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Superconducting magnet design

 Superconducting magnet design is a true multiphysics problem 
involving several activities

 Electromagnetic optimization (field quality, peak field on conductor, margin)

 Choice of the conductor (transport properties)

 Choice of the operating temperature and cryogenic design

 Design of the mechanical support structure

 Analysis of stability and quench protection

 Manufacturing techniques

 Cost analysis
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Outline

◼ Overview of superconducting magnets for particle accelerators 
(dipoles and quadrupoles)

◼ Conductor

◼ Magnetic design

◼ Mechanical design

◼ Force, stress and pre-load

◼ Support structures

◼ Quench protection

Superconducting 

strand

Superconducting 

cable
Superconducting coil Superconducting 

magnet

Stefania Farinon

Susana Izquierdo Bermudez



Practical conductors for accelerator magnets
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Comparison of critical current densities @ 4.2 K
https://fs.magnet.fsu.edu/~lee/plot/plot.htm
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NbTi

◼ NbTi is the most widely used superconductor

◼ In High Energy Physics, NbTi has been used for Tevatron 
(Fermilab), HERA (DESY), RHIC (BNL), LHC (CERN)

◼ Critical surface parametrization (L. Bottura, IEEE TAS 10 (2000) 1054) :

𝐽𝐶 𝐵, 𝑇 =
𝐶

𝐵

𝐵

𝐵𝐶2(𝑇)

𝛼

1 −
𝐵

𝐵𝐶2(𝑇)

𝛽

1 −
𝑇

𝑇𝐶0

1.7 𝛾

with 𝑇𝐶0 = 9.2 K 𝐵𝐶20 = 14.5 T 𝐵𝐶2 𝑇 = 𝐵𝐶20 1 −
𝑇

𝑇𝐶0

1.7

◼ Fitting parameters for LHC wires (𝐽𝐶 5 𝑇, 4.2 𝐾 = 3000 A/mm2 ): 
𝐶 = 92.1 T ∙ kA/mm2, 𝛼 = 0.63, 𝛽 = 1.0, 𝛾 = 2.3

◼ Practical limit for accelerator magnets: 

◼ 𝐵𝐶2 1.9 𝐾 = 13.5 𝑇, but 𝐽𝐶 13.5 𝑇, 1.9 𝐾 = 0

◼ To have reasonable current density 𝐵 ≲ 10 𝑇, 𝐽𝐶 10 𝑇, 1.9 𝐾 = 1680 A/mm2

◼ Taking some margins (see next slides) 𝐵 ≲ 8 𝑇
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Nb3Sn

◼ Nb3Sn is the choice to go beyond the NbTi limits in accelerator magnets

◼ 11 T dipoles and triplet quadrupoles in High Luminosity LHC

◼ Critical surface parametrization (L. Bottura et al., IEEE TAS 19 (2009) 1521) :

𝐽𝐶 𝐵, 𝑇 =
𝐶

𝐵

𝐵

𝐵𝐶2(𝑇)

𝛼

1 −
𝐵

𝐵𝐶2(𝑇)

𝛽

1 −
𝑇

𝑇𝐶0

1.52 𝛾

1 −
𝑇

𝑇𝐶0

2 𝛾

with 𝑇𝐶0 = 16 K 𝐵𝐶20 = 29 T 𝐵𝐶2 𝑇 = 𝐵𝐶20 1 −
𝑇

𝑇𝐶0

1.7

◼ Fitting parameters for target FCC wires (𝐽𝐶 16 𝑇, 4.2 𝐾 = 1500 A/mm2 ): 
𝐶 = 267.845 T ∙ kA/mm2, 𝛼 = 0.5, 𝛽 = 2, 𝛾 = 0.96

◼ Practical limit for accelerator magnets: 

◼ 𝐵𝐶2 1.9 𝐾 = 28 𝑇

◼ To have reasonable current density 𝐵 ≲ 18 𝑇, 𝐽𝐶 18 𝑇, 1.9 𝐾 = 1480 A/mm2

◼ Taking some margins (see next slides) 𝐵 ≲ 16 𝑇 , that double the performance WRT NbTi
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Multifilament wires

 For practical applications, superconducting materials are 
produced in small filaments and surrounded by a stabilizer 
(typically copper) to form a multifilament wire or strand

◼ Typical filament diameter is in the range 3-10 𝜇m for NbTi and ≲50 𝜇m 
for Nb3Sn; typical strand diameter is ≲ 1 mm

◼ Fine filaments to
◼ Reduce effects due to magnetization

◼ Limit flux jumps

◼ Copper matrix
◼ For protection and stability (see Susana presentation)

◼ Twisting
◼ to reduce interfilament coupling and AC losses

NbTi LHC wire 

Nb3Sn PIT process wire 
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Multistrand cables

◼ Most of the superconducting coils for particle accelerators 
are wound from a multi-strand Rutherford cable

◼ Main advantages:

◼ Rutherford cables

◼ high density compaction of strands

◼ rectangular or trapezoidal shape (to stack arc-shaped coils)

◼ multi-strand cables

◼ large current density with small number of turns

◼ smaller coil inductance

◼ current redistribution in case of problem in a portion of a strand

◼ strand twisting

◼ to reduce inter-strand coupling and AC losses

◼ strand transposition

◼ to eliminate the flux enclosed

◼ to increase the mechanical stability

rope

braid

Rutherford
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WARNING: engineering current density

 In SC magnets what really matters is the overall 'engineering' 
current density 𝐽𝑒𝑛𝑔

 𝐽𝑒𝑛𝑔 =
𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝐼

𝐴𝑐𝑎𝑏𝑙𝑒
= 𝐽𝐶𝜆𝑠𝑡𝑟𝑎𝑛𝑑𝜆𝑐𝑎𝑏𝑙𝑒

 Typical Rcu-non Cu ranges from 1 to 2, then 𝜆𝑠𝑡𝑟𝑎𝑛𝑑 ranges 
from 0.33 to 0.5 (𝜆𝑠𝑡𝑟𝑎𝑛𝑑 =

1

1+𝑅Cu−non Cu
)

 𝜆𝑐𝑎𝑏𝑙𝑒 takes into account the total space occupied by each turn, and is 
typically  0.7 to 0.8

 So typically 𝐽𝑒𝑛𝑔 is only 20% to 40% of 𝐽𝐶

SC

Cu

𝜆𝑠𝑡𝑟𝑎𝑛𝑑 = 𝐴𝑆𝐶/𝐴𝑠𝑡𝑟𝑎𝑛𝑑

𝜆𝑐𝑎𝑏𝑙𝑒 = 𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝐴𝑠𝑡𝑟𝑎𝑛𝑑/𝐴𝑐𝑎𝑏𝑙𝑒

insulation
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Margin on the loadline

 The margin of a magnet is defined with 
respect to its weakest point, i.e. the peak 
field

 𝐽𝑆𝑆 (Short Sample) corresponds to the 
intersection of the loadline for the peak 
field and the critical current density curve:
ideally is the maximum performance of 
the magnet

 The loadline fraction is the ratio 𝐽𝑜𝑝/𝐽𝑆𝑆
 The margin on the loadline is 1 − 𝐽𝑜𝑝/𝐽𝑆𝑆

𝐵

𝐽

Normal state
Superconductive  state

𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆
𝐽𝑜𝑝

𝐵𝑝𝑒𝑎𝑘,𝑜𝑝 𝐵𝑝𝑒𝑎𝑘,𝑆𝑆
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Temperature margin ∆𝑇

 The temperature margin is a 
physical quantity related to the 
energy which can be released 
before crossing the critical surface 
(order of few K)

 It is the temperature rise necessary 
for the 𝐽𝐶 curve to intersect the 
loadline at operative field

𝐵

𝐽

Normal state
Superconductive  state

𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆
𝐽𝑜𝑝

𝐵𝑜𝑝 𝐵𝑆𝑆

𝐽𝐶 (𝑇𝑜𝑝 + ∆𝑇)



Dipole and quadrupole definition
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Dipole and quadrupole definition

 Dipole magnets generate 
constant and uniform field B:

B
N

S

 Quadrupole magnets generate 
constant and uniform gradient G:

S

S

N

N

G
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What is the effect of a dipole on a travelling particle?

 A particle of charge 𝑞 travelling in a uniform 
magnetic field 𝐵 at speed 𝑣 is subjected to the 
Lorentz force 𝐹𝐿 = 𝑞 𝑣 × 𝐵

 The Lorentz force is balanced by the centrifugal 
force 𝐹𝐶 = 𝑚𝑣2/𝑟

 The results is that the Lorentz force keeps 
particles in a circular orbit:

𝑚𝑣2/𝜌 = 𝑞𝑣𝐵 𝜌 = 𝑚𝑣/𝑞𝐵 = 𝑝/𝑞𝐵

B

orbit

r FL

FC

v
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What is the effect of a quadrupole on a travelling particle?

◼ Since the only force is magnetic:

Ԧ𝐹 = 𝑚
𝑑2𝑅

𝑑𝑡2
= 𝑞 Ԧ𝑣 × 𝐵,       𝑅 = ρ + 𝑥 ො𝑥 + 𝑦ො𝑦

◼ If 𝑣~𝑣𝑠 ≫ 𝑣𝑥 , 𝑣𝑦

Ԧ𝑣 × 𝐵 =

ො𝑥 ො𝑦 Ƹ𝑧
0 0 𝑣
𝐵𝑥 𝐵𝑦 0

= −𝑣𝐵𝑦 ො𝑥 + 𝑣𝐵𝑥 ො𝑦

𝑚
𝑑2𝑅

𝑑𝑡2
= 𝑚

𝑑2𝑥

𝑑𝑡2
ො𝑥 +

𝑑2𝑦

𝑑𝑡2
ො𝑦 = −𝑞𝑣𝐵𝑦 ො𝑥 + 𝑞𝑣𝐵𝑥 ො𝑦

Frenet-Serret coordinate system

◼ Along s direction, 𝑠 = 𝑣𝑡 then 
𝑑

𝑑𝑡
=

𝑑

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑣

𝑑

𝑑𝑠
:

𝑣2
𝑑2𝑥

𝑑𝑠2
= −

1

𝑚
𝑞𝑣𝐵𝑦

𝑑2𝑥

𝑑𝑠2
+

𝑞

𝑝
𝐵𝑦 = 0 where 𝑝 = 𝑚𝑣

𝑣2
𝑑2𝑦

𝑑𝑠2
=

1

𝑚
𝑞𝑣𝐵𝑥

𝑑2𝑦

𝑑𝑠2
−

𝑞

𝑝
𝐵𝑥 = 0

Time is replaced by 𝑠, which is the reference orbit 
given by the bending magnets and is moving with 
the beam

r
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What is the effect of a quadrupole on a travelling particle?

◼ Quadrupole field:  𝐵𝑥 = 𝐺𝑦,   𝐵𝑦 = 𝐺𝑥,    𝐺 is the field gradient

◼

𝑑2𝑥

𝑑𝑠2
+

𝑞

𝑝
𝐵𝑦 = 0

𝑑2𝑥

𝑑𝑠2
+

𝑞𝐺

𝑝
𝑥 = 0

◼ this is a (mass-spring) harmonic oscillator; the motion can be described by the function:

𝑥 𝑠 = 𝐴 cos(𝜓 𝑠 )

◼ The global effect is focusing in the x direction and defocusing in the y direction (QF)

◼ If fields have the opposite sign, we get focusing in the y direction and defocusing in the x 
direction (QD)

◼ In an accelerator, quadrupoles give the force necessary to stabilize the linear motion



Multipolar expansion of magnetic field
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Magnetic field of a current line

 From the Maxwell equation:

𝛻 × 𝐵 = 𝜇0 Ԧ𝐽 𝐵𝑑ℓׯ = 𝜇0𝐼

 It’s easy to find that 

𝐵 𝑟 =
𝜇0𝐼

2𝜋𝑟
lying on a plane perpendicular to the current line 
and tangent to the circumference of radius 𝑟
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Basics of complex numbers

 By definition, the complex number 𝑖 is 
the solution of the equation 𝑖2 = −1

 A general complex number is identified 
by 2 components: 𝑧 = 𝑎 + 𝑖𝑏

◼ where 𝑎 is the real part

◼ and 𝑏 is the imaginary part

 It can be also written in the exponential 

form 𝑧 = 𝑟𝑒𝑖𝜗 = 𝑟 cos 𝜗 + 𝑖 sin 𝜗

Real part

𝑧 = 𝑎 + 𝑖𝑏

= 𝑟𝑒𝑖𝜗

𝜗

Im
ag

in
ar

y 
p

ar
t

𝑎

𝑏

𝑟 = 𝑎2 + 𝑏2

𝜗 = atan
𝑏

𝑎
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Magnetic field of a current line

 In a more general coordinate system, using complex notation:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒂)
, con 𝒛 = 𝜌𝑒𝑖𝜑 e 𝒂 = 𝑟𝑒𝑖𝜗

 In facts:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝜌𝑒𝑖𝜑 − 𝑟𝑒𝑖𝜗)
=

𝜇0𝐼

2𝜋 𝜌 cos𝜑 − 𝑟 cos 𝜗 + 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

=
𝜇0𝐼 𝜌 cos𝜑 − 𝑟 cos 𝜗 − 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

2𝜋 𝑟2 + 𝜌2 − 2𝑟𝜌 cos(𝜗 − 𝜑)

=
𝜇0𝐼

2𝜋𝑅

𝑟 cos 𝜗 − 𝜌 cos𝜑 + 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

𝑅

=
𝜇0𝐼

2𝜋𝑅
sin 𝛾 + 𝑖 cos 𝛾 = 𝐵𝑦 + 𝑖𝐵𝑥



𝑟 cos 𝜗

(𝜌, 𝜑)

𝑅

𝐵

x

y

𝐼

g

(𝑟, 𝜗)

g

𝜌 cos𝜑

𝑟 sin 𝜗

𝜌 sin𝜑

𝐵 𝑟 =
𝜇0𝐼

2𝜋𝑟
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Magnetic field in 𝒛 = 𝜌𝑒𝑖𝜑of a current line in 𝒂 = 𝑟𝑒𝑖𝜗 if  𝜌 < 𝑟

 𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒂)
=

𝜇0𝐼

2𝜋(𝜌𝑒𝑖𝜑−𝑟𝑒𝑖𝜗)
= −

𝜇0𝐼

2𝜋𝑟𝑒𝑖𝜗
1

1−
𝜌

𝑟
𝑒𝑖(𝜑−𝜗)

 Reminding that if 𝜖 < 1:

 𝑩 𝒛 =

 =

with  𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑟

𝑅𝑟𝑒𝑓

𝑟

𝑛−1
cos 𝑛𝜗 and   𝐴𝑛 =

𝜇0𝐼

2𝜋𝑟

𝑅𝑟𝑒𝑓

𝑟

𝑛−1
sin 𝑛𝜗

= −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
cos 𝑛𝜗 =

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
sin 𝑛𝜗

1

1 − 𝜖
= ෍

𝑛=1

∞

𝜖𝑛−1

−
𝜇0𝐼

2𝜋𝑟
𝑒−𝑖𝜗 ෍

𝑛=1

∞
𝜌

𝑟
𝑒𝑖 𝜑−𝜗

𝑛−1

= −
𝜇0𝐼

2𝜋𝑟
෍

𝑛=1

∞

𝑒−𝑖𝑛𝜗
𝜌𝑒𝑖𝜑

𝑟

𝑛−1

= −
𝜇0𝐼

2𝜋𝑟
෍

𝑛=1

∞

𝑒−𝑖𝑛𝜗
𝑅𝑟𝑒𝑓

𝑟

𝑛−1
𝜌𝑒𝑖𝜑

𝑅𝑟𝑒𝑓

𝑛−1

෍

𝑛=1

∞

(𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝜌

𝑅𝑟𝑒𝑓

𝑛−1

𝐴𝑛 and 𝐵𝑛 are in T
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Harmonic components of magnetic field

 The magnetic field can be expandend in series as

𝐵𝑥 + 𝑖𝐵𝑦 = ෍

𝑛=1

∞

(𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝜌

𝑅𝑟𝑒𝑓

𝑛−1

 where 𝐵𝑛 coefficients are the normal multipoles and 𝐴𝑛 coefficients are the skew
multipoles: dipole (𝑛=1), quadrupole (𝑛=2), sextupole (𝑛=3), octupole (𝑛=4), ….

 To get them in practical adimensioned units, harmonics are often normalized:

𝐵𝑥 + 𝑖𝐵𝑦 = 10−4𝐵𝑛𝑜𝑟𝑚 ෍

𝑛=1

∞

(𝑏𝑛 + 𝑖𝑎𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝑟

𝑅𝑟𝑒𝑓

𝑛−1

with    𝑏𝑛 = −
104

𝐵𝑛𝑜𝑟𝑚

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
cos 𝑛𝜗 𝑎𝑛 =

104

𝐵𝑛𝑜𝑟𝑚

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
sin 𝑛𝜗

 𝐵𝑛𝑜𝑟𝑚 [T] is the normalization field, 𝐵𝑛𝑜𝑟𝑚 = 𝐵1 for dipoles, 𝐵𝑛𝑜𝑟𝑚 = 𝐵2 = 𝐺𝑅𝑟𝑒𝑓for quadrupoles, etc.



Dipols
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Dipoles
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Perfect dipole #1: «wall-dipole» 

 A uniform current density flowing in two 
parallel walls of infinite height generates a 
pure dipolar field

 winding and mechanical structure are not 
particularly complicated

 the coil is theoretically infinite

 coil truncation results in an acceptable field 
quality only for large dimensions

 simply applying the Biot-Savart law 𝐵𝑦 = −
𝜇0𝐽𝑤

2

𝑥

𝑦
−𝑱𝒛 +𝑱𝒛

𝑤

𝑩𝒚
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Perfect dipole #2: intersecting circles

 Within a cylinder carrying uniform 𝐽, the 

field is 𝐵(𝑟) =
𝜇0𝐽𝑟

2
, directed tangentially

 Combining the effect of the two cylinders:

𝐵𝑦 =
𝜇0𝐽

2
−𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 = −

𝜇0𝐽𝑠

2

𝐵𝑥 =
𝜇0𝐽

2
+𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2 = 0From “Superconducting Magnets”, M.N.Wilson
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Perfect dipole #2: intersecting ellipses

 Analogously,  two intersecting ellipses of 
semi-axes 𝑏 and 𝑐 generate a pure dipolar 
field given by:

𝐵𝑦 = −𝜇0𝐽𝑠
𝑐

(𝑏 + 𝑐)

 The shape of intersecting circles and ellipses is not particularly 
favourable to winding:

 central aperture is not circular

 an inner mechanical support could be needed (further reducing available aperture)

+Jz̶ Jz
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Perfect dipole #3: 𝐽 cos 𝜗 distribution

 Let us consider a current density distribution 
𝐽 cos 𝜗 in a shell of inner radius 𝑅 and thickness 𝑤

 I remind that the normal harmonic component of 

a line current in (𝑟, 𝜗) is given by: 

𝐵𝑛(𝜌, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 To get the total cotribution we replace 𝐼 with 𝐽𝑑𝑆 = 𝐽 cos 𝜗 ⋅ 𝑟𝑑𝑟𝑑𝜗 and 
integrate from 0 to 2𝜋

𝐽cos 𝜗

+

+-

- 𝑩𝒚

𝑅
𝑤
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Perfect dipole #3: 𝐽 cos 𝜗 distribution

 The only surviving term is 𝐵1, i.e. the dipole field:

 How can we approach this distribution using real conductors?

𝐵1 = −
𝜇0𝐽0

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
𝑟𝑑𝑟 ⋅ 𝜋 = −

𝜇0𝐽𝑤

2

න

0

2𝜋

cos 𝜗 cos 𝑛 𝜗𝑑𝜗 = ቊ
𝜋 if 𝑛 = 1
0 if 𝑛 ≠ 1

𝐵𝑛 = −
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟න

0

2𝜋

cos 𝜗 cos 𝑛 𝜗𝑑𝜗

𝐵1 current density (obvious)
𝐵1 coil width w (less obvious)
𝐵1 is independent of the aperture R (surprising)
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Perfect dipole vs real dipole

 Using real conductors, current density need to be uniform

 The perfect 𝐽 cos 𝜗 distribution
is approached accumulating 
turn close to the midplane (where
cos 𝜗 ~1) and reducing them 
at 90° (where cos 𝜗 → 0)

 the aperture is circular

 the winding is self-supporting (roman arc)



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Sector dipoles

 The simplest approach is the sector dipole

 To get the dipole field 𝐵1 we start again from 
the general expression for a current line

𝐵𝑛(𝑟, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 Replacing I → 𝐽𝑑𝑆 = 𝐽 ⋅ 𝑟𝑑𝑟𝑑𝜗 and integrating for 
𝑛 = 1 we find:

𝐵1 = −2
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
𝑟𝑑𝑟 න

−𝛼

𝛼

cos 𝜃 𝑑𝜃

= −
2𝜇0𝐽𝑤 sin𝛼

𝜋

+𝐽

-

−𝐽 𝑩𝒚

𝑅

𝑤
𝛼
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Symmetrical line currents

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (𝜋 − 𝜗)

+𝐼

𝑥

𝑦

•

̶ 𝐼

𝜗𝜗

𝑟 𝑟 𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 − cos 𝑛 (𝜋 − 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 − cos𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 for odd 𝑛

0 for even 𝑛
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Multipoles of a sector dipole

 Following the result for symmetrical line currents, 𝐵𝑛 = 0 for even 𝑛

 For odd 𝑛:

 Normalizing to the dipole field  𝐵1 = −
2𝜇0𝐽𝑤 sin 𝛼

𝜋

𝐵𝑛 = −2
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

−𝛼

𝛼

cos 𝑛 𝜗𝑑𝜗

= −
2

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2

𝑏𝑛 =
1

𝑛(𝑛 − 2)

𝑅𝑟𝑒𝑓
𝑛−1 sin 𝑛 𝛼

𝑤 sin 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2
⋅ 104
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Multipoles of a sector dipole

 Multipoles are proportional to sin 𝑛 𝛼

 The solution of the equation sin 𝑛 𝛼 = 0 is 

𝛼 = 𝑘
𝜋

𝑛
with 𝑘 integer such that 0 < 𝛼 <

𝜋

2

 With 1 sector we can set to zero only one 
multipole:

 𝑏3 = 0 if 𝛼 =
𝜋

3

 𝑏5 = 0 if 𝛼 =
𝜋

5
,
2

5
𝜋

 𝑏7 = 0 if 𝛼 =
𝜋

7
,
2

7
𝜋,

3

7
𝜋

a B1 (T) b3 b5 b7 b9

3

7
𝜋 -5.9 -914 106 0 -8

𝜋

3
-5.2 0 -239 61 0

2

7
𝜋 -4.7 632 -298 0 22

𝜋

5
-3.5 1844 0 -99 -17

𝜋

7
-2.6 2560 431 0 -31

R=50 mm, w=15 mm, J0=5·108 A/m2
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2-sector dipole

◼ 3 free parameters, means that we ca set to zero 3 multipoles at a 
time:

𝑅 𝑤

𝛼1
𝛼2

𝛼3 𝐵𝑛 = −4
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

0

𝛼1

cos 𝑛 𝜃𝑑𝜃 + න

𝛼2

𝛼3

cos 𝑛 𝜃𝑑𝜃 for odd 𝑛

= −
2

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼1 − sin𝑛 𝛼2 + sin 𝑛 𝛼3

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2

ቐ

sin 3𝛼1 − sin 3 𝛼2 + sin 3𝛼3 = 0 𝐵3 = 0

sin 5𝛼1 − sin 5 𝛼2 + sin 5𝛼3 = 0 𝐵5 = 0

sin 7𝛼1 − sin 7 𝛼2 + sin 7𝛼3 = 0 𝐵7 = 0

◼ A possible solution is nearly 𝛼1 = 43. 2∘, 𝛼2 = 52. 2∘, 𝛼3 = 67. 3∘

B1 (T) b3 b5 b7 b9 b11 b13

-4.9 0.5 0.3 -0.4 -29 12 1.5
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Real dipoles

 Due to the geometrical constraints of the cables, more parameters 
are needed to se to zero more multipoles

HiLumi D2 dipole LHC dipole
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Perfect dipole #4: canted cos 𝜗 (CCT) dipoles 

◼ the simplest CCT dipole consists of 2 inclined solenoids wound in the 
opposite direction: the solenoidal component cancels, and only 
the dipolar component remains

◼ The parametric equations of the two helices (𝑎2> 𝑎1>>𝑝) are

𝑷𝟏 𝜗 = ൞

𝑎1 cos𝜗
𝑎1 sin 𝜗
𝑝𝜗

2𝜋
+

𝑎1

tan 𝛽
sin 𝜗

∪ 𝑷𝟐 𝜗 = ൞

𝑎2 cos𝜗
𝑎2 sin 𝜗
𝑝𝜗

2𝜋
−

𝑎2

tan 𝛽
sin 𝜗

−𝜋𝑁 < 𝜗 < 𝜋𝑁

◼ The resulting surface current densities, in polar coordinates, are given by

𝒋𝟏 = ቐ

𝑗1𝑟
𝑗1𝜗
𝑗1𝑧

=
𝐼

𝑝

0
1
𝑝

2𝜋𝑎1
+
cos 𝜗

tan𝛽

∪ 𝒋𝟐 = ቐ

𝑗2𝑟
𝑗2𝜗
𝑗2𝑧

=
−𝐼

𝑝

0
1
𝑝

2𝜋𝑎2
−
cos𝜗

tan𝛽

(derivation at the end of the slides)
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Magnetic field from 𝑗𝜗

 Reminding that an infinitely long solenoid generates a magnetic field 

given by     𝐵𝑧 = 𝜇0
𝑁𝐼

𝐿
= 𝜇0

𝐼
𝐿

𝑁

= 𝜇0
𝐼

𝑝
,    where  

𝐼

𝑝
= 𝑗𝜗

 The azimuthal components of the current density in the 2-layer CCT 
dipole generate a solenoidal magnetic field given by:

𝐵𝑧 = 𝜇0𝑗1𝜗 + 𝜇0𝑗2𝜗 = 𝜇0
𝐼

𝑝
+ 𝜇0

−𝐼

𝑝
= 0
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Magnetic field from 𝑗𝑧

 Let’s start from the harmonic components generated by a line current: 

𝐵𝑛(𝜌, 𝜃) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 In our case 𝑟 = 𝑎1 for 𝑷𝟏 and 𝑟 = 𝑎2 for 𝑷𝟐

 replacing 𝐼 → 𝑗𝑧𝑎𝑑𝜗 and integrating we get that the harmonic components of a 
2-layer CCT dipole are given by:

𝐵𝑛 = −
𝜇0
2𝜋𝑎1

𝑅𝑟𝑒𝑓

𝑎1

𝑛−1
𝑎1𝐼

𝑝
න
0

2𝜋

cos 𝑛 𝜗
𝑝

2𝜋𝑎1
+
cos𝜗

tan𝛽
𝑑𝜗 −

𝜇0
2𝜋𝑎2

𝑅𝑟𝑒𝑓

𝑎2

𝑛−1
−𝑎2𝐼

𝑝
න
0

2𝜋

cos𝑛 𝜗
𝑝

2𝜋𝑎2
−
cos𝜗

tan𝛽
𝑑𝜗

𝐵1 = 𝐵𝑦 = −
𝜇0𝐼

𝑝 tan 𝛽
and     𝐵𝑛 = 0 𝑛 ≠ 1



Quadrupoles
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Quadrupoles

LHC

HiLumi-LHC

SIS300
HTS model
(Fermilab)

LEP
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Perfect quadrupoles

+𝐽 cos 2𝜗−𝐽 cos 2𝜗

++

-

𝑅
𝑤++

-

- -

𝐵𝑛 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

0

𝜋/4

cos 𝑛 𝜗 cos 𝑛 𝜗𝑑𝜗, if
𝑛

2
is odd

න

0

𝜋/4

cos 2 𝜗 cos 𝑛 𝜗𝑑𝜗 = ቊ
𝜋/8 se 𝑛 = 2
0 se 𝑛 ≠ 2

𝐵2 = −
𝜇0𝐽𝑅𝑟𝑒𝑓

2
ln 1 +

𝑤

𝑅

𝐺 =
𝐵2
𝑅𝑟𝑒𝑓

=
𝜇0𝐽

2
ln 1 +

𝑤

𝑅
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Symmetrical line currents

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (𝜋 − 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 + cos 𝑛 (𝜋 − 𝜗 )

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 + cos 𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 if 𝑛 is even

0 if 𝑛 is odd



+𝐼

𝑥

𝑦



+𝐼

𝜗𝜗

𝑟 𝑟
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Line currents symmetrical with respect to the bisector 

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (
𝜋

2
− 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 − cos 𝑛 (
𝜋

2
− 𝜗 )

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 − cos
𝑛𝜋

2

=
−2

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 if
𝑛

2
is odd

0 if
𝑛

2
is even

if 𝑛 is even+𝐼

𝑥

𝑦



−𝐼

𝜗

𝜗
𝑟

•
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Sector quadrupole

𝑅 𝑤

a

--

--

+

+

+

+

 Only harmonic components with even 𝑛 and odd 
𝑛/2 survive (B2, B6, B10, ..)

 Integrating as usual the harmonics of a line 
current: 

𝐵𝑛 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟න

0

𝛼

cos 𝑛 𝜗𝑑𝜗

𝐵𝑛 =

−
2𝜇0𝐽𝑅𝑟𝑒𝑓

𝜋
sin 2𝛼 ln 1 +

𝑤

𝑅
𝑛 = 2

−
4

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2
𝑛 = 6,10,14, . . .
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Sector quadrupole

 The gradient [T/m] is given by:

𝐺 =
𝐵2
𝑅𝑟𝑒𝑓

= −
2𝜇𝐽

𝜋
sin 2𝛼 ln 1 +

𝑤

𝑅𝑟𝑒𝑓

a G (T/m)
b4

(units)
b10

(units)
b14

(units)

30° -91 0 -32 3

18° -62 660 0 -5

36° -100 -252 0 2

R=50 mm, w=15 mm, J0=5·108 A/m2

 With 1 sector we can set to zero only one multipole :
sin 𝑛 𝛼 = 0 → 𝛼 = 𝑘

𝜋

𝑛
with 𝑘 integer such that 0 < 𝛼 <

𝜋

4

 𝑏6 = 0 if 𝛼 = 30˚

 𝑏10 = 0 if 𝛼 = 18˚, 36˚
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Perfect CCT quadrupoles

◼ In the same notation used for dipoles, the simplest CCT 
quadrupole consists of 2 inclined helices wound in the opposite 
direction

◼ The parametric equations of the two helices (𝑎2> 𝑎1>>𝑝) are

𝑷𝟏 𝜗 = ൞

𝑎1 cos 𝜗
𝑎1 sin 𝜗

𝑝𝜗

2𝜋
+

𝑎1

2 tan 𝛽
sin 2𝜗

∪ 𝑷𝟐 𝜗 = ൞

𝑎2 cos 𝜗
𝑎2 sin 𝜗

𝑝𝜗

2𝜋
−

𝑎2

2 tan 𝛽
sin 2𝜗

−𝜋𝑁 < 𝜗 < 𝜋𝑁

◼ The resulting surface current densities, in polar coordinates, are 
given by

𝒋𝟏 = ቐ

𝑗1𝑟
𝑗1𝜗
𝑗1𝑧

=
𝐼

𝑝

0
1
𝑝

2𝜋𝑎1
+
cos 2𝜗

tan𝛽

∪ 𝒋𝟐 = ቐ

𝑗2𝑟
𝑗2𝜗
𝑗2𝑧

=
−𝐼

𝑝

0
1
𝑝

2𝜋𝑎2
−
cos 2𝜗

tan𝛽
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Magnetic field from 𝑗𝜗

 Reminding that an infinitely long solenoid generates a magnetic field 

given by     𝐵𝑧 = 𝜇0
𝑁𝐼

𝐿
= 𝜇0

𝐼
𝐿

𝑁

= 𝜇0
𝐼

𝑝
,    where  

𝐼

𝑝
= 𝑗𝜗

 The azimuthal components of the current density in the 2-layer CCT 
quadrupole generate a solenoidal magnetic field given by:

𝐵𝑧 = 𝜇0𝑗1𝜗 + 𝜇0𝑗2𝜗 = 𝜇0
𝐼

𝑝
+ 𝜇0

−𝐼

𝑝
= 0
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Magnetic field from 𝑗𝑧

 Let’s start from the harmonic components generated by a line current: 

𝐵𝑛(𝜌, 𝜃) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜃

 In our case 𝑟 = 𝑎1 for 𝑷𝟏 and 𝑟 = 𝑎2 for 𝑷𝟐

 replacing 𝐼 → 𝑗𝑧𝑎𝑑𝜗 and integrating we get that the harmonic components of a 
2-layer CCT quadrupole are given by:

𝐵𝑛 = −
𝜇0
2𝜋𝑎1

𝑅𝑟𝑒𝑓

𝑎1

𝑛−1
𝑎1𝐼

𝑝
න
0

2𝜋

cos 𝑛 𝜗
𝑝

2𝜋𝑎1
+
cos 2𝜗

tan𝛽
𝑑𝜗 −

𝜇0
2𝜋𝑎2

𝑅𝑟𝑒𝑓

𝑎2

𝑛−1
−𝑎2𝐼

𝑝
න
0

2𝜋

cos𝑛 𝜗
𝑝

2𝜋𝑎2
−
cos 2𝜗

tan𝛽
𝑑𝜗

𝐵2 = 𝐺𝑅𝑟𝑒𝑓 = −
𝜇0𝐼𝑅𝑟𝑒𝑓

2𝑝 tan 𝛽

1

𝑎1
+

1

𝑎2
and     𝐵𝑛 = 0 𝑛 ≠ 2



Iron yoke
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Why magnets are surrounded by iron yoke?

 Accelerator magnets are usually surrounded by iron yoke:

 It considerably enhances the bore field for a given current density

 It modifies the loadline (increasing 𝐵𝑆𝑆)

 It considerably reduces the fringe field

 It can contribute to mechanical structure (see Susana presentation)
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Line current in a cylindrical iron shell

 The harmonic components of a line current inside a cylindrical iron 

shell of radii 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 is given by

𝐵𝑛(𝑟, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
𝑟

𝑛

cos 𝑛 𝜗 1 + 𝑘
𝑟

𝑅𝑖𝑛

2𝑛

𝑘 =
𝜇𝑟−1

𝜇𝑟 + 1

1 −
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

2𝑛

1 −
𝜇𝑟−1
𝜇𝑟 + 1

2 𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

2𝑛 ≈ 1 se 𝜇𝑟 >> 1
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Sector dipole inside a cylindrical shell

 Integrating the line current harmonics we get the 
resulting dipole field:

𝐵1 = −4
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
1 + 𝑘

𝑟

𝑅𝑖𝑛

2

𝑟𝑑𝑟න

0

𝛼

cos 𝜗 𝑑𝜗

= −
2𝜇0𝐽 sin 𝛼

𝜋
𝑤 + 𝑘

𝑅 + 𝑤 3 − 𝑅3

3𝑅𝑖𝑛
2

= −
2𝜇0𝐽𝑤 sin 𝛼

𝜋
1 + 𝑘

𝑅2+𝑤𝑅+
𝑤2

3

𝑅𝑖𝑛
2

 The contribution is relevant (15-50%) when iron is not far from the winding 
(𝑅𝑖𝑛 ≳ 𝑅 + 𝑤), i.e. for small collar widths, and it affect the main components 
(dependence on 𝑟

𝑅𝑖𝑛

2𝑛

)

+𝐽

-

−𝐽
𝑩𝒚

𝑅

𝑤
a

𝑅𝑖𝑛
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Impact on short sample field

 𝐵1 𝑖𝑟𝑜𝑛 = −
2𝜇0𝐽𝑜𝑝𝑤 sin 𝛼

𝜋
1 + 𝑘

𝑅2+𝑤𝑅+
𝑤2

3

𝑅𝑖𝑛
2

 𝐵1 𝑖𝑟𝑜𝑛 = 𝐵1 𝑛𝑜 𝑖𝑟𝑜𝑛 1 + 𝑘
𝑅2+𝑤𝑅+

𝑤2

3

𝑅𝑖𝑛
2

 To get the same bore field, ,we need
less current density:

◼ 𝐽𝑜𝑝−𝑛𝑜 𝑖𝑟𝑜𝑛 =
𝜋𝐵1

2𝜇0𝑤 sin 𝛼

◼ 𝐽𝑜𝑝−𝑖𝑟𝑜𝑛 =
𝜋𝐵1

2𝜇0𝑤 sin 𝛼 1+𝑘
𝑅2+𝑤𝑅+

𝑤2
3

𝑅𝑖𝑛
2

𝐽𝑜𝑝

𝐵

𝐽 𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆−𝑖𝑟𝑜𝑛
𝐽𝑜𝑝−𝑖𝑟𝑜𝑛

𝐵1 𝐵1,𝑆𝑆 𝑖𝑟𝑜𝑛

𝐵1,𝑆𝑆 𝑛𝑜 𝑖𝑟𝑜𝑛

𝐽𝑆𝑆−𝑛𝑜 𝑖𝑟𝑜𝑛

𝐽𝑜𝑝−𝑛𝑜 𝑖𝑟𝑜𝑛



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Sector quadrupole inside a cylindrical shell

 Integrating the line current harmonics we get the 
resulting quadrupole field field:

𝐵2 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

2

1 + 𝑘
𝑟

𝑅𝑖𝑛

4

𝑟𝑑𝑟න

0

𝛼

cos 2 𝜗 𝑑𝜗

= −
2𝜇0𝐽𝑅𝑟𝑒𝑓 sin 2𝛼

𝜋
ln 1 +

𝑤

𝑅
+ 𝑘

𝑅 + 𝑤 4 − 𝑅4

4𝑅𝑖𝑛
4

 The contribution is less relevant than dipole 

+𝐽

-

−𝐽

𝑅 𝑤

a

--

--

+

+

+

+
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Iron saturation

 Previous considerations are valid when iron yoke works in its linear range, 
i.e. below saturation

 Typical iron saturates for 𝐵~ 2 𝑇

◼ If 𝐵 < 2 𝑇 BH curve is roughly linear with a 
pendency of 𝜇𝑟~10

3 − 104

◼ If 𝐵 > 2 𝑇 𝜇𝑟~1 and iron gives no further 
contribution

◼ The correct iron yoke contribution to magnetic field, 
including saturation, can only be determined via finite
element analysis

𝐵 = 𝜇0 𝜇𝑟𝐻



Grading techniques
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Grading techniques

 The field map inside a coil is highly nonuniform
(inner layers have larger peak fields than outer 
layers)

 In the low field outer layers it is possible to:

◼ use larger current density and narrower conductor

◼ Use a less performant (and cheaper) material
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An example: 16 T cos dipole for the FCC

 Both inner and outer layers are dimensioned 
so that the margin on the loadline is 14%

Bpeak LF=12.5 T
Bpeak HF=16.35 T



Winding shapes
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Dipole winding shapes – EuroCirCol project 

◼ I will show the results of the optimization of a double aperture 16 T dipole for the FCC in 4 
different options as part of WP5 of Eurocircol project (www.eurocircol.eu)

◼ All optimizations share common assumption: same magnet aperture (50 mm), conductor 
performance (𝐽𝐶 16 𝑇, 4.2 𝐾 = 1500 A/mm2), margin on the  loadline (>14%), allowed 
mechanical constraints (𝜎 <150 MPa at warm and <200 MPa at cold)

Cos-theta Blocks Common coils

Swiss contribution 
via PSI

Canted Cos-theta
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Cos-theta coil

 Pros

 Natural choice (LHC dipoles)

 Circular aperture fully available for beam

 Self-supporting winding (roman arc)

 Cons

 Hardway bending in coil ends 

S.Farinon, FCC week 2019
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Block coil

 Pros

 Particularly indicated for thick coils (turn are 
stacked vertically)

 No wedges (saddle shape ends)

 Peak stress during powering in the low field 
region

 Cons

 Need of internal support, reducing available 
aperture

 Very complicated coil ends (hardway bending)
E.Rochepault, FCC week 2019
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Common coil

 Pros

 Very simple coils 
(flat racetrack shape)

 Cons

 Complicated stress 
management (huge radial 
Lorentz force)

 Needs more superconductors F. Toral, FCC week 2019
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CCT – Canted Cos Theta coil

 Pros

 Each turn is individually supported

 360° continuity of the winding: no azimuthal pre-load

 No field distortion in coil ends

 Small number of mechanical components

 Cons

 Part of the current density lost in generating 
solenoidal field

 Need more superconductors

 Complicated winding if large Rutherford cables 
(bonding of cable inside channels, reliable insulation against former) B. Auchmann, FCC week 2019

Spar

Ribs
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Results of the comparison

 The cos𝜗 configuration has been selected as baseline for the Conceptual Design 
Report of the EuroCirCol project
(http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6)

 “Each of these alternatives features some interesting characteristics which may have a 
potential to become competitive to the baseline cosine-theta design in terms of 
performance, in particular if they would allow operation at a lower margin on the 
load-line, thus reducing the required amount of conductor”

 Short model magnets (~1.5 m lengths) of all the options will be built from 2018–2022

http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6


THANKS FOR THE ATTENTION

A thorough Masterclass on superconducting magnets for particle accelerators by 
Ezio Todesco is available at https://indico.cern.ch/category/12408/ 



Derivation of current density in CCT magnet
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Derivation of current density in CCT magnet

 Let’s consider that a current I flows along the helix defined as

𝑷 𝜗 =

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗
ℎ𝜗

2𝜋
+ 𝐴 𝑠𝑖𝑛𝜗

 If the helix is infintely long the current density will be given by:

◼ 𝒋 𝜗 =
𝐼

𝛿 𝜗
ෝ𝒗𝒓 𝜗

where 𝛿 𝜗 is the distance bewteen two consecutive turns and ,ෝ𝒗𝒓 𝜗 is the 
versor of the current direction

◼ By definition ෝ𝒗𝒓 𝜗 = 1 and the direction is the same of the derivative of 𝑷 𝜗

ෝ𝒗𝒓 𝜗 =
1

𝑎2 +
ℎ
2𝜋

+ 𝐴 𝑐𝑜𝑠𝜗
2

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗
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Determination of 𝛿 𝜗

 𝛿 𝜗 is the turn to turn distance, i.e. the distance between the two 
straight lines tangent to 𝑷 𝜗 in 𝜗 e 𝜗 + 2𝜋.

 The two straight lines being parallel, that distance can be
calculated as 

 𝛿 = (𝑷𝟏−𝑷𝟎) × ෝ𝒗𝒓
where 𝑷𝟏 = 𝑷 𝜗 + 2𝜋 and 𝑷𝟎 = 𝑷 𝜗

 𝑷𝟎 = ൞

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗
ℎ𝜗

2𝜋
+ 𝐴 𝑠𝑖𝑛𝜗

𝑷𝟏 = ൞

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗

ℎ𝜗

2𝜋
+ ℎ + 𝐴 𝑠𝑖𝑛𝜗

𝑷𝟏−𝑷𝟎= ቐ
0
0
ℎ

𝑃𝑟
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Determination of 𝛿 𝜗 and 𝐣 𝜗

 ෝ𝒗𝒓 =
1

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2
൞

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

 𝛿(𝜗) = (𝑷𝟏−𝑷𝟎) × ෝ𝒗𝒓 =
1

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2
ቐ
−𝑎ℎ 𝑐𝑜𝑠𝜗
−𝑎ℎ 𝑠𝑖𝑛𝜗

0
=

𝑎ℎ

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2

 𝒋 𝜗 =
𝐼

𝛿 𝜗
ෝ𝒗𝒓 𝜗 =

𝐼

𝑎ℎ
൞

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

in cartesian coordinates

 Since 𝑗𝑟 = 𝑗𝑥𝑐𝑜𝑠𝜗 + 𝑗𝑦𝑠𝑖𝑛𝜗; 𝑗𝜗 = −𝑗𝑥𝑠𝑖𝑛𝜗 + 𝑗𝑦𝑐𝑜𝑠𝜗, we get in polar coordinates:  𝒋 𝜗 =
𝐼

𝑎ℎ
൞

0
𝑎
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

 𝑷𝟏−𝑷𝟎= ቐ
0
0
ℎ


