP β =0.3, f=325MHz

Typical range: $0.15 < \beta < 0.7$ $320 \, \mathrm{MHz} \le f \le 700 \, \mathrm{MHz}$

Photo: Reidar Hahr

Cavity types – multi-cell

ESS/IPN β=0.50, f=352MHz

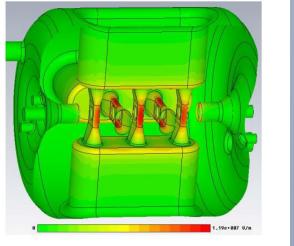


19 gap CH resonator

500 MHz, $\beta_0 = 1$ Double-Spoke Cavity

IAP 360 MHz, β_0 ~0.1

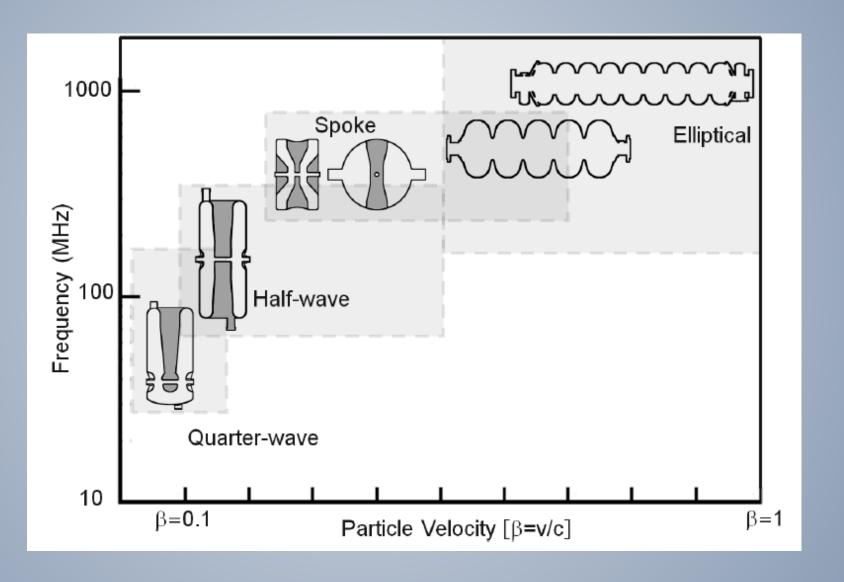
ANL β=0.63, f=345MHz



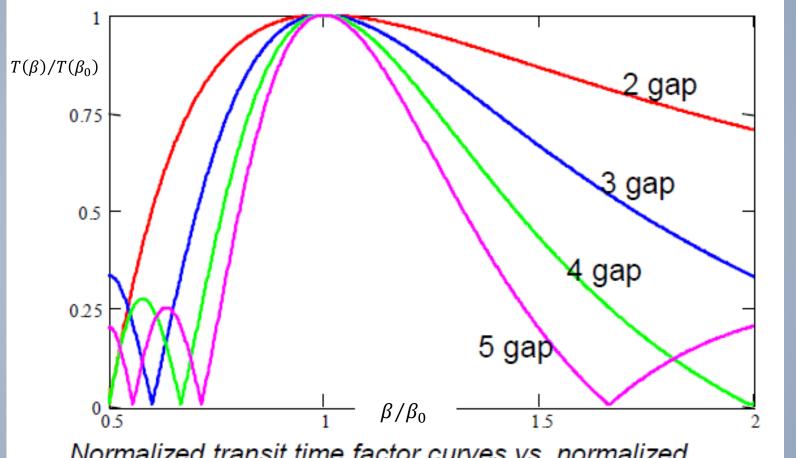
IMP CH β =0.067, f=162.5MHz

CH: Crossbar H-mode

Accelerating cavity velocity/frequency chart



Transit Time factor vs. β for multiple gaps



Normalized transit time factor curves vs. normalized velocity, for cavities with different number of gap

High- β spoke cavities

- High velocity spoke cavities with $\beta > 0.8$ are being designed as alternative to elliptical cavities
- Features:
 - relatively compact
 - between 20% and 50% smaller (radially) for low- β cavities
 - for high β diameter close to TM counterparts
 - allows low frequency at reasonable size
 - mechanically stable high shunt impedance

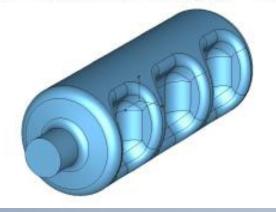
325 MHz β =0.82 Single Spoke Cavity

500 MHz β =1.0 Double Spoke Cavity

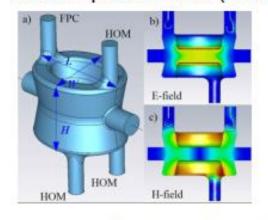
Photo:

Deflecting mode cavities

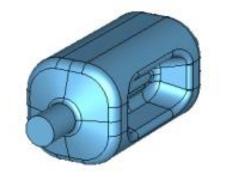
RFD - multi-cell - 953MHz - ODU



double quarter wave (DQW) - 400MHz - BNL/CERN

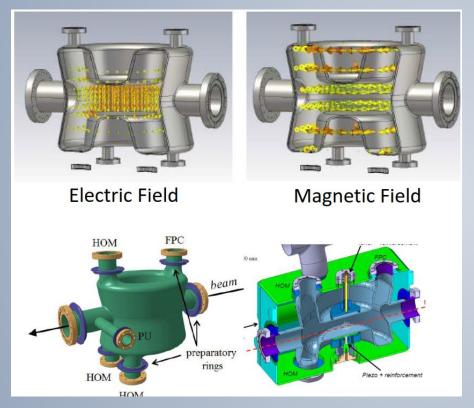


RF Dipole (RFD) – 400MHz – ODU/CERN

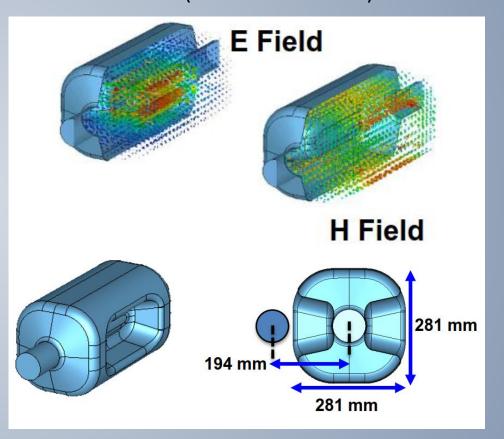


Prototype HL-LHC Crab Cavity prototypes

"DQW" (vertical deflection)



"RFD" (vertical deflection)

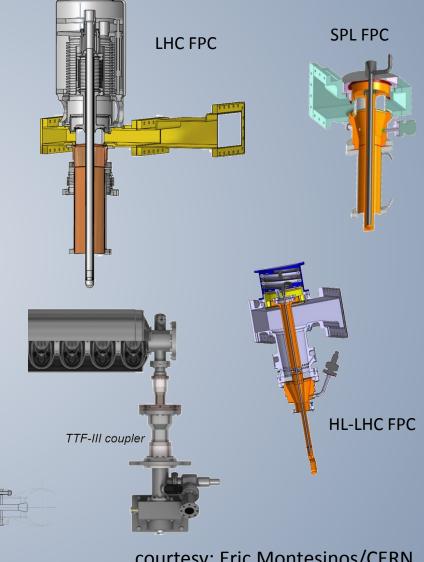


CERN-PHOTO-2018-026-5

Power Couplers

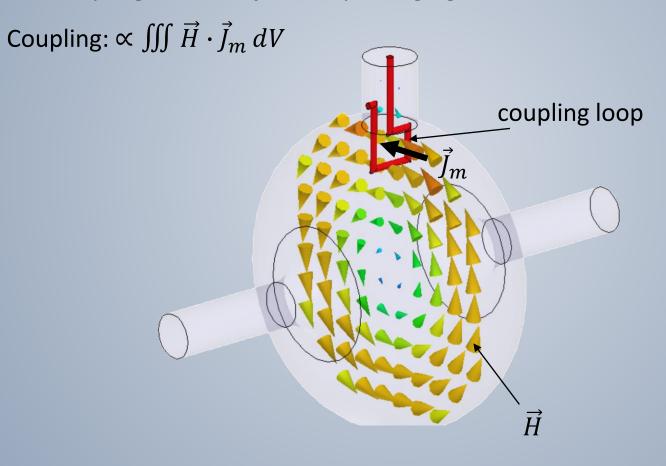
Fundamental Power Coupler – FPC

- The **Fundamental Power Coupler** is the connecting part between the RF transmission line and the RF cavity
- It is a specific piece of transmission line that also has to provide the cavity vacuum barrier.
- FPCs are amongst the most critical parts of the RF cavity system in an accelerator!
- A good RF design, a good mechanical design and a high quality fabrication are essential for an efficient and reliable operation.



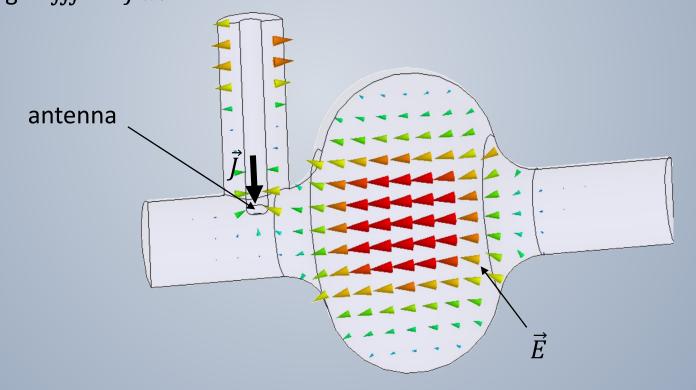
Magnetic (loop) coupling

- The magnetic field of the cavity main mode is intercepted by a coupling loop
- The coupling can be adjusted by changing the size or the orientation of the loop.



Electric (antenna) coupling

- The inner conductor of the coaxial feeder line ends in an antenna penetrating into the electric field of the cavity.
- The coupling can be adjusted by varying the penetration.
- Coupling $\propto \iiint \vec{E} \cdot \vec{J} \, dV$

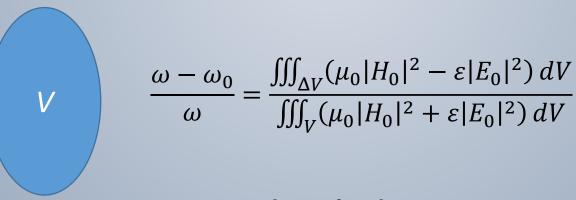


courtesy: David Alesini/INFN

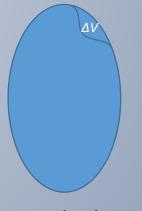
Tuners

Small boundary perturbation

- Perturbation calculation is used to understand the basics for cavity tuning it is used to analyse the sensitivity to (small) surface geometry perturbations.
 - This is relevant to understand the effect of fabrication tolerances.
 - Intentional surface deformation or introduced obstacles can be used to tune the cavity.
- The basic idea of the perturbation theory is use a known solution (in this case the unperturbed cavity) and assume that the deviation from it is only small. We just used this to calculate the losses (assuming H_t would be that without losses).
- The result of this calculation leads to a convenient expression for the (de)tuning:



unperturbed: ω_0



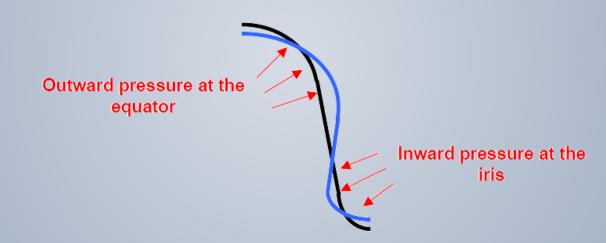
John C. Slater 1900 – 1976

Slater's Theorem

perturbed: ω

Lorentz force detuning ("LFD")

- The presence of electromagnetic fields inside the cavity lead to a mechanical pressure on the cavity.
- Radiation pressure: $P = \frac{1}{4}(\mu_0|H|^2 \varepsilon_0|E|^2)$
- Deformation of the cavity shape:



- Frequency shift: $\Delta f = K L |E_{acc}|^2$; typical: $K L \approx -(1...10) \text{Hz}/(\frac{\text{MV}}{\text{m}})^2$
- This requires good stiffness and the possibility to tune rapidly!

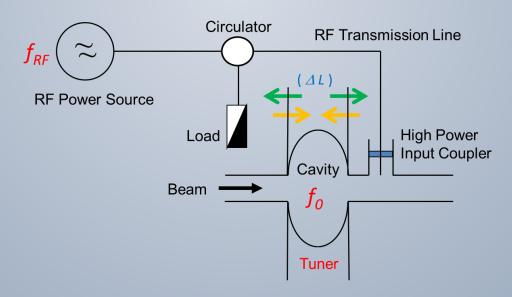
Tuner principle

• Slow tuners:

- compensate for mechanical tolerances,
- realized with stepper motor drives

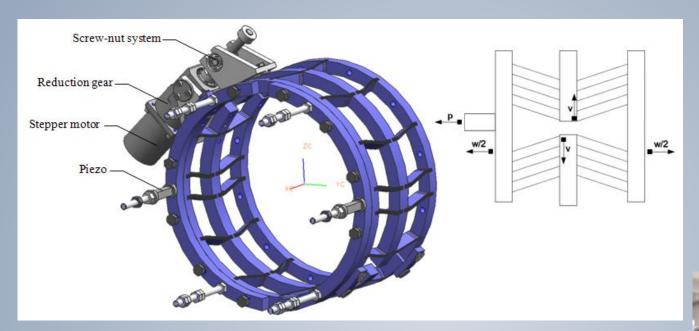
• Fast tuners:

- compensate Lorentz-force detuning and reactive beam loading
- realized with piezo crystal (lead zirconate titanate PZT)
- Tuning of SC cavities is often realized by deforming the cavity:



courtesy: Eiji Kako/KEK

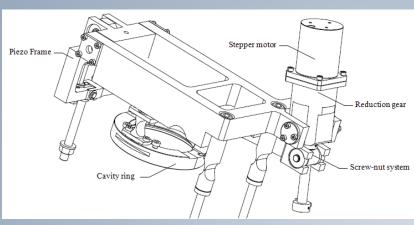
Blade tuner

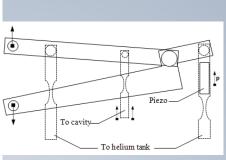


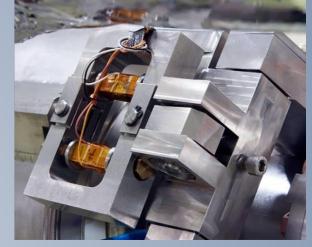
- Developed by INFN Milano
- Azimuthal motion transferred to longitudinal strain
- Zero backlash
- CuBe threaded shaft used for a screw nut system
- Stepping motor and gear combination driver
- Two piezo actuators for fast action
- All components in cold location

courtesy: Eiji Kako/KEK

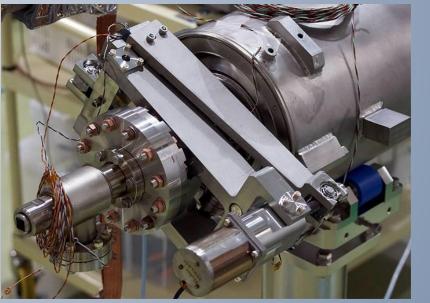
"Saclay" lever-arm tuner







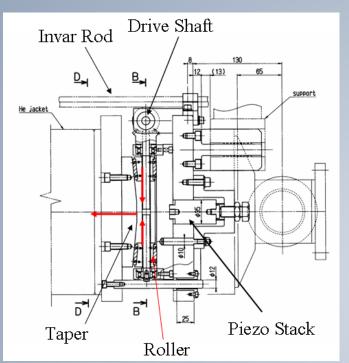
- Developed by DESY based on the Saclay design
- Double lever system (leverage 1.25)
- Cold stepping motor and gear combination
- Screw nut system
- Two piezo actuators for fast action in a preloaded frame
- All components in cold location

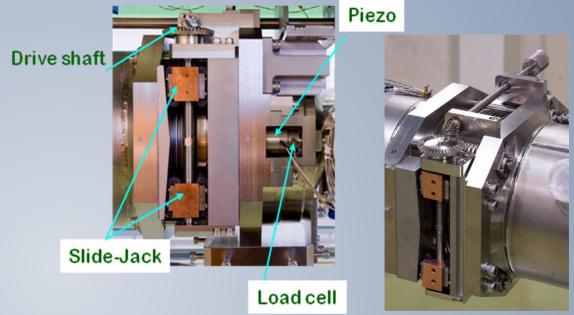


courtesy: Eiji Kako/KEK

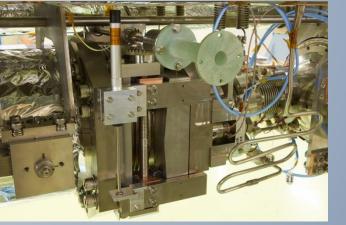
Reidar Hah

Slide-jack tuner





- Developed by KEK for STF cryomodule
- Slide-jack mechanism
- Single high voltage piezo actuator for fast action
- Warm stepping motor for easy maintenance
- Access port for replacing piezo



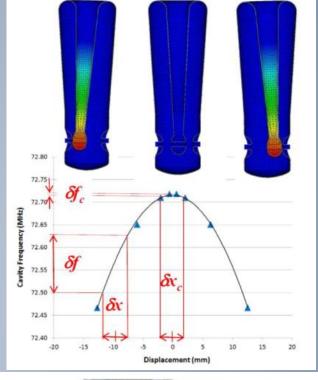
courtesy: Eiji Kako/KEK

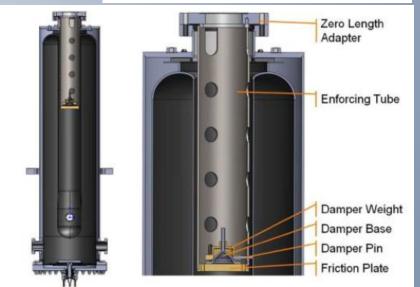
Microphonics

- Driven by mechanical vibration in the environment.
- QWRs are particularly problematic due to the pendulum action of the inner conductor, which can have very low mechanical frequencies ((50 ... 100) Hz)
 - need to reduce the RMS detuning to $\ll 10\%$ of the available BW to avoid nuisance
 - the other option is to increase the BW (lower Q_L , costs power)

Mitigation:

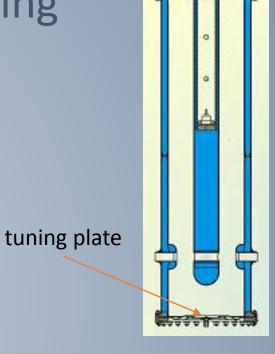
- stiffening during design/manufacture
- centring the inner conductor by plastic deformation so that df/dx = 0.
- adding passive dampers
- reduce environmental noise

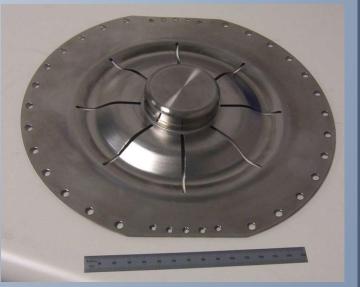




Frequency compensation/tuning

- For QWRs a tuning plate at the open end near the beam tube is generally used.
- For QWRs with removable tuning plate, a Nb puck can be welded to it this reduces the cavity f_0 by increasing the equivalent \mathcal{C} .
- This puck can be trimmed after final fabrication





Thank you very much!