Fermilab **BENERGY** Office of Science

Pushing Nb Bulk Performances

Mattia Checchin

Associate Scientist, Applied Physics and Superconducting Technology Division checchin@fnal.gov

EASISchool 3: Superconductivity and its applications 29 Sep 2020

Particle acceleration with SRF cavities

- Standing-wave structures accelerating trains of charged particles bunches moving in phase with the EM field
- Frequencies from ~100 MHz up to several GHz
- Tens of MV/m gradients with high Q factors >10¹⁰

Advantage of superconducting RF

- SC cavities reduce the wall dissipation by many orders of magnitude with respect a NC cavity
 - − Cu 1.5 GHz: R_s (300 K)~10 mΩ, R_s (4 K)~1.3 mΩ
 - Nb 1.5 GHz: R_s (4 K)~500 nΩ, R_s (2 K)~20 nΩ
- Affordable continuous wave (CW) (continuous train of particles bunches is accelerated) and long pulse operation
- Larger beam pipe aperture for *better beam quality* (lower beam impedance)

Advancement in SRF technology allows for the realization of state-of-the-art and future machines

4 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

We talk about bulk Nb, but the performance are still determined at the nanometer scale!

We want mirror-like surfaces to have good performance

Surface processing is key!

Extensive infrastructure needed for processing, testing and CM production

M. Checchin | EASISchool 3, Pushing ND Bulk Performance

 E_{acc} (MV/m)

M. Checchin | EASISchool 3, Pushing Nb Bulk Performance 18

RF SUPERCONDUCTIVITY BASIS (JUST AS A REMINDER)

Discovery of superconductivity and zero DC resistivity

• H. K. Onnes discovers superconductivity in 1911

- Zero DC resistivity:
 - First London equation:

$$\boldsymbol{E} = \frac{d}{dt} \left(\frac{m}{n_s e^2} \boldsymbol{J} \right) = \frac{d}{dt} (\Lambda \boldsymbol{J})$$

H. K. Onnes, Comm. Leiden **120b**, **122b**, **124c** (1911) F. London and H. London, Proc. R. Soc. A **149**, 71 (1935)

Meissner effect

 A superconductor behaves as a perfect diamagnetic material

$$B = \mu_0(H + M) = 0 \quad \rightarrow \quad M = -H$$

• Second London equation:

 $\nabla \times (\Lambda J) = -B$ $B(x) = B(0)e^{-x/\lambda_L} \quad ; \quad \lambda_L = \sqrt{\frac{\Lambda}{\mu_0}} = \sqrt{\frac{m}{\mu_0 n_s e^2}}$

T>T T<T_C - M H_c Η

B in a superconductor decays exponentially with characteristic length λ_L

W. Meissner *et al.*, Physica Naturwissenschaften **21**, 787 (1933) F. London and H. London, Proc. R. Soc. A **149**, 71 (1935)

Local and non-local description

- London (local description, valid if $\lambda \gg \xi$)
- Pippard (non-local description, valid always)
 - current density at each point depends on volume defined by the coherence length ξ which is function of the electron mean-free-path ℓ

Type-I and type-II superconductors

- Type-I ($\kappa = \lambda/\xi < 1/\sqrt{2}$)
 - Below B_c (thermodynamic critical field) Meissner state
 - Above B_c normal-conducting state
- Type-II ($\kappa = \lambda/\xi > 1/\sqrt{2}$)
 - Below B_{c1} Meissner state
 - Above B_{c1} mixed state
 - Magnetic flux vortices
 - Above B_{c2} normal-conducting state
- Nb has $\kappa \gtrsim 1$
 - Marginally Type-II depending on electron mean-free-path

Microscopic (BCS) theory

- Electrons (fermions) near E_F have attractive interaction by exchanging phonons generating Cooper pairs (bosons)
- Pairs condensation at ground state $E_F \Delta_0$
 - $\Delta_0 \cong 1.55 \text{ meV}$ (Nb)
 - coherence length ξ ~dimension of cooper pairs
- Unpaired electrons (quasiparticles) above the gap:
 - $n_n(T) \cong n_n \cdot e^{-\Delta/\kappa T}$

Mattis-Bardeen surface resistance

The surface resistance of superconductors is temperature dependent:

$$R_{BCS}(T,\omega,l) \sim \frac{A(l)\omega^2}{T} e^{-\frac{\Delta}{\kappa_B T}}$$

And it is due to:

- i. <u>Dissipation introduced by</u> <u>thermal-exited quasi-particles</u>
- ii. Absorption of photons by Cooper pairs and consequent pair breaking ($\hbar \omega \ge 2\Delta$)

🚰 Fermilab

D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958)

Residual resistance

In first approximation, the surface resistance has a T-independent term. Phenomenologically, we can define:

$$R_s(T) = R_{BCS}(T) + R_0$$

Where R_0 is the residual resistance, due to:

- i. Trapped vortices
- ii. Sub-gap states
- iii. Niobium hydrides
- iv. Damaged layer

V. ...

Superheating field

- Ginzburg-Landau definition
 - Upper magnetic field limit of Meisner state metastability
 - Type-I SC: $B_{sh} > B_c$
 - Type-II SC: $B_{c1} < B_{sh} < B_{c2}$
- Bean-Livingston definition
 - Field at which the energy barrier for vortex nucleation is zero
 - Definition valid for Type-II superconductors

Transtrum, et al. Phys. Rev. B **83**, 094505 (2011) J. Matricon and D. Saint-James, Physics Letters A **24A**, 14 (1967) C. P. Bean and J. D. Livingston, Phys. Rev. Lett. **12**, 14 (1964)

ELECTROPOLISHED CAVITIES AND "HIGH-FIELD Q-SLOPE"

Electropolished (EP) cavities

31 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Where does the HFQS come from?

32 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Why 800 C baking?

- The baking at 800 C in vacuum was found to be the remedy to the socalled "Q-disease"
- Q-disease was proposed in the past to be caused by excess hydrogen, which forms nonsuperconducting niobium hydrides (Nb_xH_y) upon cooldown

🚰 Fermilab

Niobium hydrides Nb_xH_y precipitation

- Upon cooldown interstitial H in Nb (α phase) precipitates forming Nb_xH_y
- H concentration and cooldown speed determines dimension and density of precipitates

Nb_xH_y precipitates formation in real-time

Laser confocal microscope with cryo-stage

Details on Nb_xH_y precipitates

50 um Hydrides first appear T=160K T=300K T=140K Large hydrides are the origin of Q-disease T=6K T=100K

F. Barkov, et al., Phys. Rev. ST Accel. Beams 15, 122001 (2012)
F. Barkov, et al., Y. Trenikhina, and A. Grassellino, J. Appl. Phys. 114, 164904 (2013)
Fermilab

36
Details on Nb_xH_v precipitates

50 um

Second (smaller) phase of hydride forms ⇒ does it have something to do with HFQS?

160K

T=140K

Large hydrides are the origin of Q-disease

F. Barkov, et al., Phys. Rev. ST Accel. Beams 15, 122001 (2012)
 F. Barkov, et al., Y. Trenikhina, and A. Grassellino, J. Appl. Phys. 114, 164904 (2013)
 Ermilab

Origin of the "high-field Q-slope"

Hypothesis: can it be the Q-disease "in miniature" – same mechanism, but nanohydrides instead of micron-size ones?

 Need free H near surface after 800 C baking!

Near-surface H present even after 800 C degasing

A. Romanenko and L. V. Goncharova, 2011 Supercond. Sci. Tech. 24, 105017

Q-disease is eliminated by the 800 C H degassing (bulk H content drastically reduced), but the **near-surface H-rich layer remains**

🛠 Fermilab

Courtesy of A. Romanenko

Nano-hydrides formation upon cooldown

Not 120C baked sample

Courtesy of A. Romanenko

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003 - selected for highlights of 2013

Proximity effect model of the "high field Q slope"

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003 – selected for highlights of 2013

🚰 Fermilab

Investigating with cavity cutouts

.00 rim

42 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Courtesy of A. Romanenko

TEM evidence for nanohydrides

Measurements performed at Univ. of Illinois Urbana-Champaign

Direct **nano-area electron diffraction (NED)** phase characterization of the surface of the SRF cavity cutouts before and after in situ mild vacuum bake at room temperature and at 94K

<u>94K</u>: stoichiometric Nb hydride phases!

TEM diffraction on cavity cutouts confirms the existence of nanohydrides

 Supports our proximity effect model

Y. Trenikhina, A. Romanenko, J. Zasadzinski, Proceedings of SRF'2013, TUP043

Cryo-AFM evidence of nanohydrides

120 C BAKING

120 C baked cavities

Courtesy of A. Romanenko

🛟 Fermilab

Temperature mapping

Array of 576 thermometers attached to the outside cavity walls allows mapping wall dissipation

Courtesy of A. Romanenko

Evidence for 120C baking effect

Measurements performed at Univ. of Illinois Urbana-Champaign

120C baking leads to the decrease in size/density of the nanohydrides

120C bake leads to strong Meissner screening changes

A. Romanenko, A. Grassellino, F. Barkov, A. Suter, Z. Salman, T. Prokscha, Appl. Phys. Lett. **104**, 072601 (2014)

Courtesy of A. Romanenko Positron annihilation studies on cavity cutouts

Collaboration with Bath University (UK) and Western University (Canada)

A. Romanenko, C. J. Edwardson, P. G. Coleman. P. J. Simpson. Appl. Phys. Lett. 102. 232601 (2013)

- Positron annihilation spectroscopy: 120C baking results in "doping" of the first ~50 nm from the surface with vacancies
 - So-called superabundant vacancy formation mechanism manifested in niobium [Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640 (1994)]

🚰 Fermilab

Effect of 120C baking

Courtesy of A. Romanenko

🛟 Fermilab

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)

Courtesy of A. Romanenko

🛟 Fermilab

Effect of 120C baking

Cooling down of 120C baked niobium

Supports the proximity model

52 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

NITROGEN DOPING AND "ANTI-Q-SLOPE"

The discovery of N-doping

N-doping is game changing for CW accelerators! Refrigeration cost is of the order of several tens of millions \$

Nitrogen doping

Nitrogen doping

Origin of the anti-Q-slope

A. Grassellino et al, Supercond. Sci. Technol. **26** 102001 (2013) - Rapid Communications A. Romanenko and A. Grassellino, Appl. Phys. Lett. **102**, 252603 (2013)

BCS Surface Resistance

$$R_S(2K) = R_{BCS}(2K) + R_0$$

M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)

- ✓ Mean free path of N-doped cavities close to theoretical minimum of R_{BCS}
- ✓ The reduced energy gap $\Delta/\kappa_B T_c$ seems to increase with E_{acc} for Ndoped cavities causing the decreasing of R_{BCS}

Anti-Q-slope triggered by higher frequencies

- Anti-Q-slope (decreasing of R_{BCS} with B_p) is triggered by higher frequencies and by high B_p
- EP and 120 C baking cavities also show R_{BCS} decreasing with B_p for higher frequency

😤 Fermilab

M. Martinello et al., Phys. Rev. Lett. 121, 224801 (2018)

Comparison with Mattis-Bardeen model

- Agreement with Mattis-Bardeen surface resistance ONLY at low B_p values
- As expected, MB theory fails at high B_p values

M. Martinello et al., Phys. Rev. Lett. 121, 224801 (2018)

Possible theories

A. Gurevich, Phys. Rev. Lett. 113, 087001 (2014)

- Assumes a "frozen Fermi-Dirac distribution" of quasiparticles and a smeared density of states
- Can fit R_{BCS} vs B_p at 1.3 GHz
- Wrong dependence as a function of frequency!

Anti-Q-slope behavior in superconducting aluminum resonators was observed at very low B_p amplitudes (and low T, for Al Tc=1.2 K)

[de Visser, et al., Phys. Rev. Lett. 112, 047004 (2014)]

- Described as arising form non-equilibrium effects
 - Stimulated superconductivity due to microwave absorption
- Predicts correct dependence as a function of frequency
- The theory is built around low B_p approximation
 - No smearing of DoS is considered

-64 dBm

0.2

Temperature (K)

0.1

b

0.3

1.1

Qualitative explanation: thermal equilibrium QP distribution

Qualitative explanation: non-equilibrium QP distribution

Qualitative explanation: non-equilibrium QP distribution

Qualitative explanation: non-equilibrium QP distribution

How is this related with lower surface resistance?

Equilibrium distribution of QPs

Non-equilibrium distribution of QPs

TRAPPED-FLUX SURFACE RESISTANCE

Why do vortices dissipate under RF driving?

- Vortices oscillate driven by the RF current
- Random pinning centers in the

n

la

n

$$R_s(T, B_t) = R_{BCS}(T) + R_{fl}(T)$$

- Part of the EM energy in the resonator is converted into vortex motion
 - Power is dissipated by the vortex
 www we can define a vortex surface resistance R_{fl}

PINNING

Trapped flux surface resistance

In first approximation the trapped flux surface resistance is defined as:

$$R_{fl}(B_t) = S B_t = \eta_t S B$$

Where:

- η_t is the flux trapping efficiency
- *S* flux sensitivity, in unit of $n\Omega/mG$
- *B* the magnetic field applied during transition

What is a pinning site?

- Pinning sites are *material imperfections or defects*:
 - Normal-conducting and dielectric inclusions
 - Grain boundaries
 - Dislocations
 - Local disorder
- Pinning \Rightarrow minimization of the system energy
 - Vortex = loss in condensation energy
 - Defect = weak or not superconducting site
- An efficient pinning center has *dimension* at least *comparable to the coherence length* ξ
 - For niobium $\xi \cong 10 38 nm$ (purity dependent)
 - ξ is the characteristic variation length of the order parameter in the superconductor

Possible pinning centers in niobium

- Normal-conducting and dielectric inclusions:
 3-D defects that introduce large κ variation (ex: nano-hydrides in the near-surface area)
- <u>Grain boundaries</u>: 2-D defects in the crystal structure, they define the interface between 2 grains.
 - Low-angle GBs: the misorientation between the two grains is <15 degrees</p>
- <u>Dislocations</u>: areas were the atoms are out of position in the crystal structure.
 - Tangles: after plastic deformation very small grain forms (cells) that are surrounded by tangles of dislocations
- <u>Local disorder</u>: 1-D defects (ex: impurities, vacancies)

Trapped flux surface resistance

In first approximation the trapped flux surface resistance is defined as:

$$R_{fl}(B_t) = S B_t = \eta_t S B$$

Where:

- η_t is the flux trapping efficiency
- *S* flux sensitivity, in unit of $n\Omega/mG$
- *B* the magnetic field applied during transition

Magnetic flux expulsion

‡Fermilab

Fast cool-down helps flux expulsion

- Fast cool-down leads to <u>large thermal</u> <u>gradients</u> → efficient flux expulsion
- Slow cool-down leads to <u>small thermal</u> <u>gradients</u> → poor flux expulsion

A. Romanenko et al., J. Appl. Phys. **115**, 184903 (2014)

Flux expulsion depends on bulk properties

- Flux expulsion is a bulk property → does not depend on surface treatment
- Not all materials show good flux expulsion, even with large thermal gradient during the SC transition → high T treatments allow to improve materials flux expulsion properties

Analysis of "as received" materials

- Material that shows good flux expulsion properties after annealing at 800C has bigger grain size in the "as received" condition
- Material with bad flux expulsion properties shows larger density of low-angle GBs (misorientation < 15°)
- Material with bad flux expulsion properties shows <u>larger density of</u> regions with very high <u>local misorientation</u>

Ningxia -bad flux expulsion-

Analysis of "as

Material that shows go flux expulsion proper after annealing at 800

M. Martinello, SRF 2019

ermilab

has bigg

Material expulsi shows I low-ang (misorie

the "as r Dislocations tangles observed in highly defective regions of as-received material with bad flux expulsion **Dislocation tangles dimension** comparable to ξ near Tc High likelihood to be efficient pinning centers during explusion

Material expulsion properties shows larger density of regions with very high local misorientation

77 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Thermodynamic force during cooldown

The Gibbs free energy density defines the stability of vortices in the SC:

$$g = B(H_{c_1}(T) - H)$$

We can define the *thermodynamic force* acting on the vortex as:

$$f = -\frac{\partial g}{\partial x} = -\frac{\partial g}{\partial T}\frac{\partial T}{\partial x}$$

$$f = \frac{2BH_{c_1}(0)T}{T_c^2}\nabla T$$

M. Checchin, TTC, MSU 2017

Critical thermal gradient

The *pinning force acting against the expulsion* is defined in terms of critical current density J_c :

$$f_p = |\bar{J}_c \times n\bar{\Phi}_0| = J_c B$$

The *minimum thermal gradient needed to expel vortices* is the critical thermal gradient ∇T_c :

 $\nabla T_c \propto J_c \propto f_n$

M. Checchin, TTC, MSU 2017

Statistical definition of trapping efficiency

- The probability of expelling vortices with the thermal gradient ∇T_{c_i} is $P(\nabla T_{c_i})$
- The trapping efficiency η_t is function of ∇T_{c_i} :

$$\eta_t = \left[1 - P(\nabla T_{c_i})\right]$$

$$P(\nabla T_{c_i}) = \int_0^{\nabla T_{c_i}} p(\nabla T_c) \, d\nabla T_c$$

• The trapped field is then:

$$B_t = \eta_t B = B \left[1 - P \left(\nabla T_{c_i} \right) \right]$$

M. Checchin, TTC, MSU 2017

Comparison with experimental data

Good agreement with experimental data

Estimated J_c in agreement with literature values for Nb $(1 - 10 \text{ A/mm}^2)$

81 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Trapped flux surface resistance

In first approximation the trapped flux surface resistance is defined as:

$$R_{fl}(B_t) = S B_t = \eta_t S B$$

Where:

- η_t is the flux trapping efficiency
- *S* flux sensitivity, in unit of $n\Omega/mG$
- *B* the magnetic field applied during transition

Trapped-flux surface resistance measurement

Trapped flux surface resistance is calculated as:

 $R_{fl} = R_s(1.5 \, K, B_t) - R_s(1.5 \, K)$

- $R_s(1.5 K, B_t)$ measured after **slow cooldown** in a known amount of external magnetic field: $B_t = B$
- *R_s*(1.5 *K*) measured after fast cooldown in compensated magnetic field: *B_t* = 0, *R_{fl}* = 0
- Measurement are performed at 1.5 K to minimize error on T control ($R_{BCS} \sim 0$)

Sensitivity

- Bell-shaped trend of *S* as a function of the mean-free-path
- N-doping cavities present higher sensitivity than standard treated cavities
- Light doping needed to minimize trapped flux sensitivity
- Dependence of *S* as a function of the field

OF TECHNOLOGY

M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)

Single-vortex motion equation

In the condition $B \ll B_{c2}$, vortex-vortex interaction can be neglected, and the most general form of the vortex motion equation becomes:

$$M\ddot{u}(t,z) + \eta_0 \dot{u}(t,z) = \epsilon u''(t,z) + f_p(u(t,z)) + f_L(t,z)$$

Where:

- *M* is the vortex inertial mass
- η_0 is the vortex motion viscosity
- ϵ is the vortex line tension
- $f_p(u(t,z))$ is the pinning force
- $f_L(t, z)$ is the driving force (Lorentz force)

The surface resistance is defined as:

$$R_{fl} = \frac{2B_t \mu_0 f}{\lambda B_p} \int_0^{1/f} \cos \omega t \int_0^\infty \dot{u} \, e^{-z/\lambda} \, dz \, dt$$

🔁 Fermilab

Zero RF amplitude model

The vortex line tension term was neglected

 $M\ddot{u}(t,z) + \eta_0 \dot{u}(t,z) = \epsilon u''(t,z) + f_p(u(t,z)) + f_L(t,z)$

- Pinning force approximated to a linear elastic response along vortex oscillation axis (parabolic approximation of the pinning potential)
- Several pinning centers considered along the depth (z) with pinning potential shape
- Lorentzian function used to describe the pinning potential along z

Mean-free-path dependence

Small $l - \underline{pinning regime} \eta \ll p$:

$$\rho_1(l, U_0) \approx \frac{\eta(l)\omega^2}{p(l, U_0)^2}$$

 ρ_1 increases with l and ω^2 , decreases with the increasing of U_0

Large $l - \underline{flux} - \underline{flow} regime \eta \gg p$:

$$\rho_1(l) \approx \frac{1}{\eta(l)}$$

 ρ_1 decreases with l, independent on ω and U_0

M. Checchin | EASISchool 3, Pushing Nb Bulk Performance 87

Frequency dependence

- $\omega \ll p/\eta \underline{pinning regime}$: $\rho_1(\omega) \sim \omega^2$
- $\omega \gg p/\eta \underline{flux-flow regime}$: $\rho_1 = constant$
- Intermediate ω :
 - the frequency dependence is rather complex!
- As ω increases:
 - higher peak value
 - peak at lower mfp values

Pinning and Flux-flow regimes

M. Checchin et al., Appl. Phys. Lett. 112, 072601 (2018)

Pinning and Flux-flow regimes

Pinning and Flux-flow regimes

Minimizing R_s at 16 MV/m

The best surface treatment *minimizes* all the surface resistance contributions:

$$R_s(T,B) = R_{BCS}(T) + R_{fl}(B) + R_0$$

For LCLS-II light doping was chosen:

- Very low values of R_{BCS}
- Acceptable values of sensitivity
 - Low intrinsic residual resistance

N-doping in Condition of Full Flux-Trapping

93 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

ILLINOIS INSTITUTE

N-doping in Condition of Full Flux-Trapping

94 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

...but, what about high gradient applications such as the ILC?

Standard ILC cavity performance (no trapped field)

Standard ILC cavity performance (5 mG trapped)

97 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Standard ILC cavity performance (10 mG trapped)

‡ Fermilab

98 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Standard ILC cavity performance (20 mG trapped)

Fermilab High Luminosity ILC Workshop (May 2019)

- Significant luminosity improvements are made possible by SRF R&D advances since TDR
- Main result is given in table below by implementing technically feasible changes, ILC baseline luminosity of <u>1.35 x 10³⁴</u> can be increased

× 14.8

Fermilab

- Increased number of bunches x 2
- Increased rep rate x 3

Increased $Q_0 \times 2$

- Beam and IP parameters same as ILC baseline
- Effective luminosity with polarization advantage (x 2.5) is <u>20 x 10³⁴ cm⁻²s⁻¹</u> (ILC) vs. 17 x 10³⁴ cm⁻²s⁻¹ (FCC-ee, including multiplier of 2 for multiple interaction points)
- AC power 267 MW (ILC) vs. 282 MW (FCC-ee)
- Capital cost ~7.7B (ILC) vs. 10.5B (FCC-ee)
 - Not including labor or detectors

Details in https://arxiv.org/abs/1910.01276

Based on CERN Courier, 24 January 2019 Details in https://arxiv.org/abs/1910.01276

Arbitrary RF amplitude model

The vortex inertial mass was neglected since $M \sim 0$

$$\begin{aligned} M\ddot{u}(t,z) + \eta_0 \dot{u}(t,z) &= \epsilon u''(t,z) + f_p(u(t,z)) + f_L(t,z) \\ u(0,z) &= 0 \\ u'(t,0) &= 0 \\ u'(t,Z_{max}) &= 0 \end{aligned}$$

- Pinning force is defined for each point in the vortex line as the summation over several pinning centers in the vortex oscillation place
- Each pinning center defined as

M. Checchin and A. Grassellino, Phys. Rev. Applied (2020)

Frequency shift due to trapped flux

- Vortex oscillation generates induced currents in the SC
 - Effective penetration depth of the RF current increases
 - \rightarrow lower cavity frequency
 - λ_{fl} defines the vortex contribution to the current profile reach in the material
- We observe Δf_{fl} dependent on $B_p!$
 - Higher B_p allows for more efficient depinning
 - Vortexes oscillates deeper
 - Penetration depth increases
 - Cavity frequency decreases
- $\Delta \lambda_{fl}$, penetration depth variation due to vortex oscillation

$$\Delta\lambda_{fl} = -\frac{g\Delta f_{fl}}{\mu_0 \pi {f_0}^2}$$

Works on trapped flux surface resistance

- Many models to describe the trapped flux sensitivity were performed over the years
- Her I just discussed works in which I was directly involved, but for completeness I would suggest to look up also the following references:
- Experiments:
 - C. Benvenuti et al., Physica C 316, 153 (1999)
 - D. Hall et al., IPAC 2017
 - D. Gonnella et al., J. Appl. Phys. 119, 073904 (2016)
- Models:
 - J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966)
 - A. Gurevich and G. Ciovati, Phys. Rev. B 87, 054502 (2013)
 - S. Calatroni and R. Vaglio, IEEE Trans. Appl. Supercond. 27, 3500506 (2017).
 - S. Calatroni and R. Vaglio, Phys. Rev. Accel. Beams 22, 022001 (2019)
 - D. B. Liarte, et al. Phys. Rev. Applied 10, 054057 (2018).

EXAMPLE OF REASERCH TO DEVELOPMENT TRANSFER: LCLS-II

High-Q R&D allowed for the construction of the next generation of FELs facilities

Mike Dunne, LCLC-II and the future

The leap from 120 pulses per second to 1 million pulses per second will be transformative

Mike Dunne, LCLC-II and the future

Mike Dunne, LCLC-II and the future

LCLS-II will transform our understanding of dynamics in real-world materials and chemical science systems

Charge dynamics on fundamental timescales

- Reveal coupled electronic and nuclear motion in molecules
- Capture the initiating events of charge transfer chemistry with sub-fs resolution

Ultrafast

Molecular dynamics with exquisite resolution

- Measure element-specific, local chemical structure and bonding
- Study efficient, robust, selective photo-catalysts

High repetition rate

Emergent phenomena in quantum materials

- Connect spontaneous fluctuations, dynamics and heterogeneities on multiple length- and time- scales to bulk material properties
- Study interacting degrees of freedom (e.g. unconventional superconductors)

Extreme brightness

LCLS-II is being assembled as we speak

Tunnel View

Marc Ross, SRF 2019

M. Ross, SLAC. 19th SRF Conference, Dresden 01 July 2019

LCLS-II CM testing results

Marc Ross, SRF 2019

NITROGEN INFUSION AND MODIFIED 120 C BAKING

Nitrogen infusion

114 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Nitrogen infusion and 120 C baking differences

- Nitrogen infusion allows small traces of nitrogen at the near surface via low T diffusion (120 C)
 - Higher Q-factor due to interstitial N (basically a low T doping!)

🛟 Fermilab

• Oxide is formed after nitrogen diffusion

Impurity profiles in cavity cutouts by TOF-SIMS

Comparing EP cavity cutout with EP + 120 C 48h N-infused cavity cutout

🚰 Fermilab

A. Romanenko et al., IPAC 2018, Vancouver, Canada

116 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

N-infusion performance dictated by first tens of nanometers

- Consequent HF rinses on N-infused cavities
 - Each HF rinse removes ~ 2 nm
 - Probing RF performance as a function of depth
- Performance reverted back to HFQS after ~ 15 nm of material removed
- In agreement with N-rich layer found with TOF-SIMS

117 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Similarities with 120 C baking

- Both treatments have a high $\kappa = \lambda/\xi$ diffused layer at the surface tens of nanometers thick!
- 120 C baking

Modified 120 C baking

Modeling of the maximum gradient

Superheating field is determined from local critical current

QPs energy, We solve *simultaneously* momentum and 1. Eilenberger equation occupation for quasiparticle spectrum 2. Gap equation 1000for excitation gap EP + 120 C N-infused 1000 Nb₂O₅ NbN⁻ З. Impurity T-matrix equation ed intensity 100 ΕP - - Nb₂O₅-10 for the effect of disorder - - NbN Normaliz 0.1 4. Maxwell's equation 0.01 for *B*-field and current profiles 0.001 1E-4 0 20 40 60 80 100 120 140 160 180 To obtain superheating field, Sputter time (s) increase surface field until

😤 Fermilab

V. Ngampruetikorn and J. Sauls, Phys. Rev. Research 1, 012015(R) (2019)

current reaches critical value

Current density distribution in the superconductor

Disorder heterogeneity can enhance B_{sh}

Fermilab

V. Ngampruetikorn and J. Sauls, Phys. Rev. Research 1, 012015(R) (2019)

Enhancement of the accelerating gradient

🚰 Fermilab

V. Ngampruetikorn and J. Sauls, Phys. Rev. Research 1, 012015(R) (2019)

123 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

🛟 Fermilab

124 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

MULTILAYER STRUCTURES

The boiling water analogy to vortex nucleation

That's why we want perfect surfaces in SRF cavities! We want to delay vortex penetration up to the superheating field

But real surfaces always have defects \Rightarrow need to find alternative solutions!

- Superconductor-superconductor (SS) structures
- Superconductor-insulator-superconductor (SIS) structures
 - Not enough time! Take a look to:
 A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
 T. Kubo, Supercond. Sci. Technol. 30, 023001 (2017)

Let

A. D. Hernández and D. Domínguez, Phys. Rev. B **65**, 144529 (2002)

time

ermilab

What does happen if another interface is added?

G. S. Mkrtchyan *et al.*, Zh. Eksp. Theor. Fiz. **63**, 667 (1972)

- The vortex is pushed by the S-S boundary to the direction of the material with a larger λ.
- A second BL-like barrier is acting at the S-S interface
- The force acting on the vortex as a function of depth can be calculated in the London and GL framework

Layer thickness dependence

🛟 Fermilab

M. Checchin et al., in proceedings of LINAC16, MSU, East Lansing, USA (2016) T. Kubo, LINAC 2014, Geneva, Switzerland (2014) T. Kubo, Supercond. Sci. Technol. **30**, 023001 (2017)

Bulk µSR measurements of vortex penetration

ETRIUMF

Recently MgB₂ and Nb₃Sn on niobium samples of different thickness have been tested.

Findings: A layer of a higher T_c material on niobium can enhance the field of first entry by about 40% from a field consistent with H_{c1} to a field consistent with H_{sh} .

This enhancement does not depend on material or thickness suggesting that superheating is indeed induced in niobium by the overlayer

Field of first flux entry on coated samples

<u>Superheating in coated niobium</u>, T Junginger, W Wasserman and R E Laxdal, <u>Superconductor Science and Technology</u>, <u>Volume</u> <u>30</u>, <u>Number 12</u>, Published 7 November 2017

NEW FRONTIERS OF BULK NIOBIUM RESONATORS

High Q SRF 3D cavities for improved coherence

M. H. Devoret and R. J. Schoelkopf, *Science* 339, 1169–1174 (2013)

 $Q > 10^{11}$

1-cell Fermilab cavities of various frequencies

Curtesy of A. Romanenko

~10 seconds of

coherence

Record high photon lifetimes achieved

134 M. Checchin | EASISchool 3, Pushing Nb Bulk Performance

Dark sector search

HF-Generator

- S. R. Parker et al, Phys. Rev. D 88, 112004 (2013)
- J. Hartnett et al, Phys. Lett. B 698 (2011) 346
- J. Jaeckel and A. Ringwald, Phys. Lett. B 659, 509 (2008)

Emitter

Cavity

Shielding

 Q_{DET} , $Q_{EM} > 10^{10}$ SRF can offer several orders of magnitude improvement in sensitivity to χ

🚰 Fermilab

Courtesy of A. Romanenko

Dark SRF: "Run 0" has been successful

Everything worked!

- ✓ Design
- ✓ Tuner operation
- Microwave scheme for matching the frequencies
- ✓ Actual data first acquisition

Courtesy of A. Romanenko

New DOE-QIS center at Fermilab

Home | Research | People | Partnerships

https://sqms.fnal.gov/

Superconducting Quantum Materials and Systems Center

A national center for advancing quantum science and technology

THE END!

for any question feel free to contact me at: checchin@fnal.gov

BACK UP SLIDES

Courtesy of A. Romanenko

Muon spin rotation at PSI (Switzerland)

Courtesy of A. Romanenko

Muon spin rotation – measure B(z) directly

Positron annihilation Doppler broadening spectroscopy

 γ -ray (511keV $\pm \Delta E$)

Courtesy of A. Romanenko

🛠 Fermilab

$$\mathbf{W} = (\mathbf{N}_{w1} + \mathbf{N}_{w2}) / \mathbf{N}_{total}$$

- S parameter corresponds to positron annihilation with valence electrons, W-> core electrons
- S is sensitive to open-volume defects, W-to chemical surrounding at the annihilation site
- Increase in S parameter indicates presence of vacancy defects