

SQUIDs

EASISchool 3, Genova, Italy

Mikko Kiviranta

05/10/2020

1

Overview

- Kirchoff laws with superconductors
- Weak link flux quantization
- One-junction rf-SQUID MISSING
- Two-junction dc-SQUID from SET SQUID dualism
- Overdamped dc-SQUID, analytic solution
- Realistic dc SQUID characteristics
- A detour to 3-junction interferometer
- Different bias conditions
- Input coil, magnetometers and gradiometers
- SQUID readout, Flux-locked loop

Kirchoffs 1. 12W

Kirchoffs 1- 12W

Kirchoffs 2.12W

$$\sum_{n} U_{n} = 0$$

4

Kirchoffs 2.12W

$$\sum_{n} U_{n} = 0$$

$$U = -L \frac{d}{dt} I$$

Integral of voltage
$$\int V(t) dt = \Phi$$
is called flux

Kirchoffs 1. law

$$\sum_{i=1}^{n} 1^{i} = 0$$

Kirchoffs 2.12W (integrated version)

$$\sum_{n} \Phi_{n} = 0$$

Linear circuits are boring

Non-linear

Linear circuits are boring

Non-linear

Semiconductors Pn

From Josephson relations
$$I = I_{c} \sin \Theta$$

$$U = \frac{\Phi_{o}}{2\pi} \frac{d}{dt} \Theta$$

$$\Rightarrow U = \frac{\Phi_{o}}{2\pi} \frac{1}{V_{1}-1^{2}/I_{c}} \frac{d}{dt} I$$

$$U = \frac{\Phi_{o}}{2\pi} \frac{1}{I_{c} \cos \Theta} \frac{d}{dt} I$$

$$U = \frac{\Phi_{o}}{2\pi} \frac{1}{I_{c} \cos \Theta} \frac{d}{dt} I$$

$$U = \frac{\Phi_{o}}{2\pi} \frac{1}{I_{c} \cos \Theta} \frac{d}{dt} I$$

$$\overline{U} = \frac{\overline{\varrho_o}}{2\pi} \frac{1}{\overline{l_c} \cos \theta} \frac{\underline{d}}{dt} I$$

$$L_J: Josephson inductance$$

$$U = \frac{\partial_{0}}{\partial n} \frac{1}{f_{c}\cos\theta} \frac{d}{dt} L$$

$$= -\frac{I_{c}\partial_{0}}{2\pi} \cos\theta$$

$$= -\frac{I_{c}\partial_{0}}{2\pi} \cos\theta$$
inductance is finite however

Work done on the junction
$$\Delta E = W = \int U I d\theta$$

$$= -\frac{I_c P_o}{2\pi} \cos \theta$$
is finite however

Phase slip, a.k.a SFQ

- When quantum phase advances by 2-pi integral of voltage across junction is always 2.07 picosecond-millivolts.
- Such a pulse creates in any inductor the flux of 2.07 microampere-nanohenrys

16

Kirchoffs 1. law

$$\sum_{i=1}^{n} 1^{i} = 0$$

Kirchoffs 2.12W (integrated version)

$$\sum_{n} \Phi_{n} = n\Phi_{0}$$

Version with weak links

17

Single-junction SQUID

Single electron transistor

Bios current

2

Lorenz

Force

Electrostatic dual of a SET = dc SQUID

Lets take dc SQUID more quantitatively

Lets take dc SQUID more quantitatively

Josephson inductance

Limit Lsq & Lj:

Equation of motion

for $\frac{1}{2}(Q_1 + Q_2)$ is the

Some as the single JJ

Whose crit. current is

not Ic but $|\cos(\pi Q_A)|$: 21c

Equation of motion of single J-junction

Equation of motion of single J-junction

$$\lambda = \frac{1}{1_c} \qquad m = \frac{\nabla}{RI_c} \qquad \tau = + \frac{2\pi R \hat{I}_c}{\frac{\pi}{2}}$$

Equation of motion of single J-junction

Dimensionless units
$$\lambda = \frac{1}{1_{c}} \qquad \mu = \frac{1}{1_{c}} \qquad \tau = \frac{1}{2\pi R_{c}} \qquad \frac{1}{1_{c}} \qquad \frac{1}{1_$$

Dimensionless units

$$\lambda = \frac{1}{I_c} \qquad M = \frac{1}{RI_c} \qquad T = \frac{2\pi R J_c}{\frac{1}{2} \sigma}$$

$$\frac{d}{dt} G = \lambda_B - \sin \Theta$$

Asmalazov-Larkin (or Maple):

$$\Theta(t) = 2 + 2h^{-1} \left[\frac{\sqrt{\lambda_{8}^{2} - 1}}{\lambda_{8} + 1} + 2n \left(\frac{1}{2} \sqrt{\lambda_{3}^{2} - 1} \right) \right] + \frac{\pi}{2}$$

$$M = \frac{1}{4\pi} \Theta = \frac{\lambda_{8}^{2} - 1}{\lambda_{8} + \cos \left(\sqrt{\lambda_{8}^{2} - 1} \cdot x \right)}$$

$$O(t) = 2 + 2h^{-1} \left[\frac{\sqrt{\lambda_0^2 - 1}}{\lambda_0 + 1} + 2h \left(\frac{1}{2} \sqrt{\lambda_0^2 - 1} \right) \right] + \frac{\pi}{2}$$

$$M = \frac{1}{4\pi} \Theta = \frac{\lambda_0^2 - 1}{\lambda_0 + 2h} + 2h \left(\frac{1}{2} \sqrt{\lambda_0^2 - 1} \right)$$

DC SQUID is like single J-junction with flux-controllable critical current

External flux
$$\Phi_A$$
 $U = \frac{RI}{2} \sqrt{1 - \left(\frac{2I_c}{I}\cos\frac{\pi\Phi_A}{\Phi}\right)^2}$

Added complication: junction capacitance

- Makes characteristics hysteretic
- For single-valued response must add sufficiently small shunt resistors
- Johnson noise of the resistors is the main source of noise in dc SQUIDs

$$\beta_C = \frac{2\pi I_C C_J R_S^2}{\Phi_0} < 0.7$$

Added complications: junction capacitance VIII

Josephson inductance forms an LC resonator Inductance depends on oscillation amplitude -> anharmonicity

Dynamical equations of DC SQUID.

320 Tapani Ryhänen, Heikki Seppä, Risto Ilmoniemi, and Jukka Knuutila

$$\beta_c \frac{d^2 \nu}{d\tau^2} + \frac{d\nu}{d\tau} + \sin \nu \cos \phi = i$$

$$\beta_c \frac{d^2 \phi}{d\tau^2} + \frac{d\phi}{d\tau} + \cos \nu \sin \phi + \frac{2}{\beta_L} (\phi - \phi_a) = 0$$

05/10/2020 $U\left(
u,\phi
ight)=rac{1}{eta_L}\left(\phi ext{-}\phi_a
ight)^2-i
u-\cos
u\cos\phi$

Realistic dc SQUID characteristics

$$\beta_C = \frac{2\pi I_C C_J R_S^2}{\Phi_0} = 0.7$$
 $\beta_L = \frac{2\pi L_{SQ} I_C}{\Phi_0} = 1.0$

Current bias

Current bias, $I_B < 2I_C$

Detour: 3-junction interferometer - Zappe switch

H. H. Zappe, IEEE Transactions on Magnetics, 1977

Fig. 5. Threshold curves of quantum interference devices. (a) is a two junction device. (b) and (c) are three junction interferometers with symmetric and asymmetric supply current feed respectively.

Current bias, $I_B > 2I_C$

VTT

Current bias, $I_B > 2I_C$

Voltage bias

Voltage biased SQUID characteristics

Flux noise (with current bias)

VTT

Flux noise (with voltage bias)

Matched bias

Load line:

 0Ω – voltage bias

 ∞ Ω – current bias

SQUID R_D – matched bias

Dc SQUID as a magnetometer

The thin-film stack of a washer SQUID

SQUID readout in practice

What a SQUID flux characteristics may look like in a real experiment

Dc SQUID readout in practice

Low Noise Amplifier (LNA) noise

Voltage noise at SQUID output

SQUID $\Delta V \approx 60~\mu V$ $dV/d\Phi \approx 200~\mu V/\Phi_0$ SQUID flux noise $\Phi_N \approx 0.5~\mu \Phi_0 / Hz^{1/2}$

- \Rightarrow Voltage noise at SQUID output 0.1 nV / Hz^{1/2}
- ⇒ LNA noise dominates (always, actually...)

Use transformer, to increase $dV/d\Phi$?

- Must chop SQUID signal (transformer does not pass DC)
- Current noise contribution i_N increases
- Feasible at low frequency, and using FET LNA.
- Was used in old days, not very practical today

Positive feedback

• Narrowed flux operating range, adverse effect on input inductance L_{SIG} (if L_{NC} and L_{SIG} coupled)

Drung et al, APL 57, 406 (1990)

SQUID arrays

65

Welty and Martinis, IEEE Tran. Magn. 27 2924 (1991)

- N times the dV/dΦ of a single constituent SOUID
- Recall that LNA –limited flux noise $\Phi_N = u_N / (dV/d\Phi)$
 - ⇒ improves ~ N
- SQUID-limited flux noise improves ~ √N
 - \Rightarrow natural dynamic range improves $\sim \sqrt{N}$ (DR: ratio of Φ_N to $\Phi_0/2$)
- Coherent SQUID operation is a must!

An example of a SQUID array

• 184-series 4-parallel SQUID array $\Delta V \approx 11$ mV, $dV/d\Phi \approx 20$ mV/ Φ_0

- Cut the loop open (any location will do)
- Inject test signal A
- Measure response B
- The ratio B/A is the loop gain L

- Needs a loop filter A→B (for stability)
- Just put an integrator there (for more, see http:// stacks.iop.org/SUST/16/1320)

Flux locked loop

Thank you for listening

- Kirchoff laws with superconductors
- Weak link flux quantization
- One-junction rf-SQUID MISSING
- Two-junction dc-SQUID from SET SQUID dualism
- Overdamped dc-SQUID, analytic solution
- Realistic dc SQUID characteristics
- A detour to 3-junction interferometer
- Different bias conditions
- Input coil, magnetometers and gradiometers
- SQUID readout, Flux-locked loop