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Superconducting magnet design

 Superconducting magnet design is a true multiphysics problem 
involving several activities

 Electromagnetic optimization (field quality, peak field on conductor, margin)

 Choice of the conductor (transport properties)

 Choice of the operating temperature and cryogenic design

 Design of the mechanical support structure

 Analysis of stability and quench protection

 Manufacturing techniques

 Cost analysis
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Outline

◼ Overview of superconducting magnets for particle accelerators 
(dipoles and quadrupoles)

◼ Conductor

◼ Magnetic design

◼ Mechanical design

◼ Force, stress and pre-load

◼ Support structures

◼ Quench protection

Superconducting 

strand

Superconducting 

cable
Superconducting coil Superconducting 

magnet

Stefania Farinon

Susana Izquierdo Bermudez



Practical conductors for accelerator magnets
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Comparison of critical current densities @ 4.2 K
https://fs.magnet.fsu.edu/~lee/plot/plot.htm
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NbTi

◼ NbTi is the most widely used superconductor

◼ In High Energy Physics, NbTi has been used for Tevatron 
(Fermilab), HERA (DESY), RHIC (BNL), LHC (CERN)

◼ Critical surface parametrization (L. Bottura, IEEE TAS 10 (2000) 1054) :

𝐽𝐶 𝐵, 𝑇 =
𝐶

𝐵

𝐵

𝐵𝐶2(𝑇)

𝛼

1 −
𝐵

𝐵𝐶2(𝑇)

𝛽

1 −
𝑇

𝑇𝐶0

1.7 𝛾

with 𝑇𝐶0 = 9.2 K 𝐵𝐶20 = 14.5 T 𝐵𝐶2 𝑇 = 𝐵𝐶20 1 −
𝑇

𝑇𝐶0

1.7

◼ Fitting parameters for LHC wires (𝐽𝐶 5 𝑇, 4.2 𝐾 = 3000 A/mm2 ): 
𝐶 = 92.1 T ∙ kA/mm2, 𝛼 = 0.63, 𝛽 = 1.0, 𝛾 = 2.3

◼ Practical limit for accelerator magnets: 

◼ 𝐵𝐶2 1.9 𝐾 = 13.5 𝑇, but 𝐽𝐶 13.5 𝑇, 1.9 𝐾 = 0

◼ To have reasonable current density 𝐵 ≲ 10 𝑇, 𝐽𝐶 10 𝑇, 1.9 𝐾 = 1680 A/mm2

◼ Taking some margins (see next slides) 𝐵 ≲ 8 𝑇
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Nb3Sn

◼ Nb3Sn is the choice to go beyond the NbTi limits in accelerator magnets

◼ 11 T dipoles and triplet quadrupoles in High Luminosity LHC

◼ Critical surface parametrization (L. Bottura et al., IEEE TAS 19 (2009) 1521) :

𝐽𝐶 𝐵, 𝑇 =
𝐶

𝐵

𝐵

𝐵𝐶2(𝑇)

𝛼

1 −
𝐵

𝐵𝐶2(𝑇)

𝛽

1 −
𝑇

𝑇𝐶0

1.52 𝛾

1 −
𝑇

𝑇𝐶0

2 𝛾

with 𝑇𝐶0 = 16 K 𝐵𝐶20 = 29 T 𝐵𝐶2 𝑇 = 𝐵𝐶20 1 −
𝑇

𝑇𝐶0

1.7

◼ Fitting parameters for target FCC wires (𝐽𝐶 16 𝑇, 4.2 𝐾 = 1500 A/mm2 ): 
𝐶 = 267.845 T ∙ kA/mm2, 𝛼 = 0.5, 𝛽 = 2, 𝛾 = 0.96

◼ Practical limit for accelerator magnets: 

◼ 𝐵𝐶2 1.9 𝐾 = 28 𝑇

◼ To have reasonable current density 𝐵 ≲ 18 𝑇, 𝐽𝐶 18 𝑇, 1.9 𝐾 = 1480 A/mm2

◼ Taking some margins (see next slides) 𝐵 ≲ 16 𝑇 , that double the performance WRT NbTi
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Multifilament wires

 For practical applications, superconducting materials are 
produced in small filaments and surrounded by a stabilizer 
(typically copper) to form a multifilament wire or strand

◼ Typical filament diameter is in the range 3-10 𝜇m for NbTi and ≲50 𝜇m 
for Nb3Sn; typical strand diameter is ≲ 1 mm

◼ Fine filaments to
◼ Reduce effects due to magnetization

◼ Limit flux jumps

◼ Copper matrix
◼ For protection and stability (see Susana presentation)

◼ Twisting
◼ to reduce interfilament coupling and AC losses

NbTi LHC wire 

Nb3Sn PIT process wire 
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Multistrand cables

◼ Most of the superconducting coils for particle accelerators 
are wound from a multi-strand Rutherford cable

◼ Main advantages:

◼ Rutherford cables

◼ high density compaction of strands

◼ rectangular or trapezoidal shape (to stack arc-shaped coils)

◼ multi-strand cables

◼ large current density with small number of turns

◼ smaller coil inductance

◼ current redistribution in case of problem in a portion of a strand

◼ strand twisting

◼ to reduce inter-strand coupling and AC losses

◼ strand transposition

◼ to eliminate the flux enclosed

◼ to increase the mechanical stability

rope

braid

Rutherford
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WARNING: engineering current density

 In SC magnets what really matters is the overall 'engineering' 
current density 𝐽𝑒𝑛𝑔

 𝐽𝑒𝑛𝑔 =
𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝐼

𝐴𝑐𝑎𝑏𝑙𝑒
= 𝐽𝐶𝜆𝑠𝑡𝑟𝑎𝑛𝑑𝜆𝑐𝑎𝑏𝑙𝑒

 Typical Rcu-non Cu ranges from 1 to 2, then 𝜆𝑠𝑡𝑟𝑎𝑛𝑑 ranges 
from 0.33 to 0.5 (𝜆𝑠𝑡𝑟𝑎𝑛𝑑 =

1

1+𝑅Cu−non Cu
)

 𝜆𝑐𝑎𝑏𝑙𝑒 takes into account the total space occupied by each turn, and is 
typically  0.7 to 0.8

 So typically 𝐽𝑒𝑛𝑔 is only 20% to 40% of 𝐽𝐶

SC

Cu

𝜆𝑠𝑡𝑟𝑎𝑛𝑑 = 𝐴𝑆𝐶/𝐴𝑠𝑡𝑟𝑎𝑛𝑑

𝜆𝑐𝑎𝑏𝑙𝑒 = 𝑁𝑠𝑡𝑟𝑎𝑛𝑑𝐴𝑠𝑡𝑟𝑎𝑛𝑑/𝐴𝑐𝑎𝑏𝑙𝑒

insulation
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Margin on the loadline

 The margin of a magnet is defined with 
respect to its weakest point, i.e. the peak 
field

 𝐽𝑆𝑆 (Short Sample) corresponds to the 
intersection of the loadline for the peak 
field and the critical current density curve:
ideally is the maximum performance of 
the magnet

 The loadline fraction is the ratio 𝐽𝑜𝑝/𝐽𝑆𝑆
 The margin on the loadline is 1 − 𝐽𝑜𝑝/𝐽𝑆𝑆

𝐵

𝐽

Normal state
Superconductive  state

𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆
𝐽𝑜𝑝

𝐵𝑝𝑒𝑎𝑘,𝑜𝑝 𝐵𝑝𝑒𝑎𝑘,𝑆𝑆
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Temperature margin ∆𝑇

 The temperature margin is a 
physical quantity related to the 
energy which can be released 
before crossing the critical surface 
(order of few K)

 It is the temperature rise necessary 
for the 𝐽𝐶 curve to intersect the 
loadline at operative field

𝐵

𝐽

Normal state
Superconductive  state

𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆
𝐽𝑜𝑝

𝐵𝑜𝑝 𝐵𝑆𝑆

𝐽𝐶 (𝑇𝑜𝑝 + ∆𝑇)



Dipole and quadrupole definition
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Dipole and quadrupole definition

 Dipole magnets generate 
constant and uniform field B:

B
N

S

 Quadrupole magnets generate 
constant and uniform gradient G:

S

S

N

N

G



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

What is the effect of a dipole on a travelling particle?

 A particle of charge 𝑞 travelling in a uniform 
magnetic field 𝐵 at speed 𝑣 is subjected to the 
Lorentz force 𝐹𝐿 = 𝑞 𝑣 × 𝐵

 The Lorentz force is balanced by the centrifugal 
force 𝐹𝐶 = 𝑚𝑣2/𝑟

 The results is that the Lorentz force keeps 
particles in a circular orbit:

𝑚𝑣2/𝜌 = 𝑞𝑣𝐵 𝜌 = 𝑚𝑣/𝑞𝐵 = 𝑝/𝑞𝐵

B

orbit

r FL

FC

v
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What is the effect of a quadrupole on a travelling particle?

◼ Since the only force is magnetic:

Ԧ𝐹 = 𝑚
𝑑2𝑅

𝑑𝑡2
= 𝑞 Ԧ𝑣 × 𝐵,       𝑅 = ρ + 𝑥 ො𝑥 + 𝑦ො𝑦

◼ If 𝑣~𝑣𝑠 ≫ 𝑣𝑥 , 𝑣𝑦

Ԧ𝑣 × 𝐵 =

ො𝑥 ො𝑦 Ƹ𝑧
0 0 𝑣
𝐵𝑥 𝐵𝑦 0

= −𝑣𝐵𝑦 ො𝑥 + 𝑣𝐵𝑥 ො𝑦

𝑚
𝑑2𝑅

𝑑𝑡2
= 𝑚

𝑑2𝑥

𝑑𝑡2
ො𝑥 +

𝑑2𝑦

𝑑𝑡2
ො𝑦 = −𝑞𝑣𝐵𝑦 ො𝑥 + 𝑞𝑣𝐵𝑥 ො𝑦

Frenet-Serret coordinate system

◼ Along s direction, 𝑠 = 𝑣𝑡 then 
𝑑

𝑑𝑡
=

𝑑

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝑣

𝑑

𝑑𝑠
:

𝑣2
𝑑2𝑥

𝑑𝑠2
= −

1

𝑚
𝑞𝑣𝐵𝑦

𝑑2𝑥

𝑑𝑠2
+

𝑞

𝑝
𝐵𝑦 = 0 where 𝑝 = 𝑚𝑣

𝑣2
𝑑2𝑦

𝑑𝑠2
=

1

𝑚
𝑞𝑣𝐵𝑥

𝑑2𝑦

𝑑𝑠2
−

𝑞

𝑝
𝐵𝑥 = 0

Time is replaced by 𝑠, which is the reference orbit 
given by the bending magnets and is moving with 
the beam

r
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What is the effect of a quadrupole on a travelling particle?

◼ Quadrupole field:  𝐵𝑥 = 𝐺𝑦,   𝐵𝑦 = 𝐺𝑥,    𝐺 is the field gradient

◼

𝑑2𝑥

𝑑𝑠2
+

𝑞

𝑝
𝐵𝑦 = 0

𝑑2𝑥

𝑑𝑠2
+

𝑞𝐺

𝑝
𝑥 = 0

◼ this is a (mass-spring) harmonic oscillator; the motion can be described by the function:

𝑥 𝑠 = 𝐴 cos(𝜓 𝑠 )

◼ The global effect is focusing in the x direction and defocusing in the y direction (QF)

◼ If fields have the opposite sign, we get focusing in the y direction and defocusing in the x 
direction (QD)

◼ In an accelerator, quadrupoles give the force necessary to stabilize the linear motion



Multipolar expansion of magnetic field
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Magnetic field of a current line

 From the Maxwell equation:

𝛻 × 𝐵 = 𝜇0 Ԧ𝐽 𝐵𝑑ℓׯ = 𝜇0𝐼

 It’s easy to find that 

𝐵 𝑟 =
𝜇0𝐼

2𝜋𝑟
lying on a plane perpendicular to the current line 
and tangent to the circumference of radius 𝑟
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Basics of complex numbers

 By definition, the complex number 𝑖 is 
the solution of the equation 𝑖2 = −1

 A general complex number is identified 
by 2 components: 𝑧 = 𝑎 + 𝑖𝑏

◼ where 𝑎 is the real part

◼ and 𝑏 is the imaginary part

 It can be also written in the exponential 

form 𝑧 = 𝑟𝑒𝑖𝜗 = 𝑟 cos 𝜗 + 𝑖 sin 𝜗

Real part

𝑧 = 𝑎 + 𝑖𝑏

= 𝑟𝑒𝑖𝜗

𝜗

Im
ag

in
ar

y 
p

ar
t

𝑎

𝑏

𝑟 = 𝑎2 + 𝑏2

𝜗 = atan
𝑏

𝑎
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Magnetic field of a current line

 In a more general coordinate system, using complex notation:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒂)
, con 𝒛 = 𝜌𝑒𝑖𝜑 e 𝒂 = 𝑟𝑒𝑖𝜗

 In facts:

𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝜌𝑒𝑖𝜑 − 𝑟𝑒𝑖𝜗)
=

𝜇0𝐼

2𝜋 𝜌 cos𝜑 − 𝑟 cos 𝜗 + 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

=
𝜇0𝐼 𝜌 cos𝜑 − 𝑟 cos 𝜗 − 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

2𝜋 𝑟2 + 𝜌2 − 2𝑟𝜌 cos(𝜗 − 𝜑)

=
𝜇0𝐼

2𝜋𝑅

𝑟 cos 𝜗 − 𝜌 cos𝜑 + 𝑖(𝜌 si𝑛 𝜑 − 𝑟 sin 𝜗)

𝑅

=
𝜇0𝐼

2𝜋𝑅
sin 𝛾 + 𝑖 cos 𝛾 = 𝐵𝑦 + 𝑖𝐵𝑥



𝑟 cos 𝜗

(𝜌, 𝜑)

𝑅

𝐵

x

y

𝐼

g

(𝑟, 𝜗)

g

𝜌 cos𝜑

𝑟 sin 𝜗

𝜌 sin𝜑

𝐵 𝑟 =
𝜇0𝐼

2𝜋𝑟
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Magnetic field in 𝒛 = 𝜌𝑒𝑖𝜑of a current line in 𝒂 = 𝑟𝑒𝑖𝜗 if  𝜌 < 𝑟

 𝑩 𝒛 =
𝜇0𝐼

2𝜋(𝒛−𝒂)
=

𝜇0𝐼

2𝜋(𝜌𝑒𝑖𝜑−𝑟𝑒𝑖𝜗)
= −

𝜇0𝐼

2𝜋𝑟𝑒𝑖𝜗
1

1−
𝜌

𝑟
𝑒𝑖(𝜑−𝜗)

 Reminding that if 𝜖 < 1:

 𝑩 𝒛 =

 =

with  𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑟

𝑅𝑟𝑒𝑓

𝑟

𝑛−1
cos 𝑛𝜗 and   𝐴𝑛 =

𝜇0𝐼

2𝜋𝑟

𝑅𝑟𝑒𝑓

𝑟

𝑛−1
sin 𝑛𝜗

= −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
cos 𝑛𝜗 =

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
sin 𝑛𝜗

1

1 − 𝜖
= 

𝑛=1

∞

𝜖𝑛−1

−
𝜇0𝐼

2𝜋𝑟
𝑒−𝑖𝜗 

𝑛=1

∞
𝜌

𝑟
𝑒𝑖 𝜑−𝜗

𝑛−1

= −
𝜇0𝐼

2𝜋𝑟


𝑛=1

∞

𝑒−𝑖𝑛𝜗
𝜌𝑒𝑖𝜑

𝑟

𝑛−1

= −
𝜇0𝐼

2𝜋𝑟


𝑛=1

∞

𝑒−𝑖𝑛𝜗
𝑅𝑟𝑒𝑓

𝑟

𝑛−1
𝜌𝑒𝑖𝜑

𝑅𝑟𝑒𝑓

𝑛−1



𝑛=1

∞

(𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝜌

𝑅𝑟𝑒𝑓

𝑛−1

𝐴𝑛 and 𝐵𝑛 are in T
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Harmonic components of magnetic field

 The magnetic field can be expandend in series as

𝐵𝑥 + 𝑖𝐵𝑦 = 

𝑛=1

∞

(𝐵𝑛 + 𝑖𝐴𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝜌

𝑅𝑟𝑒𝑓

𝑛−1

 where 𝐵𝑛 coefficients are the normal multipoles and 𝐴𝑛 coefficients are the skew
multipoles: dipole (𝑛=1), quadrupole (𝑛=2), sextupole (𝑛=3), octupole (𝑛=4), ….

 To get them in practical adimensioned units, harmonics are often normalized:

𝐵𝑥 + 𝑖𝐵𝑦 = 10−4𝐵𝑛𝑜𝑟𝑚 

𝑛=1

∞

(𝑏𝑛 + 𝑖𝑎𝑛)(cos 𝑛 − 1 𝜑 + 𝑖 sin 𝑛 − 1 𝜑)
𝑟

𝑅𝑟𝑒𝑓

𝑛−1

with    𝑏𝑛 = −
104

𝐵𝑛𝑜𝑟𝑚

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
cos 𝑛𝜗 𝑎𝑛 =

104

𝐵𝑛𝑜𝑟𝑚

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛
sin 𝑛𝜗

 𝐵𝑛𝑜𝑟𝑚 [T] is the normalization field, 𝐵𝑛𝑜𝑟𝑚 = 𝐵1 for dipoles, 𝐵𝑛𝑜𝑟𝑚 = 𝐵2 = 𝐺𝑅𝑟𝑒𝑓for quadrupoles, etc.



Dipols
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Dipoles
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Perfect dipole #1: «wall-dipole» 

 A uniform current density flowing in two 
parallel walls of infinite height generates a 
pure dipolar field

 winding and mechanical structure are not 
particularly complicated

 the coil is theoretically infinite

 coil truncation results in an acceptable field 
quality only for large dimensions

 simply applying the Biot-Savart law 𝐵𝑦 = −
𝜇0𝐽𝑤

2

𝑥

𝑦
−𝑱𝒛 +𝑱𝒛

𝑤

𝑩𝒚
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Perfect dipole #2: intersecting circles

 Within a cylinder carrying uniform 𝐽, the 

field is 𝐵(𝑟) =
𝜇0𝐽𝑟

2
, directed tangentially

 Combining the effect of the two cylinders:

𝐵𝑦 =
𝜇0𝐽

2
−𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 = −

𝜇0𝐽𝑠

2

𝐵𝑥 =
𝜇0𝐽

2
+𝑟1 sin 𝜃1 − 𝑟2 sin 𝜃2 = 0From “Superconducting Magnets”, M.N.Wilson
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Perfect dipole #2: intersecting ellipses

 Analogously,  two intersecting ellipses of 
semi-axes 𝑏 and 𝑐 generate a pure dipolar 
field given by:

𝐵𝑦 = −𝜇0𝐽𝑠
𝑐

(𝑏 + 𝑐)

 The shape of intersecting circles and ellipses is not particularly 
favourable to winding:

 central aperture is not circular

 an inner mechanical support could be needed (further reducing available aperture)

+Jz̶ Jz



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Perfect dipole #3: 𝐽 cos 𝜗 distribution

 Let us consider a current density distribution 
𝐽 cos 𝜗 in a shell of inner radius 𝑅 and thickness 𝑤

 I remind that the normal harmonic component of 

a line current in (𝑟, 𝜗) is given by: 

𝐵𝑛(𝜌, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 To get the total cotribution we replace 𝐼 with 𝐽𝑑𝑆 = 𝐽 cos 𝜗 ⋅ 𝑟𝑑𝑟𝑑𝜗 and 
integrate from 0 to 2𝜋

𝐽cos 𝜗

+

+-

- 𝑩𝒚

𝑅
𝑤
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Perfect dipole #3: 𝐽 cos 𝜗 distribution

 The only surviving term is 𝐵1, i.e. the dipole field:

 How can we approach this distribution using real conductors?

𝐵1 = −
𝜇0𝐽0

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
𝑟𝑑𝑟 ⋅ 𝜋 = −

𝜇0𝐽𝑤

2

න

0

2𝜋

cos 𝜗 cos 𝑛 𝜗𝑑𝜗 = ቊ
𝜋 if 𝑛 = 1
0 if 𝑛 ≠ 1

𝐵𝑛 = −
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟න

0

2𝜋

cos 𝜗 cos 𝑛 𝜗𝑑𝜗

𝐵1 current density (obvious)
𝐵1 coil width w (less obvious)
𝐵1 is independent of the aperture R (surprising)
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Perfect dipole vs real dipole

 Using real conductors, current density need to be uniform

 The perfect 𝐽 cos 𝜗 distribution
is approached accumulating 
turn close to the midplane (where
cos 𝜗 ~1) and reducing them 
at 90° (where cos 𝜗 → 0)

 the aperture is circular

 the winding is self-supporting (roman arc)
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Sector dipoles

 The simplest approach is the sector dipole

 To get the dipole field 𝐵1 we start again from 
the general expression for a current line

𝐵𝑛(𝑟, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 Replacing I → 𝐽𝑑𝑆 = 𝐽 ⋅ 𝑟𝑑𝑟𝑑𝜗 and integrating for 
𝑛 = 1 we find:

𝐵1 = −2
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
𝑟𝑑𝑟 න

−𝛼

𝛼

cos 𝜃 𝑑𝜃

= −
2𝜇0𝐽𝑤 sin𝛼

𝜋

+𝐽

-

−𝐽 𝑩𝒚

𝑅

𝑤
𝛼
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Symmetrical line currents

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (𝜋 − 𝜗)

+𝐼

𝑥

𝑦

•

̶ 𝐼

𝜗𝜗

𝑟 𝑟 𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 − cos 𝑛 (𝜋 − 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 − cos𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 for odd 𝑛

0 for even 𝑛



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Multipoles of a sector dipole

 Following the result for symmetrical line currents, 𝐵𝑛 = 0 for even 𝑛

 For odd 𝑛:

 Normalizing to the dipole field  𝐵1 = −
2𝜇0𝐽𝑤 sin 𝛼

𝜋

𝐵𝑛 = −2
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

−𝛼

𝛼

cos 𝑛 𝜗𝑑𝜗

= −
2

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2

𝑏𝑛 =
1

𝑛(𝑛 − 2)

𝑅𝑟𝑒𝑓
𝑛−1 sin 𝑛 𝛼

𝑤 sin 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2
⋅ 104
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Multipoles of a sector dipole

 Multipoles are proportional to sin 𝑛 𝛼

 The solution of the equation sin 𝑛 𝛼 = 0 is 

𝛼 = 𝑘
𝜋

𝑛
with 𝑘 integer such that 0 < 𝛼 <

𝜋

2

 With 1 sector we can set to zero only one 
multipole:

 𝑏3 = 0 if 𝛼 =
𝜋

3

 𝑏5 = 0 if 𝛼 =
𝜋

5
,
2

5
𝜋

 𝑏7 = 0 if 𝛼 =
𝜋

7
,
2

7
𝜋,

3

7
𝜋

a B1 (T) b3 b5 b7 b9

3

7
𝜋 -5.9 -914 106 0 -8

𝜋

3
-5.2 0 -239 61 0

2

7
𝜋 -4.7 632 -298 0 22

𝜋

5
-3.5 1844 0 -99 -17

𝜋

7
-2.6 2560 431 0 -31

R=50 mm, w=15 mm, J0=5·108 A/m2
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2-sector dipole

◼ 3 free parameters, means that we ca set to zero 3 multipoles at a 
time:

𝑅 𝑤

𝛼1
𝛼2

𝛼3 𝐵𝑛 = −4
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

0

𝛼1

cos 𝑛 𝜃𝑑𝜃 + න

𝛼2

𝛼3

cos 𝑛 𝜃𝑑𝜃 for odd 𝑛

= −
2

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼1 − sin𝑛 𝛼2 + sin 𝑛 𝛼3

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2

ቐ

sin 3𝛼1 − sin 3 𝛼2 + sin 3𝛼3 = 0 𝐵3 = 0

sin 5𝛼1 − sin 5 𝛼2 + sin 5𝛼3 = 0 𝐵5 = 0

sin 7𝛼1 − sin 7 𝛼2 + sin 7𝛼3 = 0 𝐵7 = 0

◼ A possible solution is nearly 𝛼1 = 43. 2∘, 𝛼2 = 52. 2∘, 𝛼3 = 67. 3∘

B1 (T) b3 b5 b7 b9 b11 b13

-4.9 0.5 0.3 -0.4 -29 12 1.5
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Real dipoles

 Due to the geometrical constraints of the cables, more parameters 
are needed to se to zero more multipoles

HiLumi D2 dipole LHC dipole
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Perfect dipole #4: canted cos 𝜗 (CCT) dipoles 

◼ the simplest CCT dipole consists of 2 inclined solenoids wound in the 
opposite direction: the solenoidal component cancels, and only 
the dipolar component remains

◼ The parametric equations of the two helices (𝑎2> 𝑎1>>𝑝) are

𝑷𝟏 𝜗 = ൞

𝑎1 cos𝜗
𝑎1 sin 𝜗
𝑝𝜗

2𝜋
+

𝑎1

tan 𝛽
sin 𝜗

∪ 𝑷𝟐 𝜗 = ൞

𝑎2 cos𝜗
𝑎2 sin 𝜗
𝑝𝜗

2𝜋
−

𝑎2

tan 𝛽
sin 𝜗

−𝜋𝑁 < 𝜗 < 𝜋𝑁

◼ The resulting surface current densities, in polar coordinates, are given by

𝒋𝟏 = ቐ

𝑗1𝑟
𝑗1𝜗
𝑗1𝑧

=
𝐼

𝑝

0
1
𝑝

2𝜋𝑎1
+
cos 𝜗

tan𝛽

∪ 𝒋𝟐 = ቐ

𝑗2𝑟
𝑗2𝜗
𝑗2𝑧

=
−𝐼

𝑝

0
1
𝑝

2𝜋𝑎2
−
cos𝜗

tan𝛽

(derivation at the end of the slides)
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Magnetic field from 𝑗𝜗

 Reminding that an infinitely long solenoid generates a magnetic field 

given by     𝐵𝑧 = 𝜇0
𝑁𝐼

𝐿
= 𝜇0

𝐼
𝐿

𝑁

= 𝜇0
𝐼

𝑝
,    where  

𝐼

𝑝
= 𝑗𝜗

 The azimuthal components of the current density in the 2-layer CCT 
dipole generate a solenoidal magnetic field given by:

𝐵𝑧 = 𝜇0𝑗1𝜗 + 𝜇0𝑗2𝜗 = 𝜇0
𝐼

𝑝
+ 𝜇0

−𝐼

𝑝
= 0
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Magnetic field from 𝑗𝑧

 Let’s start from the harmonic components generated by a line current: 

𝐵𝑛(𝜌, 𝜃) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗

 In our case 𝑟 = 𝑎1 for 𝑷𝟏 and 𝑟 = 𝑎2 for 𝑷𝟐

 replacing 𝐼 → 𝑗𝑧𝑎𝑑𝜗 and integrating we get that the harmonic components of a 
2-layer CCT dipole are given by:

𝐵𝑛 = −
𝜇0
2𝜋𝑎1

𝑅𝑟𝑒𝑓

𝑎1

𝑛−1
𝑎1𝐼

𝑝
න
0

2𝜋

cos 𝑛 𝜗
𝑝

2𝜋𝑎1
+
cos𝜗

tan𝛽
𝑑𝜗 −

𝜇0
2𝜋𝑎2

𝑅𝑟𝑒𝑓

𝑎2

𝑛−1
−𝑎2𝐼

𝑝
න
0

2𝜋

cos𝑛 𝜗
𝑝

2𝜋𝑎2
−
cos𝜗

tan𝛽
𝑑𝜗

𝐵1 = 𝐵𝑦 = −
𝜇0𝐼

𝑝 tan 𝛽
and     𝐵𝑛 = 0 𝑛 ≠ 1



Quadrupoles
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Quadrupoles

LHC

HiLumi-LHC

SIS300
HTS model
(Fermilab)

LEP
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Perfect quadrupoles

+𝐽 cos 2𝜗−𝐽 cos 2𝜗

++

-

𝑅
𝑤++

-

- -

𝐵𝑛 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟 න

0

𝜋/4

cos 𝑛 𝜗 cos 𝑛 𝜗𝑑𝜗, if
𝑛

2
is odd

න

0

𝜋/4

cos 2 𝜗 cos 𝑛 𝜗𝑑𝜗 = ቊ
𝜋/8 se 𝑛 = 2
0 se 𝑛 ≠ 2

𝐵2 = −
𝜇0𝐽𝑅𝑟𝑒𝑓

2
ln 1 +

𝑤

𝑅

𝐺 =
𝐵2
𝑅𝑟𝑒𝑓

=
𝜇0𝐽

2
ln 1 +

𝑤

𝑅



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Symmetrical line currents

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (𝜋 − 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 + cos 𝑛 (𝜋 − 𝜗 )

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 + cos 𝑛 𝜋

= ൞−2
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 if 𝑛 is even

0 if 𝑛 is odd



+𝐼

𝑥

𝑦



+𝐼

𝜗𝜗

𝑟 𝑟
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Line currents symmetrical with respect to the bisector 

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 −
𝜇0 −𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 (
𝜋

2
− 𝜗)

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 − cos 𝑛 (
𝜋

2
− 𝜗 )

𝐵𝑛 = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 1 − cos
𝑛𝜋

2

=
−2

𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜗 if
𝑛

2
is odd

0 if
𝑛

2
is even

if 𝑛 is even+𝐼

𝑥

𝑦



−𝐼

𝜗

𝜗
𝑟

•
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Sector quadrupole

𝑅 𝑤

a

--

--

+

+

+

+

 Only harmonic components with even 𝑛 and odd 
𝑛/2 survive (B2, B6, B10, ..)

 Integrating as usual the harmonics of a line 
current: 

𝐵𝑛 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

𝑛

𝑟𝑑𝑟න

0

𝛼

cos 𝑛 𝜗𝑑𝜗

𝐵𝑛 =

−
2𝜇0𝐽𝑅𝑟𝑒𝑓

𝜋
sin 2𝛼 ln 1 +

𝑤

𝑅
𝑛 = 2

−
4

𝑛(𝑛 − 2)

𝜇0𝐽𝑅𝑟𝑒𝑓
𝑛−1

𝜋
sin 𝑛 𝛼

1

𝑅𝑛−2
−

1

(𝑅 + 𝑤)𝑛−2
𝑛 = 6,10,14, . . .



EASISchool 3 Superconducting dipoles and quadrupoles for accelerators 1Stefania Farinon

Sector quadrupole

 The gradient [T/m] is given by:

𝐺 =
𝐵2
𝑅𝑟𝑒𝑓

= −
2𝜇𝐽

𝜋
sin 2𝛼 ln 1 +

𝑤

𝑅𝑟𝑒𝑓

a G (T/m)
b4

(units)
b10

(units)
b14

(units)

30° -91 0 -32 3

18° -62 660 0 -5

36° -100 -252 0 2

R=50 mm, w=15 mm, J0=5·108 A/m2

 With 1 sector we can set to zero only one multipole :
sin 𝑛 𝛼 = 0 → 𝛼 = 𝑘

𝜋

𝑛
with 𝑘 integer such that 0 < 𝛼 <

𝜋

4

 𝑏6 = 0 if 𝛼 = 30˚

 𝑏10 = 0 if 𝛼 = 18˚, 36˚
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Perfect CCT quadrupoles

◼ In the same notation used for dipoles, the simplest CCT 
quadrupole consists of 2 inclined helices wound in the opposite 
direction

◼ The parametric equations of the two helices (𝑎2> 𝑎1>>𝑝) are

𝑷𝟏 𝜗 = ൞

𝑎1 cos 𝜗
𝑎1 sin 𝜗

𝑝𝜗

2𝜋
+

𝑎1

2 tan 𝛽
sin 2𝜗

∪ 𝑷𝟐 𝜗 = ൞

𝑎2 cos 𝜗
𝑎2 sin 𝜗

𝑝𝜗

2𝜋
−

𝑎2

2 tan 𝛽
sin 2𝜗

−𝜋𝑁 < 𝜗 < 𝜋𝑁

◼ The resulting surface current densities, in polar coordinates, are 
given by

𝒋𝟏 = ቐ

𝑗1𝑟
𝑗1𝜗
𝑗1𝑧

=
𝐼

𝑝

0
1
𝑝

2𝜋𝑎1
+
cos 2𝜗

tan𝛽

∪ 𝒋𝟐 = ቐ

𝑗2𝑟
𝑗2𝜗
𝑗2𝑧

=
−𝐼

𝑝

0
1
𝑝

2𝜋𝑎2
−
cos 2𝜗

tan𝛽
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Magnetic field from 𝑗𝜗

 Reminding that an infinitely long solenoid generates a magnetic field 

given by     𝐵𝑧 = 𝜇0
𝑁𝐼

𝐿
= 𝜇0

𝐼
𝐿

𝑁

= 𝜇0
𝐼

𝑝
,    where  

𝐼

𝑝
= 𝑗𝜗

 The azimuthal components of the current density in the 2-layer CCT 
quadrupole generate a solenoidal magnetic field given by:

𝐵𝑧 = 𝜇0𝑗1𝜗 + 𝜇0𝑗2𝜗 = 𝜇0
𝐼

𝑝
+ 𝜇0

−𝐼

𝑝
= 0
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Magnetic field from 𝑗𝑧

 Let’s start from the harmonic components generated by a line current: 

𝐵𝑛(𝜌, 𝜃) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓

𝑟

𝑛

cos 𝑛 𝜃

 In our case 𝑟 = 𝑎1 for 𝑷𝟏 and 𝑟 = 𝑎2 for 𝑷𝟐

 replacing 𝐼 → 𝑗𝑧𝑎𝑑𝜗 and integrating we get that the harmonic components of a 
2-layer CCT quadrupole are given by:

𝐵𝑛 = −
𝜇0
2𝜋𝑎1

𝑅𝑟𝑒𝑓

𝑎1

𝑛−1
𝑎1𝐼

𝑝
න
0

2𝜋

cos 𝑛 𝜗
𝑝

2𝜋𝑎1
+
cos 2𝜗

tan𝛽
𝑑𝜗 −

𝜇0
2𝜋𝑎2

𝑅𝑟𝑒𝑓

𝑎2

𝑛−1
−𝑎2𝐼

𝑝
න
0

2𝜋

cos𝑛 𝜗
𝑝

2𝜋𝑎2
−
cos 2𝜗

tan𝛽
𝑑𝜗

𝐵2 = 𝐺𝑅𝑟𝑒𝑓 = −
𝜇0𝐼𝑅𝑟𝑒𝑓

2𝑝 tan 𝛽

1

𝑎1
+

1

𝑎2
and     𝐵𝑛 = 0 𝑛 ≠ 2



Iron yoke
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Why magnets are surrounded by iron yoke?

 Accelerator magnets are usually surrounded by iron yoke:

 It considerably enhances the bore field for a given current density

 It modifies the loadline (increasing 𝐵𝑆𝑆)

 It considerably reduces the fringe field

 It can contribute to mechanical structure (see Susana presentation)
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Line current in a cylindrical iron shell

 The harmonic components of a line current inside a cylindrical iron 

shell of radii 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 is given by

𝐵𝑛(𝑟, 𝜗) = −
𝜇0𝐼

2𝜋𝑅𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
𝑟

𝑛

cos 𝑛 𝜗 1 + 𝑘
𝑟

𝑅𝑖𝑛

2𝑛

𝑘 =
𝜇𝑟−1

𝜇𝑟 + 1

1 −
𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

2𝑛

1 −
𝜇𝑟−1
𝜇𝑟 + 1

2 𝑅𝑖𝑛
𝑅𝑜𝑢𝑡

2𝑛 ≈ 1 se 𝜇𝑟 >> 1
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Sector dipole inside a cylindrical shell

 Integrating the line current harmonics we get the 
resulting dipole field:

𝐵1 = −4
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟
1 + 𝑘

𝑟

𝑅𝑖𝑛

2

𝑟𝑑𝑟න

0

𝛼

cos 𝜗 𝑑𝜗

= −
2𝜇0𝐽 sin 𝛼

𝜋
𝑤 + 𝑘

𝑅 + 𝑤 3 − 𝑅3

3𝑅𝑖𝑛
2

= −
2𝜇0𝐽𝑤 sin 𝛼

𝜋
1 + 𝑘

𝑅2+𝑤𝑅+
𝑤2

3

𝑅𝑖𝑛
2

 The contribution is relevant (15-50%) when iron is not far from the winding 
(𝑅𝑖𝑛 ≳ 𝑅 + 𝑤), i.e. for small collar widths, and it affect the main components 
(dependence on 𝑟

𝑅𝑖𝑛

2𝑛

)

+𝐽

-

−𝐽
𝑩𝒚

𝑅

𝑤
a

𝑅𝑖𝑛
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Impact on short sample field

 𝐵1 𝑖𝑟𝑜𝑛 = −
2𝜇0𝐽𝑜𝑝𝑤 sin 𝛼

𝜋
1 + 𝑘

𝑅2+𝑤𝑅+
𝑤2

3

𝑅𝑖𝑛
2

 𝐵1 𝑖𝑟𝑜𝑛 = 𝐵1 𝑛𝑜 𝑖𝑟𝑜𝑛 1 + 𝑘
𝑅2+𝑤𝑅+

𝑤2

3

𝑅𝑖𝑛
2

 To get the same bore field, ,we need
less current density:

◼ 𝐽𝑜𝑝−𝑛𝑜 𝑖𝑟𝑜𝑛 =
𝜋𝐵1

2𝜇0𝑤 sin 𝛼

◼ 𝐽𝑜𝑝−𝑖𝑟𝑜𝑛 =
𝜋𝐵1

2𝜇0𝑤 sin 𝛼 1+𝑘
𝑅2+𝑤𝑅+

𝑤2
3

𝑅𝑖𝑛
2

𝐽𝑜𝑝

𝐵

𝐽 𝐽𝐶 (𝑇𝑜𝑝)

𝐽𝑆𝑆−𝑖𝑟𝑜𝑛
𝐽𝑜𝑝−𝑖𝑟𝑜𝑛

𝐵1 𝐵1,𝑆𝑆 𝑖𝑟𝑜𝑛

𝐵1,𝑆𝑆 𝑛𝑜 𝑖𝑟𝑜𝑛

𝐽𝑆𝑆−𝑛𝑜 𝑖𝑟𝑜𝑛

𝐽𝑜𝑝−𝑛𝑜 𝑖𝑟𝑜𝑛
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Sector quadrupole inside a cylindrical shell

 Integrating the line current harmonics we get the 
resulting quadrupole field field:

𝐵2 = −8
𝜇0𝐽

2𝜋𝑅𝑟𝑒𝑓
න

𝑅

𝑅+𝑤
𝑅𝑟𝑒𝑓

𝑟

2

1 + 𝑘
𝑟

𝑅𝑖𝑛

4

𝑟𝑑𝑟න

0

𝛼

cos 2 𝜗 𝑑𝜗

= −
2𝜇0𝐽𝑅𝑟𝑒𝑓 sin 2𝛼

𝜋
ln 1 +

𝑤

𝑅
+ 𝑘

𝑅 + 𝑤 4 − 𝑅4

4𝑅𝑖𝑛
4

 The contribution is less relevant than dipole 

+𝐽

-

−𝐽

𝑅 𝑤

a

--

--

+

+

+

+
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Iron saturation

 Previous considerations are valid when iron yoke works in its linear range, 
i.e. below saturation

 Typical iron saturates for 𝐵~ 2 𝑇

◼ If 𝐵 < 2 𝑇 BH curve is roughly linear with a 
pendency of 𝜇𝑟~10

3 − 104

◼ If 𝐵 > 2 𝑇 𝜇𝑟~1 and iron gives no further 
contribution

◼ The correct iron yoke contribution to magnetic field, 
including saturation, can only be determined via finite
element analysis

𝐵 = 𝜇0 𝜇𝑟𝐻



Grading techniques
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Grading techniques

 The field map inside a coil is highly nonuniform
(inner layers have larger peak fields than outer 
layers)

 In the low field outer layers it is possible to:

◼ use larger current density and narrower conductor

◼ Use a less performant (and cheaper) material
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An example: 16 T cos dipole for the FCC

 Both inner and outer layers are dimensioned 
so that the margin on the loadline is 14%

Bpeak LF=12.5 T
Bpeak HF=16.35 T



Winding shapes
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Dipole winding shapes – EuroCirCol project 

◼ I will show the results of the optimization of a double aperture 16 T dipole for the FCC in 4 
different options as part of WP5 of Eurocircol project (www.eurocircol.eu)

◼ All optimizations share common assumption: same magnet aperture (50 mm), conductor 
performance (𝐽𝐶 16 𝑇, 4.2 𝐾 = 1500 A/mm2), margin on the  loadline (>14%), allowed 
mechanical constraints (𝜎 <150 MPa at warm and <200 MPa at cold)

Cos-theta Blocks Common coils

Swiss contribution 
via PSI

Canted Cos-theta
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Cos-theta coil

 Pros

 Natural choice (LHC dipoles)

 Circular aperture fully available for beam

 Self-supporting winding (roman arc)

 Cons

 Hardway bending in coil ends 

S.Farinon, FCC week 2019
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Block coil

 Pros

 Particularly indicated for thick coils (turn are 
stacked vertically)

 No wedges (saddle shape ends)

 Peak stress during powering in the low field 
region

 Cons

 Need of internal support, reducing available 
aperture

 Very complicated coil ends (hardway bending)
E.Rochepault, FCC week 2019
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Common coil

 Pros

 Very simple coils 
(flat racetrack shape)

 Cons

 Complicated stress 
management (huge radial 
Lorentz force)

 Needs more superconductors F. Toral, FCC week 2019
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CCT – Canted Cos Theta coil

 Pros

 Each turn is individually supported

 360° continuity of the winding: no azimuthal pre-load

 No field distortion in coil ends

 Small number of mechanical components

 Cons

 Part of the current density lost in generating 
solenoidal field

 Need more superconductors

 Complicated winding if large Rutherford cables 
(bonding of cable inside channels, reliable insulation against former) B. Auchmann, FCC week 2019

Spar

Ribs
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Results of the comparison

 The cos𝜗 configuration has been selected as baseline for the Conceptual Design 
Report of the EuroCirCol project
(http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6)

 “Each of these alternatives features some interesting characteristics which may have a 
potential to become competitive to the baseline cosine-theta design in terms of 
performance, in particular if they would allow operation at a lower margin on the 
load-line, thus reducing the required amount of conductor”

 Short model magnets (~1.5 m lengths) of all the options will be built from 2018–2022

http://cds.cern.ch/record/2651300/files/CERN-ACC-2018-0058.pdf?version=6


THANKS FOR THE ATTENTION

A thorough Masterclass on superconducting magnets for particle accelerators by 
Ezio Todesco is available at https://indico.cern.ch/category/12408/ 



Derivation of current density in CCT magnet
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Derivation of current density in CCT magnet

 Let’s consider that a current I flows along the helix defined as

𝑷 𝜗 =

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗
ℎ𝜗

2𝜋
+ 𝐴 𝑠𝑖𝑛𝜗

 If the helix is infintely long the current density will be given by:

◼ 𝒋 𝜗 =
𝐼

𝛿 𝜗
ෝ𝒗𝒓 𝜗

where 𝛿 𝜗 is the distance bewteen two consecutive turns and ,ෝ𝒗𝒓 𝜗 is the 
versor of the current direction

◼ By definition ෝ𝒗𝒓 𝜗 = 1 and the direction is the same of the derivative of 𝑷 𝜗

ෝ𝒗𝒓 𝜗 =
1

𝑎2 +
ℎ
2𝜋

+ 𝐴 𝑐𝑜𝑠𝜗
2

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗
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Determination of 𝛿 𝜗

 𝛿 𝜗 is the turn to turn distance, i.e. the distance between the two 
straight lines tangent to 𝑷 𝜗 in 𝜗 e 𝜗 + 2𝜋.

 The two straight lines being parallel, that distance can be
calculated as 

 𝛿 = (𝑷𝟏−𝑷𝟎) × ෝ𝒗𝒓
where 𝑷𝟏 = 𝑷 𝜗 + 2𝜋 and 𝑷𝟎 = 𝑷 𝜗

 𝑷𝟎 = ൞

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗
ℎ𝜗

2𝜋
+ 𝐴 𝑠𝑖𝑛𝜗

𝑷𝟏 = ൞

𝑎 𝑐𝑜𝑠𝜗
𝑎 𝑠𝑖𝑛𝜗

ℎ𝜗

2𝜋
+ ℎ + 𝐴 𝑠𝑖𝑛𝜗

𝑷𝟏−𝑷𝟎= ቐ
0
0
ℎ

𝑃𝑟
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Determination of 𝛿 𝜗 and 𝐣 𝜗

 ෝ𝒗𝒓 =
1

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2
൞

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

 𝛿(𝜗) = (𝑷𝟏−𝑷𝟎) × ෝ𝒗𝒓 =
1

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2
ቐ
−𝑎ℎ 𝑐𝑜𝑠𝜗
−𝑎ℎ 𝑠𝑖𝑛𝜗

0
=

𝑎ℎ

𝑎2+
ℎ

2𝜋
+𝐴 𝑐𝑜𝑠𝜗

2

 𝒋 𝜗 =
𝐼

𝛿 𝜗
ෝ𝒗𝒓 𝜗 =

𝐼

𝑎ℎ
൞

−𝑎 𝑠𝑖𝑛𝜗
𝑎 𝑐𝑜𝑠𝜗
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

in cartesian coordinates

 Since 𝑗𝑟 = 𝑗𝑥𝑐𝑜𝑠𝜗 + 𝑗𝑦𝑠𝑖𝑛𝜗; 𝑗𝜗 = −𝑗𝑥𝑠𝑖𝑛𝜗 + 𝑗𝑦𝑐𝑜𝑠𝜗, we get in polar coordinates:  𝒋 𝜗 =
𝐼

𝑎ℎ
൞

0
𝑎
ℎ

2𝜋
+ 𝐴 𝑐𝑜𝑠𝜗

 𝑷𝟏−𝑷𝟎= ቐ
0
0
ℎ


