EASISchool 3

SUPERCONDUCTING DIPOLES AND QUADRUPOLES FOR ACCELERATORS 1

Superconducting magnet design

\square Superconducting magnet design is a true multiphysics problem involving several activities

- Electromagnetic optimization (field quality, peak field on conductor, margin)
- Choice of the conductor (transport properties)
- Choice of the operating temperature and cryogenic design
- Design of the mechanical support structure
\square Analysis of stability and quench protection
- Manufacturing techniques
- Cost analysis

Outline

- Overview of superconducting magnets for particle accelerators (dipoles and quadrupoles)
- Conductor
- Magnetic design

Stefania Farinon

■ Mechanical design

- Force, stress and pre-load
- Support structures

■ Quench protection

Comparison of critical current densities @ 4.2 K

https://fs.magnet.fsu.edu/~lee/plot/plot.htm

NbTi

- NbTi is the most widely used superconductor
- In High Energy Physics, NbTi has been used for Tevatron (Fermilab), HERA (DESY), RHIC (BNL), LHC (CERN)
- Critical surface parametrization (L. Bottura, IEEE TAS 10 (2000) 1054) :

$$
J_{C}(B, T)=\frac{C}{B}\left[\frac{B}{B_{C 2}(T)}\right]^{\alpha}\left[1-\frac{B}{B_{C 2}(T)}\right]^{\beta}\left[1-\left(\frac{T}{T_{C 0}}\right)^{1.7}\right]^{\gamma}
$$

with $T_{C 0}=9.2 \mathrm{~K} \quad B_{C 20}=14.5 \mathrm{~T} \quad B_{C 2}(T)=B_{C 20}\left[1-\left(\frac{T}{T_{C 0}}\right)^{1.7}\right]$

- Fitting parameters for LHC wires $\left(J_{C}(5 T, 4.2 K)=3000 \mathrm{~A} / \mathrm{mm}^{2}\right)$:

$$
C=92.1 \mathrm{~T} \cdot \mathrm{kA} / \mathrm{mm}^{2}, \alpha=0.63, \beta=1.0, \gamma=2.3
$$

- Practical limit for accelerator magnets:
- $B_{C 2}(1.9 K)=13.5 T$, but $J_{C}(13.5 T, 1.9 K)=0$
- To have reasonable current density $B \lesssim 10 T$, $J_{C}(10 T, 1.9 \mathrm{~K})=1680 \mathrm{~A} / \mathrm{mm}^{2}$
- Taking some margins (see next slides) $B \lesssim 8 T$

$\mathrm{Nb}_{3} \mathrm{Sn}$

- Nb3Sn is the choice to go beyond the NbTi limits in accelerator magnets
- 11 T dipoles and triplet quadrupoles in High Luminosity LHC

■ Critical surface parametrization (L. Bottura et al., IEEE TAS 19 (2009) 1521) : $J_{C}(B, T)=\frac{C}{B}\left[\frac{B}{B_{C 2}(T)}\right]^{\alpha}\left[1-\frac{B}{B_{C 2}(T)}\right]^{\beta}\left[1-\left(\frac{T}{T_{C 0}}\right)^{1.52}\right]^{\gamma}\left[1-\left(\frac{T}{T_{C 0}}\right)^{2}\right]^{\gamma}$
with $T_{C 0}=16 \mathrm{~K} \quad B_{C 20}=29 \mathrm{~T} \quad B_{C 2}(T)=B_{C 20}\left[1-\left(\frac{T}{T_{C 0}}\right)^{1.7}\right]$

- Fitting parameters for target FCC wires $\left(J_{C}(16 T, 4.2 K)=1500 \mathrm{~A} / \mathrm{mm}^{2}\right)$:

$$
C=267.845 \mathrm{~T} \cdot \mathrm{kA} / \mathrm{mm}^{2}, \alpha=0.5, \beta=2, \gamma=0.96
$$

- Practical limit for accelerator magnets:
- $B_{C 2}(1.9 K)=28 T$
- To have reasonable current density $B \lesssim 18 T, J_{C}(18 T, 1.9 \mathrm{~K})=1480 \mathrm{~A} / \mathrm{mm}^{2}$
- Taking some margins (see next slides) $B \lesssim 16 T$, that double the performance WRT NbTi

Multifilament wires

\square For practical applications, superconducting materials are produced in small filaments and surrounded by a stabilizer (typically copper) to form a multifilament wire or strand

- Typical filament diameter is in the range 3-10 $\mu \mathrm{m}$ for NbTi and $\lesssim 50 \mu \mathrm{~m}$ for $\mathrm{Nb}_{3} \mathrm{Sn}$; typical strand diameter is $\lesssim 1 \mathrm{~mm}$
- Fine filaments to
- Reduce effects due to magnetization
- Limit flux jumps
- Copper matrix
- For protection and stability (see Susana presentation)
- Twisting
- to reduce interfilament coupling and AC losses

NbTi LHC wire

$\mathrm{Nb}_{3} \mathrm{Sn}$ PIT process wire

Multistrand cables

- Most of the superconducting coils for particle accelerators are wound from a multi-strand Rutherford cable
- Main advantages:

■ Rutherford cables

- high density compaction of strands
- rectangular or trapezoidal shape (to stack arc-shaped coils)
- multi-strand cables
- large current density with small number of turns
- smaller coil inductance
- current redistribution in case of problem in a portion of a strand
- strand twisting
- to reduce inter-strand coupling and AC losses
- strand transposition

- to eliminate the flux enclosed
- to increase the mechanical stability

WARNING: engineering current density

$\lambda_{\text {cable }}=N_{\text {strand }} A_{\text {strand }} / A_{\text {cable }}$

- In SC magnets what really matters is the overall 'engineering' current density $J_{\text {eng }}$
$\square J_{\text {eng }}=\frac{N_{\text {strand }} I}{A_{\text {cable }}}=J_{C} \lambda_{\text {strand }} \lambda_{\text {cable }}$
- Typical $R_{\text {cu-non cu }}$ ranges from 1 to 2 , then $\lambda_{\text {strand }}$ ranges from 0.33 to $0.5\left(\lambda_{\text {strand }}=\frac{1}{1+R_{\mathrm{Cu}} \text { non } \mathrm{Cu}}\right)$
- $\lambda_{\text {cable }}$ takes into account the total space occupied by each turn, and is typically 0.7 to 0.8
\square So typically $J_{e n g}$ is only 20% to 40% of J_{C}

Margin on the loadline

\square The margin of a magnet is defined with respect to its weakest point, i.e. the peak field

- $J_{S S}$ (Short Sample) corresponds to the intersection of the loadline for the peak field and the critical current density curve:
 ideally is the maximum performance of the magnet
- The loadline fraction is the ratio $J_{o p} / J_{S S}$
\square The margin on the loadline is $1-J_{o p} / J_{S S}$

TABLE I. MARGIN FOR DIFFERENT ACCELERATORS

TABLE I. MARGIN FOR DIFFERENT ACCELERATORS						
	Nominal			Actual		
	Temp. (K)	Field (T)	Margin	Temp. (K)	Field (T)	Margin
Tevatron	4.2	4.3	22%	4.2	4.2	24%
Hera	4.6	4.7	23%	3.9	5.3	23%
RHIC	4.5	3.5	30%	4.5	3.5	30%
LHC	1.9	8.3	14%	1.9	7.8^{*}	19%

Temperature margin ΔT

\square The temperature margin is a physical quantity related to the energy which can be released before crossing the critical surface (order of few K)
\square It is the temperature rise necessary for the J_{C} curve to intersect the loadline at operative field

Dipole and quadrupole definition

\square Dipole magnets generate constant and uniform field B :

\square Quadrupole magnets generate constant and uniform gradient G:

What is the effect of a dipole on a travelling particle?

\square A particle of charge q travelling in a uniform magnetic field B at speed v is subjected to the Lorentz force $F_{L}=q v \times B$
\square The Lorentz force is balanced by the centrifugal force $F_{C}=m v^{2} / r$

\square The results is that the Lorentz force keeps particles in a circular orbit:

$$
m v^{2} / \rho=q v B \Rightarrow \rho=m v / q B=p / q B
$$

What is the effect of a quadrupole on a travelling particle?

Frenet-Serret coordinate system

■ Since the only force is magnetic:

$$
\begin{aligned}
& \quad \vec{F}=m \frac{d^{2} \vec{R}}{d t^{2}}=q \vec{v} \times \vec{B}, \quad \vec{R}=(\rho+x) \hat{x}+y \hat{y} \\
& \text { If } v \sim v_{s} \gg v_{x}, v_{y}
\end{aligned}
$$

$$
\vec{v} \times \vec{B}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
0 & 0 & v \\
B_{x} & B_{y} & 0
\end{array}\right|=-v B_{y} \hat{x}+v B_{x} \hat{y}
$$

Time is replaced by s, which is the reference orbit given by the bending magnets and is moving with the beam

$$
m \frac{d^{2} \vec{R}}{d t^{2}}=m\left(\frac{d^{2} x}{d t^{2}} \hat{x}+\frac{d^{2} y}{d t^{2}} \hat{y}\right)=-q v B_{y} \hat{x}+q v B_{x} \hat{y}
$$

- Along s direction, $s=v t$ then $\frac{d}{d t}=\frac{d}{d s} \frac{d s}{d t}=v \frac{d}{d s}$:

$$
\begin{array}{ll}
v^{2} \frac{d^{2} x}{d s^{2}}=-\frac{1}{m} q v B_{y} \\
v^{2} \frac{d^{2} y}{d s^{2}}=\frac{1}{m} q v B_{x}
\end{array} \quad \square \begin{aligned}
& \frac{d^{2} x}{d s^{2}}+\frac{q}{p} B_{y}=0 \\
& \frac{d^{2} y}{d s^{2}}-\frac{q}{p} B_{x}=0
\end{aligned}
$$

What is the effect of a quadrupole on a travelling particle?

\square Quadrupole field: $B_{x}=G y, \quad B_{y}=G x, G$ is the field gradient
$\square \frac{d^{2} x}{d s^{2}}+\frac{q}{p} B_{y}=0 \Rightarrow \frac{d^{2} x}{d s^{2}}+\frac{q G}{p} x=0$
■ this is a (mass-spring) harmonic oscillator; the motion can be described by the function:

$$
x(s)=A \cos (\psi(s))
$$

- The global effect is focusing in the x direction and defocusing in the y direction (QF)
- If fields have the opposite sign, we get focusing in the y direction and defocusing in the x direction (QD)
■ In an accelerator, quadrupoles give the force necessary to stabilize the linear motion

Multipolar expansion of magnetic field

Magnetic field of a current line

- From the Maxwell equation:

$$
\nabla \times \vec{B}=\mu_{0} \vec{J} \quad \oint \vec{B} d \ell=\mu_{0} I
$$

\square It's easy to find that
$B(r)=\frac{\mu_{0} I}{2 \pi r}$
lying on a plane perpendicular to the current line and tangent to the circumference of radius r

Basics of complex numbers

\square By definition, the complex number i is the solution of the equation $i^{2}=-1$
\square A general complex number is identified by 2 components: $z=a+i b$

- where a is the real part
- and b is the imaginary part
- It can be also written in the exponential form $z=r e^{i \vartheta}=r(\cos \vartheta+i \sin \vartheta)$

$$
\begin{gathered}
r=\sqrt{a^{2}+b^{2}} \\
\vartheta=\operatorname{atan} \frac{b}{a}
\end{gathered}
$$

Magnetic field of a current line

ㅁ In a more general coordinate system, using complex notation:

$$
\square \boldsymbol{B}(\boldsymbol{z})=\frac{\mu_{0} I}{2 \pi(\mathbf{z}-\boldsymbol{a})}, \operatorname{con} \boldsymbol{z}=\rho e^{i \varphi} \text { e } \boldsymbol{a}=r e^{i \vartheta}
$$

\square In facts:

$$
\begin{aligned}
\boldsymbol{B}(\mathbf{z})= & \frac{\mu_{0} I}{2 \pi\left(\rho e^{i \varphi}-r e^{i \vartheta}\right)}=\frac{\mu_{0} I}{2 \pi[(\rho \cos \varphi-r \cos \vartheta)+i(\rho \sin \varphi-r \sin \vartheta)]} \\
& =\frac{\mu_{0} I[(\rho \cos \varphi-r \cos \vartheta)-i(\rho \sin \varphi-r \sin \vartheta)]}{2 \pi\left[r^{2}+\rho^{2}-2 r \rho \cos (\vartheta-\varphi)\right]} \\
& =\frac{\mu_{0} I}{2 \pi R} \frac{(r \cos \vartheta-\rho \cos \varphi)+i(\rho \sin \varphi-r \sin \vartheta)}{R} \\
& =\frac{\mu_{0} I}{2 \pi R}(\sin \gamma+i \cos \gamma)=B_{y}+i B_{x}
\end{aligned}
$$

Magnetic field in $\mathbf{z}=\rho e^{i \varphi}$ of a current line in $\boldsymbol{a}=r e^{i \vartheta}$ if $\rho<r$

$\square \boldsymbol{B}(\mathbf{z})=\frac{\mu_{0} I}{2 \pi(\mathbf{z}-\boldsymbol{a})}=\frac{\mu_{0} I}{2 \pi\left(\rho e^{i \varphi}-r e^{i \vartheta}\right)}=-\frac{\mu_{0} I}{2 \pi r e^{i \vartheta}} \frac{1}{1-\frac{\rho}{r} e^{i(\varphi-\vartheta)}}$
\square Reminding that if $\epsilon<1: \quad \frac{1}{1-\epsilon}=\sum_{n=1}^{\infty} \epsilon^{n-1}$
$\square \boldsymbol{B}(\mathbf{z})=\frac{\mu_{0} I}{2 \pi r} e^{-i \vartheta} \sum_{n=1}^{\infty}\left[\frac{\rho}{r} e^{i(\varphi-\vartheta)}\right]^{n-1}=-\frac{\mu_{0} I}{2 \pi r} \sum_{n=1}^{\infty} e^{-i n \vartheta}\left(\frac{\rho e^{i \varphi}}{r}\right)^{n-1}=-\frac{\mu_{0} I}{2 \pi r} \sum_{n=1}^{\infty} e^{-i n \vartheta}\left(\frac{R_{r e f}}{r}\right)^{n-1}\left(\frac{\rho e^{i \varphi}}{R_{r e f}}\right)^{n-1}$
$\square \quad=\sum_{n=1}^{\infty}\left(B_{n}+i A_{n}\right)(\cos (n-1) \varphi+i \sin (n-1) \varphi)\left(\frac{\rho}{R_{r e f}}\right)^{n-1}$

$$
\text { with } \begin{aligned}
B_{n} & =-\frac{\mu_{0} I}{2 \pi r}\left(\frac{R_{r e f}}{r}\right)^{n-1} \cos n \vartheta \\
& =-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta \quad \begin{aligned}
A_{n} & =\frac{\mu_{0} I}{2 \pi r}\left(\frac{R_{r e f}}{r}\right)^{n-1} \sin n \vartheta \\
& =\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \sin n \vartheta
\end{aligned} \quad A_{n} \text { and } B_{n} \text { are in } T
\end{aligned}
$$

Harmonic components of magnetic field

\square The magnetic field can be expandend in series as

$$
B_{x}+i B_{y}=\sum_{n=1}^{\infty}\left(B_{n}+i A_{n}\right)(\cos (n-1) \varphi+i \sin (n-1) \varphi)\left(\frac{\rho}{R_{r e f}}\right)^{n-1}
$$

\square where B_{n} coefficients are the normal multipoles and A_{n} coefficients are the skew multipoles: dipole ($n=1$), quadrupole ($n=2$), sextupole ($n=3$), octupole ($n=4$),
\square To get them in practical adimensioned units, harmonics are often normalized:

$$
B_{x}+i B_{y}=10^{-4} B_{n o r m} \sum_{n=1}^{\infty}\left(b_{n}+i a_{n}\right)(\cos (n-1) \varphi+i \sin (n-1) \varphi)\left(\frac{r}{R_{r e f}}\right)^{n-1}
$$

$$
\text { with } \quad b_{n}=-\frac{10^{4}}{B_{n o r m}} \frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n=1} \cos n \vartheta \quad a_{n}=\frac{10^{4}}{B_{n o r m}} \frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \sin n \vartheta
$$

- $B_{\text {norm }}[\mathrm{T}]$ is the normalization field, $B_{\text {norm }}=B_{1}$ for dipoles, $B_{\text {norm }}=B_{2}=G R_{\text {ref }}$ for quadrupoles, etc.

Dipols

Dipoles

RHIC,
$9 \mathrm{~m}, 80 \mathrm{~mm}$ 264 dipoles

Tevatron,
$6 \mathrm{~m}, 76 \mathrm{~mm}$ 774 dipoles

Perfect dipole \#1: «wall-dipole»

\square A uniform current density flowing in two parallel walls of infinite height generates a pure dipolar field
\square winding and mechanical structure are not particularly complicated

- the coil is theoretically infinite
- coil truncation results in an acceptable field quality only for large dimensions

\square simply applying the Biot-Savart law $B_{y}=-\frac{\mu_{0} J w}{2}$

Perfect dipole \#2: intersecting circles

From "Superconducting Magnets", M.N.Wilson
\square Within a cylinder carrying uniform J, the field is $B(r)=\frac{\mu_{0} J r}{2}$, directed tangentially
\square Combining the effect of the two cylinders:

$$
\begin{aligned}
& B_{y}=\frac{\mu_{0} J}{2}\left(-r_{1} \cos \theta_{1}+r_{2} \cos \theta_{2}\right)=-\frac{\mu_{0} J s}{2} \\
& B_{x}=\frac{\mu_{0} J}{2}\left(+r_{1} \sin \theta_{1}-r_{2} \sin \theta_{2}\right)=0
\end{aligned}
$$

Perfect dipole \#2: intersecting ellipses

\square Analogously, two intersecting ellipses of semi-axes b and c generate a pure dipolar field given by:

$$
B_{y}=-\mu_{0} J s \frac{c}{(b+c)}
$$

\square The shape of intersecting circles and ellipses is not particularly favourabie to winding:
\square central aperture is not circular
\square an inner mechanical support could be needed (further reducing available aperture)

Perfect dipole \#3: $J \cos \vartheta$ distribution

- Let us consider a current density distribution $J \cos \vartheta$ in a shell of inner radius R and thickness w
- I remind that the normal harmonic component of a line current in (r, ϑ) is given by:

$$
B_{n}(\rho, \vartheta)=-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta
$$

- To get the total cotribution we replace I with $J d S=J \cos \vartheta \cdot r d r d \vartheta$ and integrate from 0 to 2π

Perfect dipole \#3: J cos ϑ distribution

$$
\begin{aligned}
& B_{n}=-\frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)^{n} r d r \int_{0}^{2 \pi} \cos \vartheta \cos n \vartheta d \vartheta \\
& \int_{0}^{2 \pi} \cos \vartheta \cos n \vartheta d \vartheta= \begin{cases}\pi & \text { if } n=1 \\
0 & \text { if } n \neq 1\end{cases}
\end{aligned}
$$

- The only surviving term is B_{1}, i.e. the dipole field:

$$
B_{1}=-\frac{\mu_{0} J_{0}}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right) r d r \cdot \pi=-\frac{\mu_{0} J w}{2} \quad\left\{\begin{array}{l}
B_{1} \propto \text { current density (obvious) } \\
B_{1} \propto \text { coil width } w \text { (less obvious) } \\
B_{1} \text { is independent of the aperture } R \text { (surprising) }
\end{array}\right.
$$

How can we approach this distribution using real conductors?

Perfect dipole vs real dipole

\square Using real conductors, current density need to be uniform
\square The perfect $J \cos \vartheta$ distribution is approached accumulating turn close to the midplane (where $\cos \vartheta \sim 1$) and reducing them at 90° (where $\cos \vartheta \rightarrow 0$)
\square the aperture is circular

\square the winding is self-supporting (roman arc)

Sector dipoles

- The simplest approach is the sector dipole
\square To get the dipole field B_{1} we start again from the general expression for a current line

$$
B_{n}(r, \vartheta)=-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta
$$

\square Replacing I $\rightarrow J d S=J \cdot r d r d \vartheta$ and integrating for $n=1$ we find:

$$
\begin{aligned}
B_{1}=-2 & \frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right) r d r \int_{-\alpha}^{\alpha} \cos \theta d \theta \\
& =-\frac{2 \mu_{0} J w \sin \alpha}{\pi}
\end{aligned}
$$

Symmetrical line currents

$$
\begin{aligned}
B_{n} & =-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta-\frac{\mu_{0}(-I)}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n(\pi-\vartheta) \\
B_{n} & =-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n}[\cos n \vartheta-\cos n(\pi-\vartheta)] \\
B_{n} & =-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta[1-\cos n \pi] \\
& =\left\{\begin{array}{cc}
-2 \frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta & \text { for odd } n \\
0 & \text { for even } n
\end{array}\right.
\end{aligned}
$$

Multipoles of a sector dipole

\square Following the result for symmetrical line currents, $B_{n}=0$ for even n
\square For odd n :

$$
\begin{aligned}
& B_{n}=-2 \frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)^{n} r d r \int_{-\alpha}^{\alpha} \cos n \vartheta d \vartheta \\
& =-\frac{2}{n(n-2)} \frac{\mu_{0} J R_{r e f}^{n-1}}{\pi} \sin n \alpha\left(\frac{1}{R^{n-2}}-\frac{1}{(R+w)^{n-2}}\right)
\end{aligned}
$$

- Normalizing to the dipole field $B_{1}=-\frac{2 \mu_{0} J w \sin \alpha}{\pi}$

$$
b_{n}=\frac{1}{n(n-2)} \frac{R_{r e f}^{n-1} \sin n \alpha}{w \sin \alpha}\left(\frac{1}{R^{n-2}}-\frac{1}{(R+w)^{n-2}}\right) \cdot 10^{4}
$$

Multipoles of a sector dipole

\square Multipoles are proportional to $\sin n \alpha$
\square The solution of the equation $\sin n \alpha=0$ is $\alpha=k \frac{\pi}{n}$ with k integer such that $0<\alpha<\frac{\pi}{2}$
\square With 1 sector we can set to zero only one multipole:
■ $b_{3}=0$ if $\alpha=\frac{\pi}{3}$
$\square b_{5}=0$ if $\alpha=\frac{\pi}{5}, \frac{2}{5} \pi$
$\underset{\text { EASISchool } 3}{b_{7}}=0$ if $\alpha=\frac{\pi}{7}, \frac{2}{7} \pi, \frac{3}{7} \pi$
INFN
$\mathrm{R}=50 \mathrm{~mm}, \mathrm{w}=15 \mathrm{~mm}, \mathrm{~J}_{0}=5 \cdot 10^{8} \mathrm{~A} / \mathrm{m}^{2}$

α	$B_{1}(T)$	b_{3}	b_{5}	b_{7}	b_{9}
$\frac{3}{7} \pi$	-5.9	-914	106	0	-8
$\frac{\pi}{3}$	-5.2	0	-239	61	0
$\frac{2}{7} \pi$	-4.7	632	-298	0	22
$\frac{\pi}{5}$	-3.5	1844	0	-99	-17
$\frac{\pi}{7}$	-2.6	2560	431	0	-31

2-sector dipole

$$
\begin{aligned}
B_{n} & =-4 \frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)^{n} r d r\left(\int_{0}^{\alpha_{1}} \cos n \theta d \theta+\int_{\alpha_{2}}^{\alpha_{3}} \cos n \theta d \theta\right) \text { for odd } n \\
\rightarrow \quad & =-\frac{2}{n(n-2)} \frac{\mu_{0} J R_{r e f}^{n-1}}{\pi}\left(\sin n \alpha_{1}-\sin n \alpha_{2}+\sin n \alpha_{3}\right)\left(\frac{1}{R^{n-2}}-\frac{1}{(R+w)^{n-2}}\right)
\end{aligned}
$$

■ 3 free parameters, means that we ca set to zero 3 multipoles at a time: $\begin{cases}\left(\sin 3 \alpha_{1}-\sin 3 \alpha_{2}+\sin 3 \alpha_{3}\right)=0 & B_{3}=0 \\ \left(\sin 5 \alpha_{1}-\sin 5 \alpha_{2}+\sin 5 \alpha_{3}\right)=0 & B_{5}=0 \\ \left(\sin 7 \alpha_{1}-\sin 7 \alpha_{2}+\sin 7 \alpha_{3}\right)=0 & B_{7}=0\end{cases}$
\square A possible solution is nearly $\alpha_{1}=43.2^{\circ}, \quad \alpha_{2}=52.2^{\circ}, \quad \alpha_{3}=67.3^{\circ}$

$B_{1}(T)$	b_{3}	b_{5}	b_{7}	b_{9}	b_{11}	b_{13}
-4.9	0.5	0.3	-0.4	-29	12	1.5

Real dipoles

\square Due to the geometrical constraints of the cables, more parameters are needed to se to zero more multipoles

Perfect dipole \#4: canted $\cos \vartheta$ (CCT) dipoles

- the simplest CCT dipole consists of 2 inclined solenoids wound in the opposite direction: the solenoidal component cancels, and only the dipolar component remains
- The parametric equations of the two helices ($a_{2}>a_{1} \gg p$) are

$$
\boldsymbol{P}_{\mathbf{1}}(\vartheta)=\left\{\begin{array}{l}
a_{1} \cos \vartheta \\
a_{1} \sin \vartheta \\
\frac{p \vartheta}{2 \pi}+\frac{a_{1}}{\tan \beta} \sin \vartheta
\end{array} \quad \cup \quad \boldsymbol{P}_{\mathbf{2}}(\vartheta)=\left\{\begin{array}{l}
a_{2} \cos \vartheta \\
a_{2} \sin \vartheta \\
\frac{p \vartheta}{2 \pi}-\frac{a_{2}}{\tan \beta} \sin \vartheta
\end{array} \quad-\pi N<\vartheta<\pi N\right.\right.
$$

- The resulting surface current densities, in polar coordinates, are given by

$$
\boldsymbol{j}_{\mathbf{1}}=\left\{\begin{array} { l }
{ j _ { 1 r } } \\
{ j _ { 1 \vartheta } = \frac { I } { p } } \\
{ j _ { 1 z } }
\end{array} \left\{\begin{array}{l}
0 \\
1 \\
\frac{p}{2 \pi a_{1}}+\frac{\cos \vartheta}{\tan \beta}
\end{array} \quad \cup \quad \boldsymbol{j}_{\mathbf{2}}=\left\{\begin{array} { l }
{ j _ { 2 r } } \\
{ j _ { 2 \vartheta } = \frac { - I } { p } } \\
{ j _ { 2 z } }
\end{array} \left\{\begin{array}{l}
0 \\
\frac{p}{2 \pi a_{2}}-\frac{\cos \vartheta}{\tan \beta}
\end{array}\right.\right.\right.\right.
$$

Magnetic field from j_{ϑ}

\square Reminding that an infinitely long solenoid generates a magnetic field given by $\quad B_{z}=\mu_{0} \frac{N I}{L}=\mu_{0} \frac{I}{\frac{L}{N}}=\mu_{0} \frac{I}{p}$, where $\frac{I}{p}=j_{\vartheta}$
\square The azimuthal components of the current density in the 2-layer CCT dipole generate a solenoidal magnetic field given by:

$$
B_{z}=\mu_{0} j_{1 \vartheta}+\mu_{0} j_{2 \vartheta}=\mu_{0} \frac{I}{p}+\mu_{0} \frac{-I}{p}=0
$$

Magnetic field from j_{z}

- Let's start from the harmonic components generated by a line current:

$$
B_{n}(\rho, \theta)=-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta
$$

- In our case $r=a_{1}$ for $\boldsymbol{P}_{\mathbf{1}}$ and $r=a_{2}$ for $\boldsymbol{P}_{\mathbf{2}}$
- replacing $I \rightarrow j_{z} a d \vartheta$ and integrating we get that the harmonic components of a 2-layer CCT dipole are given by:
$B_{n}=-\frac{\mu_{0}}{2 \pi a_{1}}\left(\frac{R_{r e f}}{a_{1}}\right)^{n-1} \frac{a_{1} I}{p} \int_{0}^{2 \pi} \cos n \vartheta\left(\frac{p}{2 \pi a_{1}}+\frac{\cos \vartheta}{\tan \beta}\right) d \vartheta-\frac{\mu_{0}}{2 \pi a_{2}}\left(\frac{R_{r e f}}{a_{2}}\right)^{n-1} \frac{-a_{2} I}{p} \int_{0}^{2 \pi} \cos n \vartheta\left(\frac{p}{2 \pi a_{2}}-\frac{\cos \vartheta}{\tan \beta}\right) d \vartheta$

$$
B_{1}=B_{y}=-\frac{\mu_{0} I}{p \tan \beta} \quad \text { and } \quad B_{n}=0 n \neq 1
$$

Quadrupoles

Quadrupoles

Perfect quadrupoles

Symmetrical line currents

$$
B_{n}=-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n(\pi-\vartheta)
$$

$$
B_{n}=-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n}[\cos n \vartheta+\cos n(\pi-\vartheta)]
$$

$$
\begin{aligned}
B_{n} & =-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta[1+\cos n \pi] \\
& =\left\{\begin{array}{cc}
-2 \frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }
\end{array}\right.
\end{aligned}
$$

Line currents symmetrical with respect to the bisector

$$
B_{n}=-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta-\frac{\mu_{0}(-I)}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n\left(\frac{\pi}{2}-\vartheta\right)
$$

$$
\begin{aligned}
B_{n}= & -\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n}\left[\cos n \vartheta-\cos n\left(\frac{\pi}{2}-\vartheta\right)\right] \\
B_{n} & =-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta\left[1-\cos \frac{n \pi}{2}\right] \\
& =\left\{\begin{array}{cc}
-2 \frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta & \text { if } \frac{n}{2} \text { is odd } \\
0 & \text { if } \frac{n}{2} \text { is even }
\end{array}\right.
\end{aligned}
$$

Sector quadrupole

- Only harmonic components with even n and odd $n / 2$ survive ($\mathrm{B}_{2}, \mathrm{~B}_{6}, \mathrm{~B}_{10}, .$.)
- Integrating as usual the harmonics of a line current:
$B_{n}=-8 \frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)^{n} r d r \int_{0}^{\alpha} \cos n \vartheta d \vartheta$

$$
B_{n}=\left\{\begin{array}{cc}
-\frac{2 \mu_{0} J R_{r e f}}{\pi} \sin 2 \alpha \ln \left(1+\frac{w}{R}\right) & n=2 \\
-\frac{4}{n(n-2)} \frac{\mu_{0} J R_{r e f}^{n-1}}{\pi} \sin n \alpha\left(\frac{1}{R^{n-2}}-\frac{1}{(R+w)^{n-2}}\right) & n=6,10,14, \ldots
\end{array}\right.
$$

Sector quadrupole

\square The gradient $[\mathrm{T} / \mathrm{m}]$ is given by:

$$
G=\frac{B_{2}}{R_{\text {ref }}}=-\frac{2 \mu J}{\pi} \sin 2 \alpha \ln \left(1+\frac{w}{R_{\text {ref }}}\right)
$$

\square With 1 sector we can set to zero only one multipole :
$\sin n \alpha=0 \rightarrow \alpha=k \frac{\pi}{n}$ with k integer such that $0<\alpha<\frac{\pi}{4}$
$\square b_{6}=0$ if $\alpha=30^{\circ}$

- $b_{10}=0$ if $\alpha=18^{\circ}, 36^{\circ}$

$\mathrm{R}=50 \mathrm{~mm}, \mathrm{w}=15 \mathrm{~mm}, \mathrm{~J}_{0}=5 \cdot 10^{8} \mathrm{~A} / \mathrm{m}^{2}$				
α	G (T/m)	$\begin{gathered} \mathrm{b}_{4} \\ \text { (units) } \end{gathered}$	$\begin{gathered} \mathbf{b}_{10} \\ \text { (units) } \end{gathered}$	$\begin{gathered} \mathrm{b}_{14} \\ \text { (units) } \end{gathered}$
30°	-91	0	-32	3
18°	-62	660	0	-5
36°	-100	-252	0	2

Perfect CCT quadrupoles

- In the same notation used for dipoles, the simplest CCT quadrupole consists of 2 inclined helices wound in the opposite direction
- The parametric equations of the two helices $\left(a_{2}>a_{1} \gg p\right)$ are $\boldsymbol{P}_{\mathbf{1}}(\vartheta)=\left\{\begin{array}{l}a_{1} \cos \vartheta \\ a_{1} \sin \vartheta \\ \frac{p \vartheta}{2 \pi}+\frac{a_{1}}{2 \tan \beta} \sin 2 \vartheta\end{array} \quad \cup \quad \boldsymbol{P}_{\mathbf{2}}(\vartheta)=\left\{\begin{array}{l}a_{2} \cos \vartheta \\ a_{2} \sin \vartheta \\ \frac{p \vartheta}{2 \pi}-\frac{a_{2}}{2 \tan \beta} \sin 2 \vartheta\end{array} \quad-\pi N<\vartheta<\pi N\right.\right.$

- The resulting surface current densities, in polar coordinates, are given by
$\boldsymbol{j}_{\mathbf{1}}=\left\{\begin{array}{l}j_{1 r} \\ j_{1 \vartheta}=\frac{I}{p} \\ j_{1 z}\end{array}\left\{\begin{array}{l}0 \\ 1 \\ \frac{p}{2 \pi a_{1}}+\frac{\cos 2 \vartheta}{\tan \beta}\end{array} \cup \quad \boldsymbol{j}_{2}=\left\{\begin{array}{l}j_{2 r} \\ j_{2 \vartheta}=\frac{-I}{p} \\ j_{2 z}\end{array}\left\{\begin{array}{l}0 \\ 1 \\ \frac{p}{2 \pi a_{2}}-\frac{\cos 2 \vartheta}{\tan \beta}\end{array}\right.\right.\right.\right.$

Magnetic field from j_{ϑ}

\square Reminding that an infinitely long solenoid generates a magnetic field given by $\quad B_{Z}=\mu_{0} \frac{N I}{L}=\mu_{0} \frac{I}{\frac{L}{N}}=\mu_{0} \frac{I}{p}$, where $\frac{I}{p}=j_{\vartheta}$
\square The azimuthal components of the current density in the 2-layer CCT quadrupole generate a solenoidal magnetic field given by:

$$
B_{z}=\mu_{0} j_{1 \vartheta}+\mu_{0} j_{2 \vartheta}=\mu_{0} \frac{I}{p}+\mu_{0} \frac{-I}{p}=0
$$

Magnetic field from j_{z}

- Let's start from the harmonic components generated by a line current:

$$
B_{n}(\rho, \theta)=-\frac{\mu_{0} I}{2 \pi R_{r e f}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \theta
$$

\square In our case $r=a_{1}$ for $\boldsymbol{P}_{\mathbf{1}}$ and $r=a_{2}$ for $\boldsymbol{P}_{\mathbf{2}}$

- replacing $I \rightarrow j_{z} a d \vartheta$ and integrating we get that the harmonic components of a 2-layer CCT quadrupole are given by:
$B_{n}=-\frac{\mu_{0}}{2 \pi a_{1}}\left(\frac{R_{r e f}}{a_{1}}\right)^{n-1} \frac{a_{1} I}{p} \int_{0}^{2 \pi} \cos n \vartheta\left(\frac{p}{2 \pi a_{1}}+\frac{\cos 2 \vartheta}{\tan \beta}\right) d \vartheta-\frac{\mu_{0}}{2 \pi a_{2}}\left(\frac{R_{r e f}}{a_{2}}\right)^{n-1} \frac{-a_{2} I}{p} \int_{0}^{2 \pi} \cos n \vartheta\left(\frac{p}{2 \pi a_{2}}-\frac{\cos 2 \vartheta}{\tan \beta}\right) d \vartheta$

$$
B_{2}=G R_{r e f}=-\frac{\mu_{0} I R_{r e f}}{2 p \tan \beta}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right) \quad \text { and } \quad B_{n}=0 n \neq 2
$$

Why magnets are surrounded by iron yoke?

\square Accelerator magnets are usually surrounded by iron yoke:

- It considerably enhances the bore field for a given current density
- It modifies the loadline (increasing $B_{S S}$)
- It considerably reduces the fringe field
- It can contribute to mechanical structure (see Susana presentation)

Line current in a cylindrical iron shell

\square The harmonic components of a line current inside a cylindrical iron shell of radii $R_{\text {in }}$ and $R_{\text {out }}$ is given by

$$
\begin{aligned}
& B_{n}(r, \vartheta)=-\frac{\mu_{0} I}{2 \pi R_{\text {ref }}}\left(\frac{R_{r e f}}{r}\right)^{n} \cos n \vartheta\left[1+k\left(\frac{r}{R_{\text {in }}}\right)^{2 n}\right] \\
& k=\frac{\mu_{r}-1}{\mu_{r}+1} \frac{1-\left(\frac{R_{\text {in }}}{R_{\text {out }}}\right)^{2 n}}{1-\left(\frac{\mu_{r}-1}{\mu_{r}+1}\right)^{2}\left(\frac{R_{\text {in }}}{R_{\text {out }}}\right)^{2 n}} \approx 1 \text { se } \mu_{r} \gg 1
\end{aligned}
$$

Sector dipole inside a cylindrical shell

- Integrating the line current harmonics we get the resulting dipole field:

$$
\begin{aligned}
B_{1} & =-4 \frac{\mu_{0} J}{2 \pi R_{r e f}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)\left[1+k\left(\frac{r}{R_{\text {in }}}\right)^{2}\right] r d r \int_{0}^{\alpha} \cos \vartheta d \vartheta \\
& =-\frac{2 \mu_{0} J \sin \alpha}{\pi}\left[w+k \frac{(R+w)^{3}-R^{3}}{3 R_{i n}^{2}}\right] \\
& =-\frac{2 \mu_{0} J w \sin \alpha}{\pi}\left[1+k \frac{R^{2}+w R+\frac{w^{2}}{3}}{R_{\text {in }}^{2}}\right]
\end{aligned}
$$

\square The contribution is relevant (15-50\%) when iron is not far from the winding ($R_{\text {in }} \gtrsim R+w$), i.e. for small collar widths, and it affect the main components (dependence on $\left.\left(\frac{r}{R_{n}}\right)^{2 n}\right)$

Impact on short sample field

- $B_{1 \text { iron }}=-\frac{2 \mu_{0} J_{o p} w \sin \alpha}{\pi}\left[1+k \frac{R^{2}+w R+\frac{w^{2}}{3}}{R_{\text {in }}^{2}}\right]$
- $B_{1 \text { iron }}=B_{1 \text { no iron }}\left[1+k \frac{R^{2}+w R+\frac{w^{2}}{3}}{R_{\text {in }}^{2}}\right]$
- To get the same bore field, we need less current density:
- $J_{o p-n o \text { iron }}=\frac{\pi B_{1}}{2 \mu_{0} w \sin \alpha}$
$-J_{\text {op-iron }}=\frac{\pi B_{1}}{2 \mu_{0} w \sin \alpha\left[1+k \frac{R^{2}+w R+\frac{w^{2}}{3}}{R_{\text {in }}^{2}}\right]}$

Sector quadrupole inside a cylindrical shell

- Integrating the line current harmonics we get the resulting quadrupole field field:

$$
\begin{aligned}
B_{2} & =-8 \frac{\mu_{0} J}{2 \pi R_{\text {ref }}} \int_{R}^{R+w}\left(\frac{R_{r e f}}{r}\right)^{2}\left[1+k\left(\frac{r}{R_{\text {in }}}\right)^{4}\right] r d r \int_{0}^{\alpha} \cos 2 \vartheta d \vartheta \\
& =-\frac{2 \mu_{0} J R_{r e f} \sin 2 \alpha}{\pi}\left[\ln \left(1+\frac{w}{R}\right)+k \frac{(R+w)^{4}-R^{4}}{4 R_{\text {in }}^{4}}\right]
\end{aligned}
$$

\square The contribution is less relevant than dipole

Iron saturation

- Previous considerations are valid when iron yoke works in its linear range, i.e. below saturation
- Typical iron saturates for $B \sim 2 T$

■ If $B<2 T \mathrm{BH}$ curve is roughly linear with a pendency of $\mu_{r} \sim 10^{3}-10^{4}$
■ If $B>2 T \mu_{r} \sim 1$ and iron gives no further contribution

- The correct iron yoke contribution to magnetic field, including saturation, can only be determined via finite element analysis

Grading techniques

- The field map inside a coil is highly nonuniform (inner layers have larger peak fields than outer layers)
- In the low field outer layers it is possible to:

■ use larger current density and narrower conductor
■ Use a less performant (and cheaper) material

An example: 16 T cos dipole for the FCC

\square Both inner and outer layers are dimensioned so that the margin on the loadline is 14%

Superconductıng dipoles and quadrupoles for accelerators 1

Winding shapes

Dipole winding shapes - EuroCirCol project

■ I will show the results of the optimization of a double aperture 16 T dipole for the FCC in 4 different options as part of WP5 of Eurocircol project (www.eurocircol.eu)

- All optimizations share common assumption: same magnet aperture (50 mm), conductor performance $\left(J_{C}(16 T, 4.2 K)=1500 \mathrm{~A} / \mathrm{mm}^{2}\right)$, margin on the loadline ($>14 \%$), allowed mechanical constraints ($\sigma<150 \mathrm{MPa}$ at warm and <200 MPa at cold)

Cos-theta

Blocks Common coils

T

Canted Cos-theta

Swiss contribution

 via PSISuperconducting dipoles and quadrupoles for acc

Cos-theta coil

- Natural choice (LHC dipoles)
- Circular aperture fully available for beam
- Self-supporting winding (roman arc)
\square Cons
- Hardway bending in coil ends

Block coil

\square Pros

- Particularly indicated for thick coils (turn are stacked vertically)
$|B|(T)$
\square No wedges (saddle shape ends)
\square Peak stress during powering in the low field region
\square Cons
- Need of internal support, reducing available aperture
\square Very complicated coil ends (hardway bending)

Common coil

\square Pros

- Very simple coils (flat racetrack shape)
\square Cons
- Complicated stress management (huge radial Lorentz force)

- Needs more superconductors
F. Toral, FCC week 2019

CCT - Canted Cos Theta coil

\square Pros

- Each turn is individually supported
- 360° continuity of the winding: no azimuthal pre-load
- No field distortion in coil ends
\square Small number of mechanical components
\square Cons
\square Part of the current density lost in generating solenoidal field
- Need more superconductors
\square Complicated winding if large Rutherford cables
 (bonding of cable inside channels, reliable insulation against former) B. Auchmann, FCC week 2019

Results of the comparison

\square The $\cos \vartheta$ configuration has been selected as baseline for the Conceptual Design Report of the EuroCirCol project (http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6)

- "Each of these alternatives features some interesting characteristics which may have a potential to become competitive to the baseline cosine-theta design in terms of performance, in particular if they would allow operation at a lower margin on the load-line, thus reducing the required amount of conductor"

■ Short model magnets (~1.5 m lengths) of all the options will be built from 2018-2022

THANKS FOR THE ATTENTION

A thorough Masterclass on superconducting magnets for particle accelerators by Ezio Todesco is available at https://indico.cern.ch/category/12408/

Derivation of current density in CCT magnet

Derivation of current density in CCT magnet

- Let's consider that a current I flows along the helix defined as

$$
\boldsymbol{P}(\vartheta)=\left\{\begin{array}{l}
a \cos \vartheta \\
a \sin \vartheta \\
\frac{h \vartheta}{2 \pi}+A \sin \vartheta
\end{array}\right.
$$

\square If the helix is infintely long the current density will be given by:

- $\boldsymbol{j}(\vartheta)=\frac{I}{\delta(\vartheta)} \widehat{\boldsymbol{v}}_{\boldsymbol{r}}(\vartheta)$ where $\delta(\vartheta)$ is the distance bewteen two consecutive turns and,$\widehat{\boldsymbol{v}}_{r}(\vartheta)$ is the versor of the current direction
\square By definition $\left|\widehat{\boldsymbol{v}}_{\boldsymbol{r}}(\vartheta)\right|=1$ and the direction is the same of the derivative of $\boldsymbol{P}(\vartheta)$

$$
\hat{\boldsymbol{v}}_{\boldsymbol{r}}(\vartheta)=\frac{1}{\sqrt{a^{2}+\left(\frac{h}{2 \pi}+A \cos \vartheta\right)^{2}}}\left\{\begin{array}{l}
-a \sin \vartheta \\
a \cos \vartheta \\
\frac{h}{2 \pi}+A \cos \vartheta
\end{array}\right.
$$

Determination of $\delta(\vartheta)$

$\square \delta(\vartheta)$ is the turn to turn distance, i.e. the distance between the two straight lines tangent to $\boldsymbol{P}(\vartheta)$ in ϑ e $\vartheta+2 \pi$.
\square The two straight lines being parallel, that distance can be calculated as
$\square \delta=\left|\left(\boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{0}}\right) \times \widehat{\boldsymbol{v}}_{r}\right|$
where $\boldsymbol{P}_{\mathbf{1}}=\boldsymbol{P}(\vartheta+2 \pi)$ and $\boldsymbol{P}_{\mathbf{0}}=\boldsymbol{P}(\vartheta)$

- $\boldsymbol{P}_{\mathbf{0}}=\left\{\begin{array}{l}a \cos \vartheta \\ a \sin \vartheta \\ \frac{h \vartheta}{2 \pi}+A \sin \vartheta\end{array} \quad \boldsymbol{P}_{\mathbf{1}}=\left\{\begin{array}{c}a \cos \vartheta \\ a \sin \vartheta \\ \frac{h \vartheta}{2 \pi}+h+A \sin \vartheta\end{array} \quad \boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{0}}=\left\{\begin{array}{l}0 \\ 0 \\ h\end{array}\right.\right.\right.$

Determination of $\delta(\vartheta)$ and $\mathbf{j}(\vartheta)$

- $\widehat{\boldsymbol{v}}_{r}=\frac{1}{\sqrt{a^{2}+\left(\frac{h}{2 \pi}+A \cos \vartheta\right)^{2}}}\left\{\begin{array}{l}-a \sin \vartheta \\ a \cos \vartheta \\ \frac{h}{2 \pi}+A \cos \vartheta\end{array}\right.$
- $\boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{0}}=\left\{\begin{array}{l}0 \\ 0 \\ h\end{array}\right.$
$\left.\square \delta(\vartheta)=\left|\left(\boldsymbol{P}_{\mathbf{1}}-\boldsymbol{P}_{\mathbf{0}}\right) \times \widehat{\boldsymbol{v}}_{\boldsymbol{r}}\right|=\frac{1}{\sqrt{a^{2}+\left(\frac{h}{2 \pi}+A \cos \vartheta\right)^{2}}} \right\rvert\,\left\{\left.\begin{array}{c}-a h \cos \vartheta \\ -a h \sin \vartheta \\ 0\end{array} \right\rvert\,=\frac{a h}{\sqrt{a^{2}+\left(\frac{h}{2 \pi}+A \cos \vartheta\right)^{2}}}\right.$
$\square \boldsymbol{j}(\vartheta)=\frac{I}{\delta(\vartheta)} \widehat{\boldsymbol{v}}_{\boldsymbol{r}}(\vartheta)=\frac{I}{a h}\left\{\begin{array}{c}-a \sin \vartheta \\ a \cos \vartheta \\ \frac{h}{2 \pi}+A \cos \vartheta\end{array}\right.$ in cartesian coordinates
Since $j_{r}=j_{x} \cos \vartheta+j_{y} \sin \vartheta ; j_{\vartheta}=-j_{x} \sin \vartheta+j_{y} \cos \vartheta$, we get in polar coordinates: $\boldsymbol{j}(\vartheta)=\frac{I}{a h}\left\{\begin{array}{l}0 \\ a \\ \frac{h}{2 \pi}+A \cos \vartheta\end{array}\right.$

