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Applications of quantum computing

Quantum computing may
provide a new path to
solve some of the hardest
or most memory intensive
problems in science and
business.
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Quantum gates in a nutshell

Measurments

States and operators are expressed in a given basis. When not specified differently, the basis in each
spin subsystem is the canonical (measurement) one made by the eigenstates of the �z operator:
{|0iz , |1iz} = {|0i, |1i}.

An experiment like the one performed with Quantum Experience provides only probabilities for reading
0 and 1 (along the z-axes) for each qubit line:

P(0), P(1) .

For a multi-qubit experiment, e.g., a 2 qubit one, the measurement produces the probabilities:

P(00), P(01), P(10), P(11) .

All probabilities are evaluated by repeating the experiment a sufficient number of times.
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Quantum gates in a nutshell

Measurements

Measure the expectation value h |�z | i for the state | i = a|0i + b|1i (all in z-basis).

h |�z | i =
�
a b

�✓1 0
0 �1

◆✓
a
b

◆

= a2 � b2

= P(0) � P(1) .

For a two qubit state, like a product state | i = | 1i ⌦ | 2i we want to measure h |�z ⌦ �z | i

h |�z ⌦ �z | i = h 1| ⌦ h 2|�z ⌦ �z | 1i ⌦ | 2i
= h 1|�z | 1ih 2|�z | 2i
= (a2 � b2)(c2 � d2) = a2c2 � a2d2 � b2c2 + b2d2

= P(00) � P(01) � P(10) + P(11)

where | 1i = a|0i + b|1i and | 2i = c |0i + d |1i.
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Quantum gates in a nutshell

Measurements in different basis

Experiments can only measure along the z-axis. How do we compute expectation values like h |�x | i?
We need to introduces rotations to map x ! z .

Assume we need to compute the expectation value of

h |M| i

where M is the most general operator in SU(3), namely M = �̄ · n̄ where �̄ = (�x ,�y ,�z) and
n̄ = (nx , ny , nz).
To measure the expectation value h |M| i we rotate M = �̄ · n̄ so that it gets aligned to z .

h |�̄ · n̄| i = h |RnR
�1

n
�̄ · n̄ Rn(�)R

�1

n
(�)| i

= h |Rn(�)�zR
�1

n
(�)| i

= h 0|�z | 0i

where Rn(�) is the operator that rotates n̄ into z and | 0i = Rn(�)| i.
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Quantum gates in a nutshell

Measurements in different basis

Problem: Determine the matrix form for Rn(�).

solution

Rn(�)=e�
i�̄·n̄
2=

✓
cos(

�
2)�inzsin(

�
2)(�inx�ny)sin(

�
2)

(�inx+ny)sin(
�
2)cos(

�
2)+inzsin(

�
2)

◆
Decomposition of Rn(�).
In order to implement Rn(�) we need to decompose it in the fundamental gate set available on the
device.
Standard universal (one qubit) gate set:

H =
1p
2

✓
1 1
1 �1

◆
, S =

✓
1 0
0 �i

◆
, T =

1p
2

✓
1 0
0 e i⇡/4

◆
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Quantum gates in a nutshell

Measurements in different basis

Example: Evaluate h BS |ZW | BSi where W = 1p
2
(�x + �z).

We have: R = S H T † H with

S =

✓
1 0
0 �i

◆
, H =

1p
2

✓
1 1
1 �1

◆
, T =

✓
1 0
0 e i⇡/4

◆
, T † =

✓
1 0
0 e�i⇡/4

◆

Corresponding circuit:
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Quantum chemistry applications

First vs. second quantization representations

I. Kassal et al., Ann. Rev. Phys. Chem. (2011), 62, 185.
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Quantum chemistry applications

Quantum chemistry - Formulation of the problem

Non-relativistic many-electron Schrödinger equation

Hel  (r1, r2, . . . , rNel
) = E0  (r1, r2, . . . , rNel

) , Hel = � 1

2

P
N

i=1
r2

i
�
P

N

i=1

P
Nn

A=1

ZA

riA
+
P

N

i=1,j>i

1

rij

where N is the number of electrons and Nn the number of nuclei.

We are interested in the:
Wavefunction (or simply the electronic density - Hohenberg-Kohn Theorem)

 (r1, r2, . . . , rN) =

nconfX

i=1

ci |�i1(r1)�i2(r2), . . . ,�iN (rN)i

Need to search in the ‘exponentially’ large Hilbert space of N electrons
⇣

M!
(M�N)!N!

⌘
.

Energy (E0) and all other observables functional of the system wavefunction, O[ ].
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Mapping to the qubit space The Hamiltonian

First vs. second quantization representations

Hamiltonian

Ĥelec =
P

pq
hpq â†p âq +

1

2

P
pqrs

hpqrs â†p â
†
q
âr âs

hpq =
R
dr�⇤

p
(r)

⇣
� 1

2
r2 �

P
I

ZI

R I�r

⌘
�q(r) and hpqrs =

R
dr1dr2

�⇤
p
(r1)�

⇤
q
(r2)�r (r2)�s (r1)

|r1�r2|

The one-particle functions {�i (r i )} in the Hilbert space H define a basis in the Fock space

F⌫(H) =
L1

n=0
S⌫H⌦n = C � H � (S⌫ (H ⌦ H)) � (S⌫ (H ⌦ H ⌦ H)) � . . .

A typical state vector is then given by

| i⌫ = | 0i⌫ � | 1i⌫ � | 2i⌫ � . . . = a0|0i � a1| 1i �
X

ij

aij | 2i , 2ji⌫ � . . .

where | 2i , 2ji⌫ = 1

2
(| 2i i ⌦ | 2ji + ⌫ | 2ji ⌦ | 2i i) 2 S⌫(H ⌦ H) is a Slater determinant.
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Mapping to the qubit space The Hamiltonian

The Jordan-Wigner transformation (I)
The problem with the simulation of quantum chemistry with a quantum computer is that spins obey
bosonic statistic while electrons are fermions.

Bosons

[�i ,�i ] = 0, [�†
i
,�†

i
] = 0, [�i ,�†

j
] = �i,j

Fermions

{ai , ai} = 0, {a†
i
, a†

i
} = 0, {ai , a†i } = �i,j

We need therefore a ‘bosonization’ procedure.

Among the ‘bosonization’ procedures, the Jordan–Wigner is currently the most commonly used one in
the context of electronic-structure Hamiltonians.

a
j
=

j�1

⌦
i=1

�z

i
⌦
⇣
�x

j
+ i�y

j

⌘
and a†

j
=

j�1

⌦
i=1

�z

i
⌦
⇣
�x

j
� i�y

j

⌘
,

Note: the ‘bosonization’ procedures increase the many-body interactions from order 4 to K

�z ⌦ �z ⌦ . . .�+

| {z }
N-local term

⌦1 ⌦ 1
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Mapping to the qubit space The Hamiltonian

The Jordan-Wigner transformation (II)

After applying the JW transformation (or any other equivalent transformation) the Hamltonian
becomes more ‘complex’ to read.

hpqrs a
†
p
a†
q
aras + hspqr a

†
s
a†
r
apaq

#

 
r�1O

k=s+1

�z
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!0

@
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However, the procedure can be automatised and the software (e.g., Qiskit) will take care of the
transformation.
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Mapping to the qubit space The Hamiltonian

The reduction of the Fock space

The Hilbert space in second quantization is given by the Fock
space

H = H1 � H2 · · · � HNm = �Nm
i=1

Hi

where the index indicates the number of particles in the
system.

The original Hamiltonian is reduced to HN in two steps:

N=2

N=0

N=3

N=4

N=1

16

16

1

4

6

1

4

2

Projection

Ĥ(K)
N

= P̂(K)†
N

Ĥ(K)P̂(K)
N

with P̂(K)
N

=
KY

j 6=N

N̂ � j

N � j
and N̂ =

KX

j=1

ĉ†
j
ĉ
j
.

Reduction by the ‘scissors’ operator (cut the desired HN space).

N. Moll et al, J. Phys. A: Math. Theor, 49, 295301 (2016).
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Mapping to the qubit space The Hamiltonian

Reduction of the degrees of freedom

Problem
Size of the Fock space is unnecessarily large ! confine to the sector with the desired number of
electrons.
The size of the problem (number of qubits) depends crucially on size of the basis set.

Strategies

Modify the reference state. Design a Hamiltonian with a
shifted ground state (e.g., the particle/hole picture)

|�0i = |0, 0, . . . , 0i �! |�0i =
Q

N

i=1
â†
i
|vaci

Replace core electrons with effective core potentials (ECP)

hECP
ij

=
R
dr �⇤

i
(r)

⇣
� 1

2
r2

r
�
P

Nc

I=1
VECP(rI )

⌘
�j(r)

Add a penalty potential term to the Hamiltonian

Ĥ ! Ĥ + µ(N̂ � N)2
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Mapping to the qubit space The Wavefunction representations

Wavefunction: New strategies in quantum computing

Many-electron waverfunction

The Fock-space wavefunction

| i⌫ = | 0i⌫ � | 1i⌫ � | 2i⌫ � . . .

= a0|0i � a1| 1i �
X

ij

aij | 2i , 2ji⌫ � . . .

with

| 2i , 2ji⌫ =
1
2
(| 2i i ⌦ | 2ji + ⌫ | 2ji ⌦ | 2i i)

)

Quantum circuits
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Mapping to the qubit space The Wavefunction representations

The mapping of the electronic wavefunction

There are a combinatoric large number of possible wavefunction configurations (Slater determinats).
Which kind of expansion can we use?

Generate orbitals (classical algorithms) Hartree-Fock equation
Compute the system Hamiltonian F ({�i (r)})�i (r) = ✏i �i (r)

Encode the wavefunction in the qubit register
(parametrized in the qubit angles ✓i ).
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Mapping to the qubit space The Wavefunction representations

Wavefunction: New strategies in quantum computing

Two main strategies for the expansion of the system wavefunction (Hilbert space sampling).

Classically inspired algorithms

Hartree Fock (HF)
Full Configuration interaction (CI,
MRCI)
Complete active space SCF (CASSCF)
Coupled Cluster (CCSD, MR)
Møller Plesset (MP2, MP3, MP4)
. . . and a zoo of other methods.

Genuine quantum algorithms

Hardware efficient sampling of the Hilbert
space:
two-quibit gates distributed among the
quantum register in order to guarantee a
maximum entanglement between the
qubits (maximal concurrence).
Quantum machine learning
Quantum networks
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Mapping to the qubit space The Wavefunction representations

The Unitary Coupled Cluster wavefunction Ansatz

CCSD wavefunction:

| (~✓)i = eT̂ (~✓)�T̂
†(~✓)|�0i

where the ‘cluster operator’ is defined as:

T̂ (~✓) = T̂1(~✓) + T̂2(~✓)

with

T̂1(~✓) =
X

i ;m

✓m
i
â†
m
âi

T̂2(~✓) =
X

i,j ;m,n

✓m,n
i,j â†

n
â†
m
âj âi

P. Barkoutsos et al, Phys. Rev. A, accepted (2018)

T1 :

T2 :
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Mapping to the qubit space The Wavefunction representations

The Heuristic hardware efficient Ansatz
Heuristic wavefunction:

| (~✓)i =

D�timesz }| {
ÛM(~✓)Ûent . . . Û

1(~✓)Ûent Û
0(~✓)|�0i

where the two-qubit gates Uent can have different
forms:

USWAP(✓1, ✓2) =

0

BB@

1 0 0 0
0 cos ✓1 e i✓2 cos ✓1 0
0 e�i✓2 sin ✓1 � cos ✓1 0
0 0 0 1

1

CCA

UFLIP(✓) =

0

BB@

1 0 0 0
0 cos 2✓ �i sin 2✓ 0
0 �i sin 2✓ � cos 2✓ 0
0 0 0 1

1

CCA

P. Barkoutsos et al, Phys. Rev. A, accepted (2018)
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The variational quantum eigensolver: VQE

The Quantum algorithm: Variational Quantum Eigensolver (VQE)
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The variational quantum eigensolver: VQE

The quantum algorithms: VQE

The quantum-classical hardware:

A small quantum processor is combined with a classical computer to jointly solve a computational task.
At this stage, the quantum computer is seen as an accelerator of a classical processor.
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The variational quantum eigensolver: VQE

Detailed VQE - part 1

(1) After setting the coordinates, charge and spin multiplicity of the molecule, perform a HF
calculation in a given basis set using a classical driver.

(2) The matrix elements: hr |ĥ|si and hrs|ĝ |tui are then extracted and used to construct the molecular
Hamiltonian using the parity or the JW fermion-to-qubit mapping. Exploiting the symmetries

[Ĥ, N̂"] = [Ĥ, N̂#] = 0 ,

we can achieve two-qubit reduction (1) (one of each Z2 symmetry of the Hamiltonian) without
modifying the lower part the energy spectrum (including the ground state). Finally, the
frozen-core approximation is employed to reduce the number of possible single and double
excitations and the qubit count.

(1): Bravyi, S.; Kitaev, A. Ann. Phys., 298, 210-226. (2000)
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The variational quantum eigensolver: VQE

Detailed VQE - part 2

(3) The qubits can be further tapered off (1) by finding the underlying symmetries of the Hamiltonian
and using graph-based qubit encodings. The latter applies to the Hamiltonian, the q-UCC
operator and the state vector.

(4) The parametrized trial wavefunction | (~✓)i is generated starting from the HF state |�0i by
applying the q-UCC cluster operators or any other form of variational Ansatz.

(1): Bravyi, S.; Gambetta, J. M.; Mezzacapo, A.; Temme, K. Tapering off qubits to simulate fermionic Hamiltonians.
arXiv:1701.08213
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The variational quantum eigensolver: VQE

Detailed VQE - part 3

(5) The system energy h (~✓)|Ĥ| (~✓)i is evaluated using
I the statevector (or matrix representation) simulator provided by Qiskit, which uses a matrix

representation of the operators in the Hilbert space.
I the VQE optimization of the circuit parameters followed by a sequence of measurements of

the observables. This can be done with or without gate noise, measurement noise and state
decoherence.

I directly on hardware.

(6) Steps (4) and (5) are repeated until convergence using a classical optimizer. Examples are the
Sequential Least Squares Quadratic Programming (SLSQP) and the L-BFGS-B optimization
algorithms. Amplitudes ~✓ can be initialized to a fixed value or using a better guess such as MP2
amplitudes. The convergence criterion for the energy is set to 10�7.
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The variational quantum eigensolver: VQE

Issues with VQE

What are the challenges with VQE?

(1) Size of the Hilbert space vs. number of gate operations
(circuit depth) required to achieve the desired accuracy
for the expectation values (e.g., the system energy).

(2) Number of parameterized gates (number of parameter
to be optimized) vs. magnitude of the gradients for the
circuit variables.

(3) Size of the Hilbert space vs. number of measurements
required to achieve convergence for the observables
(e.g., the system energy).
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The variational quantum eigensolver: VQE

Issues with VQE
What are the challenges with VQE?

(1) Size of the Hilbert space vs. number of gate operations
(circuit depth) required to achieve the desired accuracy for the
expectation values (e.g., the system energy).
For a N qubits system the corresponding Hilbert space is 2N .

The Solovay-Kitaev theorem:

for any target operation U 2 SU(2N) and G = g1, . . . , gm a
dense set SU(2N) there is a sequence S = g1g2 . . . gm of length
l = O(log c(1/")) in a dense subset of SU(2N) such that the
error d(U, S) < ", where d(U, S) = sup|| ||=1

||(U � S) ||.

Ex: for any irrational ↵, S↵ = {Rx (↵),Ry (↵),Rz (↵)} is dense in SU(2).
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The variational quantum eigensolver: VQE

Issues with VQE
What are the challenges with VQE?

(2) Number of parameterized gates (number of parameter
to be optimized) vs. magnitude of the gradients for the
circuit variables.
This is a problem also known in classical optimization.
In the quantum community it is known as the barren
plateau.

The Barren plateau:
the observation that the size of the gradients on the
gate parameters decrease exponentially with the
number of qubits.

[Ledoux, M. The Concentration of Measure Phenomenon
(American Mathematical Society, Providence, 2005)]

U(✓) =
LY

l=1

Ul(✓l)Wl

E (✓) = h0|U(✓)†HU(✓)|0i

Are chemical variational VQE
circuits (e.g., UCCSD) ‘random
enough’ to share this property?
[J.R.M. McClean, et al, Nature Comm.,
2018]
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The variational quantum eigensolver: VQE

Issues with VQE

What are the challenges with VQE?

(3) Size of the Hilbert space vs. number of measurements
required to achieve convergence for the observables.
The number of measurements (shots) to sample an
expectation value (e.g., the energy) determine the
execution time of an algorithm. In noisy quantum
computers each run must be completed in a few µs.

The number of measurements:
The larger the Hilbert space the larger is the number of
shots needed to sample all possible configurations that
contribute to the energy expectation value. For a
system of about 100 electrons estimates point to
> 1010 shots.

How many runs are necessary to
measure an accurate expectation
value, e.g., molecular energies
within chemical accuracy?
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Ground state applications
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The Hamiltonian
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Ground state applications

Hardware-efficient results for the dissociation of water

P. Barkoutsos et al, Phys. Rev. A, 98 022322 (2018)

Upper: Dissociation profile of the H2O molecule obtained
for different circuit implementations:

blue crosses green dots CNOT

Lower: Errors along the dissociation profile.
Blue shaded area: range of chemical accuracy.
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Ground state applications

CCSD results on the dissociation of water

P. Barkoutsos et al, Phys. Rev. A, 98 022322 (2018)

Upper: Dissociation profile of the H2O molecule for
different definitions of the active space (AS):

AS 8: 4 HF orbitals
AS 10: 6 occupied and all virtual orbitals;
AS 12: 8 occupied and all virtual orbitals.
red curve: HF reference calculation
black curve: analytic solution.

Lower: Errors along the dissociation profile.
Blue shaded area: range of chemical accuracy.
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Ground state applications

Is circuit-UCC an exact map of classical UCC?

P. Barkoutsos et al, Phys. Rev. A, 98 022322 (2018)

Trotter decomposition of the UCC exponential:

e(T̂a+T̂b) = limn!1

✓
e

T̂a

n e
T̂
b

n

◆n

Theoretical estimate: n > 100.

Evaluation of the Trotter error:

E opt/n
UCCSD(n) = h Tr (~✓opt , n)|Ĥp/h| Tr (~✓opt , n)i

E circ/n
UCCSD(n) = min

~✓
h Tr (~✓, n)|Ĥp/h| Tr (~✓, n)i

. . . it is not: UCC ! q-UCC
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Ground state applications

Inversion profile in ammonia, NH3

The inversion of ammonia proceeds through
an energy barrier.

It is well known that barriers are hard to
capture with DFT (here DFT/PBE0).

q-UCC with a single Trotter step is able to
capture the barrier hight within chemical
accuracy (error < 2 kcal/mol).
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Ground state applications

. . . and in a real experiment . . .
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Ground state applications
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Ground state applications

Calculations using IBM Q hardware . . .

A. Kandala et al., Nature 549, 242 (2017)
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Ground state applications

Error mitigation scheme

A. Kandala et al., Nature, 467, 491-495 (2019)
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Ground state applications

Error mitigation scheme - Results

A. Kandala et al., Nature, 467, 491-495 (2019)
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Excited State calculations: theory and applications
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7 The time propagation algorithm

8 Recent advancements

9 Forces and Molecular Dynamics
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Excited State calculations: theory and applications

The Equation of Motion Approach
Any excited state |ni can be created by applying an excitation operator Ô†

n
on the ground state |0i of

the system.
Ô†

n
= |ni h0|

with corresponding de-excitation
Ôn = |0i hn| .

The EOM is obtained acting the superoperator ˆ̂H on the excitation operator ( ˆ̂HÔ†
n
|0i = [Ĥ, Ô†

n
]) giving

ˆ̂HÔ†
n
|0i = ĤÔ†

n
|0i � Ô†

n
Ĥ |0i = (En � E0)Ô

†
n
|0i ,

with after some arrangements leads to

�E0n =
h0| [Ôn, Ĥ, Ô†

n
] |0i

h0| [Ôn, Ô
†
n ] |0i

with [Â, B̂, Ĉ] = 1

2

�
[[Â, B̂], Ĉ] + [Â, [B̂, Ĉ]]

 
.
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Excited State calculations: theory and applications

The Equation of Motion Approach

Introducing a basis set of HF or KS orbitals we have

Ô†
n
=
X

µ

(XµÊµ � YµÊ
†
µ)

with the single and double excitation operators

Êµ = {{â†
m
âi}, {â†

m
â†
n
âi âj}}

Ê
†
µ = {{â†

i
âm} , {â†

i
â†
j
âmân}}.

The stationary condition @(�E0n) = 0 leads to the derivation a set of the following secular equations:
✓

M Q
Q* M*

◆✓
Xn

Yn

◆
= !n

✓
V W

�W* �V*

◆✓
Xn

Yn

◆
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Excited State calculations: theory and applications

The Equation of Motion Approach

The stationary condition @(�E0n) = 0 leads to the derivation a set of the following secular equations:
✓

M Q
Q* M*

◆✓
Xn

Yn

◆
= !n

✓
V W

�W* �V*

◆✓
Xn

Yn

◆

where

Mµ⌫ = h0| [Ê
†
µ, Ĥ, Ê⌫ ] |0i ,

Qµ⌫ = � h0| [Ê
†
µ, Ĥ, Ê

†
⌫ ] |0i ,

Vµ⌫ = h0| [Ê
†
µ, Ê⌫ ] |0i ,

Wµ⌫ = � h0| [Ê
†
µ, Ê

†
⌫ ] |0i

and !n are the first n excitation energies.
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Excited State calculations: theory and applications

EOM implementation

1 Find the ground state wavefunction | 0i parametrized in the angles {✓i}.

2 Generate Êµ and Ê
†
µ operators for all possible n excitations.

3 For each matrix element (µ, ⌫):
I Compute the commutators in matrix form, e.g. for Vµ⌫ compute Ê

†
µÊ⌫ � Ê⌫ Ê

†
µ.

I Map the fermionic M, Q, V and W matrices to qubit space using the Jordan-Wigner
transformation.

I Evaluate in the circuit parametrized with the fix angles {✓i} the matrices elements
Mµ⌫ ,Qµ⌫ ,Vµ⌫ ,Wµ⌫

4 Evaluate classically the 2n eigenvalues of the secular equation to get the first n excitation (and
de-excitation) energies.
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Excited State calculations: theory and applications

Results: numerical simulations
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Excited State calculations: theory and applications

Results: numerical simulations with realistic noise (H2)
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Excited State calculations: theory and applications

Results: on IBM quantum hardware - no error corrections

Marc Ganzhorn, et al., Phys. Rev. App., 11, 044092
(2019)
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Excited State calculations: theory and applications

Excited States of LiH on 4 qubits - implementation and results

P. Ollitrault et al., preprint arXiv:1910.12890 (2019)
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Excited State calculations: theory and applications

Excited States of LiH on 4 qubits - error mitigation

P. Ollitrault et al., preprint arXiv:1910.12890 (2019)
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Excited State calculations: theory and applications

Literature on excited states

(1)

(2)

arXiv:1910.12890 - To appear in Physical Review Research
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The time propagation algorithm

Time propagation algorithm

Given an Hamiltonian H, time propagations deals with the calculation of

| (t)i = e�iHt | (0)i

where
we use atomic units ~ = 1.
| (0)i in encoded in a qubit register.
the propagation operators e�iHt is encoded as a series of gate operations
| (t)i is read qubit-by-qubit at the circuit end.

The Hamiltonian is assumed to be expressed as a Pauli string, meaning a tensor product of a sequence
of Pauli matrices.

H =
X

i

gi �i1 ⌦ �i2 ⌦ . . .�iN

with i = {i1, i2, . . . , iN}.
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The time propagation algorithm

Time propagation algorithm

Theorem 1:
For all H =

P
M

i
Hk then

e�iHt = e�iH1t e�iH2t . . . e�iHMt

for all t, iff [Hi ,Hj ] = 0, 8i , j .

Theorem 2 (The Trotter formula):
For two Hermitian operators A and B , for all t

e i(A+B)t = lim
n!1

(e iAt/ne iBt/n)n

which is true even when A and B do not commute.

Error:
e i(A+B)dt = e iAdt e iBdt + O(dt2) .
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The time propagation algorithm

Time propagation algorithm

Extension (Baker-Campbell-Hausdorf formula):

e(A+B)dt = eAdt eBdte�
1
2 [A,B]dt2 + O(dt3) .

Exercise: Prove this equation.

Algorithm:

1. Prepare initial state | (0)i ! | 0i.
2. Propagate for a small1 time interval dt: | j+1i = U(tj , tj + dt)| ji.
3. j := j + 1 repeat from 2 until j dt � Tf , else
4. | (Tf )i = | ji.

where U(tj , tj + dt) is either the Trotter or the BCH operator.
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The time propagation algorithm

Time propagation algorithm

Since the Hamiltonian is a tensor product of Pauli matrices (which are the generators of rotations in
SU(2)), the propagator U = e�iHt describes a rotation of the state vector in the tensor space.

One-qubit space

Pauli matrices {�x .�y ,�z}:

�x =

✓
0 1
1 0

◆
�y =

✓
0 �i
i 0

◆
�z =

✓
1 0
0 �1

◆
.

State on the Bloch sphere:

| i = cos
✓

2
|0i + e i� sin

✓

2
|1i .
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The time propagation algorithm

Time propagation algorithm
One-qubit rotations
Case 1: e i�t��x :

Case 2: transform it to a e i�t��z rotation by applying a change of basis.
In this case we have first to make a basis transformation and then apply the rotation in z :

Two-qubit rotations
Case 3: e i��z�z = e i��z⌦�z (� = �t�):
We will show that this can be computed using:
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The time propagation algorithm

Time propagation algorithm

We first derive the matrix for e i��z⌦�z

�z ⌦ �z =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

1

CCA ! e i��z⌦�z =

0

BB@

e i� 0 0 0
0 e�i� 0 0
0 0 e�i� 0
0 0 0 e i�

1

CCA

and

e i��z⌦�z =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

0

BB@

e�i� 0 0 0
0 e i� 0 0
0 0 e�i� 0
0 0 0 e i�

1

CCA

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

= (CNOT) . (I ⌦ Rz(�)) . (CNOT) .
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The time propagation algorithm

Time propagation algorithm
Exercise:
Prove that e i��z⌦�z performs a rotation of �� if the two qubits are in the same state, |00i, |11i and of
+� when the spins are opposite, |10i, |01i.

This result can be generalized to any number of qubits (see lecture on quantum chemistry)
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The time propagation algorithm

Time propagation algorithm - Properties
Theorem (Laflamme et al. Phys. Rev. A 65 042323):
The correlation function h 0|U†V | 0i can be evaluate with the help of an unique ancilla qubit using

h�a

+i+ = h 0|U†V | 0i

where �a

+ = �a

x
+ i�a

y
(|+i = 1/

p
2(|0i + |1i)) and V and U are unitary operations. The corresponding

circuit is

Laflamme et al. Phys. Rev. A 65 042323.
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The time propagation algorithm

Time propagation algorithm - Properties

We know want to compute an observable like the time correlation function between the initial and the
final states

C (t) = h 0| (t)i .

We can use the previous theorem with the mapping:

V = U† = e�iHt/2

and therefore
h�a

x
+ i�a

y
ia = h 0|e�iHt | 0i = C (t) .

A. Chiesa, et al. Quantum hardware simulating four-dimensional inelastic neutron scattering Nat. Phys.. 15, 455-459
(2019).
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The time propagation algorithm

Time propagation algorithm - Properties
We know want to compute an observable like the time correlation function between the initial and the
final state

C (t) = h (0)| (t)i .

For a 2-qubit system, the corresponding circuit will look like

where U(⌧) is the time-evolution unitary block (Trotter step) repeated n times.

A. Chiesa, et al. Quantum hardware simulating four-dimensional inelastic neutron scattering Nat. Phys.. 15, 455-459
(2019).
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The time propagation algorithm

Application: Four-dimensional inelastic neutron scattering

The new generation of spectrometers, equipped
with arrays of position-sensitive detectors,
enable to efficiently measure the neutron
cross-sections as a function of energy and of
the three components of the momentum
transfer vector Q, in vast portions of the
reciprocal space.

Exploiting these capabilities, it is now possible
to obtain an unprecedented insight into the
coherent spin dynamics of molecular clusters.

E, Garlatti et al., Neutron Scattering in Coordination Chemistry,

2019, 1106 (2019).

Ivano Tavernelli ( IBM Quantum, IBM Research - Zurich, Switzerland EASISchool 3 Genoa, Italy )Quantum computing in Quantum Chemistry and Physics: Part 1Sept 28th - Oct 9th , 2020 75 / 119



The time propagation algorithm

Four-dimensional inelastic neutron scattering

Scattering function

I (Q,!) /
X

↵�

 
1 � Q2

↵

Q2

�

!
2
NX

p=1

NX

i�j=1

Fi (Q) · Fj(Q) cos(Q · Rij)h0|s↵(i)|pihp|s�(j)|0i �(! � Ep/~)

↵,� = x , y , z

Q scattering vector
Fi (Q) form factor of atom i .
N number of spins with positions Ri and distance vectors Rij

p : 1 . . . 2N labels the elements of the Hilbert space
Ep eigenenergy associated to |pi.
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The time propagation algorithm

Four-dimensional inelastic neutron scattering

Scattering function

I (Q,!) /
X

↵�

 
1 � Q2

↵

Q2

�

!
2
NX

p=1

NX

i�j=1

Fi (Q) · Fj(Q) cos(Q · Rij)h0|s↵(i)|pihp|s�(j)|0i �(! � Ep/~)

↵,� = x , y , z

Q scattering vector
Fi (Q) form factor of atom i .
N number of spins with positions Ri and distance vectors Rij

p : 1 . . . 2N labels the elements of the Hilbert space
Ep eigenenergy associated to |pi.
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The time propagation algorithm

Calculation of I (Q, !)

The limiting step in the calculation of I (Q,!) is the correlation function

c↵�
ij

(t) = hs↵
i
(t)s�

j
i =

X

p

h0|s↵(i)|pihp|s�(j)|0ie�iEpt

compute the eigen-spectrum of the system Hamiltonian (2N dimensional) ! {Ep, |pi}
I evaluate

P
p
h0|s↵(i)|pihp|s�(j)|0ie�iEpt

I compute I (Q,!)

time evolution using the propagator, exp (�iHt/~)
I compute c↵�

ij
(t) = hs↵

i
(t)s�

j
i

I extract {Ep, |pi} using a fitting procedure or a Fourier transform
I compute I (Q,!)

A. Chiesa, et al. Quantum hardware simulating four-dimensional inelastic neutron scattering Nat. Phys.. 15, 455-459
(2019).
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The time propagation algorithm

Model systems

Due to the limitations of the NISQ quantum hardware (about 10 qubits) we study the scattering
properties of the following model systems:

H =
N�1X

i=1

⇥
Jp (s

x

i
sx
i+1

+ sy
i
sy
i+1

) + Jzs
z

i
sz
i+1

⇤
+ B

NX

i=1

gi s
z

i

i. Spin dimer:
a. Heisenberg model: Jp = Jz = J, g1 = g2 = g .
b. Heisenberg model with nonequivalent ions: Jp = Jz = J, g1 6= g2.
c. Ising model with nonequivalent ions Jp = 0; Jz = J, g1 6= g2.

ii. Spin trimer:
Heisenberg nearest-neighbors interactions with
Jp = Jz = J, g1 = g2 = g3 = g .
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The time propagation algorithm

Circuit implementation: 2-spin system

A. Chiesa, et al. Nat. Phys., 15, 455 (2019).
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The time propagation algorithm

Results: 2-spin system
Time correlation functions
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The time propagation algorithm

Results: 3-spin system

A. Chiesa, et al. Nat. Phys., 15, 455 (2019).
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The time propagation algorithm

Results: 3-spin system

I (Q,!) /
X

↵�

 
1 � Q2

↵

Q2

�

!
2
NX

p=1

NX

i�j=1

Fi (Q) · Fj(Q) cos(Q · Rij)h0|s↵(i)|pihp|s�(j)|0i �(! � Ep/~)
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Recent advancements

ooVQE Algorithm

Rotation matrix:

U = e�

induces the orbital rotation

C = CRHFe
�

The one- and two-body integrals used to
generate the Hamiltonian matrix are modified
according to

hr |˜̂h|si =
X

↵�

C⇤
↵rC�sh↵|ĥ|�i (1)

hpq|˜̂g |rsi =
X

↵��✓

C⇤
↵pC

⇤
�qC�rC✓sh↵�|ĝ |�✓i (2)

Two additional steps in the conventional VQE:
(1)⇤ Extracted RHF integrals hr |ĥ|si and

hrs|ĝ |tui undergo orbital rotation using
Eqs. (1) and (2)

(2)⇤ Matrix elements ~ are also optimized in
addition to the VQE variational
parameters.
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Recent advancements

Can Quantum Algorithms Outperform their Classical Equivalents?
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Recent advancements

Can Quantum Algorithms Outperform their Classical Equivalents?
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Recent advancements

Literature on ooVQE

arXiv:1911.10864
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Forces and Molecular Dynamics

Can Quantum Algorithms Outperform their Classical Equivalents?

The forces FI = (FIx ,FIy ,FIz) are defined as

FI↵(R) =
dE

dRI↵

����
R
,

with ↵ 2 {x , y , z}.
The total derivative is given explicitly by

FI↵(R) = h (✓)|@I↵Ĥ(R)| (✓)i
+ h@I↵ (✓)|Ĥ(R)| (✓)i
+ h (✓)|Ĥ(R)|@I↵ (✓)i ,

The first term corresponds to the
Hellmann-Feynman force.

Two possible solutions:

F FD

I↵ (R) =
h +|Ĥ+| +i � h �|Ĥ�| �i

2�R
,

FH-F

I↵ (R) =

*
 0

�����
Ĥ+ � Ĥ�

2�R

����� 0

+
,

where  + is the wavefunction optimized for the
displaced Hamiltonian Ĥ+ where all R are
displaced

R ! R + dRx,y ,z

along each cartesian coordinate (for a total of
3NA displacements)
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Forces and Molecular Dynamics

Algorithmic error mitigation: the Lanczos approach
With the VQE-Lanczos algorithm, we evaluate expectation values as

h 0|Ô| 0i ! h 0|(Ĥ(R) � d)Ô(Ĥ(R) � d)| 0i
h 0|(Ĥ(R) � d)2| 0i

= Ld,R(Ô)

where d 2 R is a tunable parameter that need to be optimized a priori.

arXiv:2008.10914
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Forces and Molecular Dynamics

Validation: geometry optimization

Table: Geometry optimization results using the MR (reference), the VQE and the VQE with Lanczos
(VQE-L) algorithms. In these two last cases we use 8’192 measurements for the evaluation of the
energy and force components. The equilibrium bond distance of H2 is given by Req. The structure of
H+

3
(see Fig. ??) is characterized by three parameters: (i) the distance between atoms 1 and 2 (R12),

(ii) the distance between atoms 1 and 3 (R13), and (iii) the angle ↵213 formed between the bonds
H1-H2, and H1-H3 (↵213). We use Å for distances and degrees for the angles.

MR VQE VQE-L
H2 Req 0.735 0.742 0.733
H+

3
R12 0.985 1.006 0.990
R13 0.985 0.999 0.990
↵213 60.0 59.8 59.9
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Forces and Molecular Dynamics

Micro-canonical versus canonical MD

Micro-canonical dynamics at constant E Canonical dynamics at constant T

Newton’s equations of motion

v̇ = F(R)/m,

Ṙ = v,

Verlet algorithm

R(t+�t) = 2R(t)�R(t��t)+
1
2
F(t)/m�t2,

Langevin Dynamics:

v̇ = ��(R) · v + F(R)/m + ⌘(t),

Ṙ = v,
h⌘(t)i = 0,

h⌘i (t)⌘j(t 0)i = ↵ij(R) �(t � t 0),
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Forces and Molecular Dynamics

MD algorithms
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Forces and Molecular Dynamics

MD time series - statistical noise and hardware noise
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Forces and Molecular Dynamics

MD of H2 on a quantum computer (ibmq_athens)
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Forces and Molecular Dynamics

Phase space trajectories for H2: microcanonic vs. canonic MD
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Forces and Molecular Dynamics

Literature on MD

arXiv:2008.08144
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Platforms: Hardware & Software

Quantum Information Software Kit Qiskit
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Qiskit is an open-source framework for working with
noisy quantum computers at the level of pulses,
circuits, and algorithms.

Terra and is the foundation on which the rest of
Qiskit is built.
Aqua (Algorithms for QUantum computing
Applications) providing a library of cross-domain
algorithms upon which domain-specific applications
can be built.
Ignis provides tools for quantum hardware
verification, noise characterization, and error
correction.
Aer provides high-performance quantum computing
simulators with realistic noise models.



Platforms: Hardware & Software

Quantum Information Software Kit Qiskit
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Hardware/Simulator

IBM QX

Open Pulse Open QASM

Qiskit Terra

Qiskit Aqua

Qiskit Optimization, ML, Chemistry, Finance

Qiskit Ignis Qiskit Aer



Platforms: Hardware & Software

IBM Quantum Hardware Accesible Devices
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Hardware/Simulator



Platforms: Hardware & Software

IBM Quantum Hardware Accesible Devices
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Hardware/Simulator



Platforms: Hardware & Software

Using Quantum Computers IBM Quantum Experience
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Hardware/Simulator

IBM QX



Platforms: Hardware & Software

Interacting with Quantum Computers Open Pulse / QASM
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Hardware/Simulator

IBM QX

Open Pulse Open QASM



Platforms: Hardware & Software

Interacting with Quantum Computers Qiskit Terra
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Hardware/Simulator

IBM QX

Open Pulse Open QASM

Qiskit Terra



Platforms: Hardware & Software

Programming Applications on Quantum Computers Qiskit Chemistry
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Hardware/Simulator

IBM QX

Open Pulse Open QASM

Qiskit Terra

Qiskit Aqua

Qiskit Chemistry



Platforms: Hardware & Software

Dedicated Software The User
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Users without any prior knowledge to quantum
computing and algorithms

Users developing quantum algorithms and qc
software

Users developing hardware primitives

Users developing hardware Hardware/Simulator

IBM QX

Open Pulse Open QASM

Qiskit Terra

Qiskit Aqua

Qiskit Chemistry
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