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Overview

• Kirchoff laws with superconductors
• Weak link - flux quantization
• One-junction rf-SQUID - MISSING
• Two-junction dc-SQUID from SET – SQUID dualism
• Overdamped dc-SQUID, analytic solution
• Realistic dc SQUID characteristics
• A detour to 3-junction interferometer
• Different bias conditions
• Input coil, magnetometers and gradiometers
• SQUID readout, Flux-locked loop
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Phase slip, a.k.a SFQ

• When quantum phase advances by 2-pi
integral of voltage across junction is always
2.07 picosecond-millivolts.

• Such a pulse creates in any inductor the flux of
2.07 microampere-nanohenrys

V

t
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nF 0

Version with
weak links
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Single-junction SQUID
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Single electron transistor
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Electrostatic dual of a SET
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Electrostatic dual of a SET
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Electrostatic dual of a SET
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Electrostatic dual of a SET = dc SQUID

Likharev 1987, Guichard and Hekking 2010
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Lets take dc SQUID more quantitatively
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Lets take dc SQUID more quantitatively



05/10/2020 VTT – beyond the obvious 33



05/10/2020 VTT – beyond the obvious 34

Equation of motion of single J-junction
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Equation of motion of single J-junction
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Equation of motion of single J-junction
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DC SQUID is like single J-junction with
flux-controllable critical current
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Added complication: junction capacitance

• Makes characteristics hysteretic
• For single-valued response must add

sufficiently small shunt resistors
• Johnson noise of the resistors is the

main source of noise in dc SQUIDs

ߚ = ଶగூோೄ
మ

బ
< 0.7

H. H. Zappe 1972, doi:10.1063/1.1662354
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Added complications: junction capacitance

INS2
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Phenomena due to junction capacitance

Josephson inductance forms an LC
resonator
Inductance depends on oscillation
amplitude -> anharmonicity
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Realistic dc SQUID characteristics

ߚ = ଶగூோೄ
మ

బ
= 0.7 ߚ = ଶగೄೂூ

బ
= 1.0
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Current bias
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Current bias, IB < 2IC
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Detour: 3-junction interferometer -
Zappe switch

H. H. Zappe, IEEE Transactions on Magnetics, 1977
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Current bias, IB > 2IC
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Current bias, IB > 2IC

Input flux change

Output voltage change
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Voltage bias
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Voltage biased SQUID characteristics
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Flux noise ( with current bias)

In units of mF0 / Hz1/2
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Flux noise (with voltage bias)
In units of mF0 / Hz1/2
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Matched bias

Load line:
0 W – voltage bias
¥ W – current bias
SQUID RD – matched bias
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Dc SQUID as a magnetometer

X

Z

y

Various pickup loops:
magnetometers and
gradiometers
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The thin-film stack of a washer SQUID
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SQUID readout in practice
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Dc SQUID readout in practice

SQUID voltage

Applied flux
( signal I’m measuring)

Added noise
Limited flux range
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Low Noise Amplifier (LNA) noise

UN = 1 nV/Hz1/2 typical

IN = 2 pA/Hz1/2 typical

LNA
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Voltage noise at SQUID output

SQUID DV ≈ 60 mV
dV/dF ≈ 200 mV/F0
SQUID flux noise FN ≈ 0.5 mF0 / Hz1/2

Þ Voltage noise at SQUID output 0.1 nV / Hz1/2

Þ LNA noise dominates (always, actually…)

UN = 1 nV/Hz1/2 typical

IN = 2 pA/Hz1/2 typical

LNA
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Use transformer, to increase dV/dF ?

uN

iN

n iN 1:n

• Must chop SQUID signal (transformer does not pass DC)
• Current noise contribution iN increases
• Feasible at low frequency, and using FET LNA.
• Was used in old days, not very practical today
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Positive feedback
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• Part of the amplified flux signal is fed back as additional flux
• Narrowed flux operating range, adverse effect on input

inductance LSIG (if LNC and LSIG coupled)

Drung et al, APL 57, 406 (1990)
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SQUID arrays

Welty and Martinis, IEEE Tran. Magn. 27 2924 (1991)

300K4.2K

LNA

• N times the dV/dF of a single
constituent SQUID

• Recall that LNA –limited flux
noise FN = uN / ( dV/dF )

Þ improves ~ N

• SQUID-limited flux noise
improves ~ ÖN

Þ natural dynamic range
improves ~ ÖN
( DR: ratio of FN to F0/2 )

• Coherent SQUID operation is a
must !
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An example of a SQUID array
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• 184-series 4-parallel SQUID array
DV ≈ 11 mV, dV/dF ≈ 20 mV/F0
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Flux locked loop

A

B

• Cut the loop open (any location will do)
• Inject test signal A
• Measure response B
• The ratio B/A is the loop gain L

• Needs a loop filter A→B (for
stability)

• Just put an integrator there (for
more, see http://
stacks.iop.org/SUST/16/1320 )
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Flux locked loop
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With positive feedback (or array SQUID) and
FLL we have mitigated the problems

SQUID voltage

Applied flux
( signal I’m measuring)

Added noise
Limited flux range
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Thank you for listening

• Kirchoff laws with superconductors
• Weak link - flux quantization
• One-junction rf-SQUID - MISSING
• Two-junction dc-SQUID from SET – SQUID dualism
• Overdamped dc-SQUID, analytic solution
• Realistic dc SQUID characteristics
• A detour to 3-junction interferometer
• Different bias conditions
• Input coil, magnetometers and gradiometers
• SQUID readout, Flux-locked loop


