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Nuclear fusion principles
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Nuclear reaction, where light 

atoms (Hydrogen) fuse, and 

form one (Helium), with a net 

energy release (E=Dm c2)

n (14.1MeV)He (3.5MeV)

DT

Lawson’s criterium for D-T fusion:

n tE T ≥ 1.2 1021 m-3 keV s

n: gas density (~ 1020 ions/m3)

tE: confinement time (~1 s)

T: Kinetic energy (T ~ 150・106 °C)
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• Torodial Field: for confinement

of charged particles in plasma

• Poloidal Field: for control of 

plasma radial position, shaping

and vertical stability

• Central Solenoid:

Plasma discharge initiation by 

transformer effect

TOKAMAK

toroidal'naya kamera s aksial'nym magnitnym polem (toroidal chamber with an 

axial magnetic field)

("тороидальная камера в магнитных катушках“)
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TOKAMAK

toroidal'naya kamera s aksial'nym magnitnym polem (toroidal chamber with an 

axial magnetic field)

("тороидальная камера в магнитных катушках“)

Stability quantified by the parameter:

b =
Gas Pr essure

Magnetic Field  Pr essure 

=
p

B2 2m0

=
n kBT

B2 2m0

Fusion Power: PFUS µb 2 ×B4

Gas Pressure

Magnetic Field Pressure
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D-shaped superconducting tokamaks

Btoroidal (T) Iplasma (MA)

JT-60SA 2.25 5.5

ITER 5.3 15.0

DEMO 5.2 17.9

SST-1 5.5 0.22

EAST 3.5 1.0

KSTAR 3.5 2.0

DTT 6.0 5.5

Ampere’s law: 𝐵𝑡 =
𝜇0 𝐼

2 𝜋 𝑅𝑡

𝐼𝐼𝑇𝐸𝑅 ~ 8 𝑀𝐴

𝐼𝐷𝐸𝑀𝑂 ~ 15 𝑀𝐴

𝐼𝐷𝑇𝑇 ~ 3 𝑀𝐴

𝐼𝐽𝑇−60𝑆𝐴 ~ 2𝑀𝐴

1 TF coil current

JT-60SA TF coil

Image courtesy of: A. Cucchiaro



D-shaped superconducting tokamaks

Btoroidal (T) Iplasma (MA)

JT-60SA 2.25 5.5

ITER 5.3 15.0

DEMO 5.2 17.9

SST-1 5.5 0.22

EAST 3.5 1.0

KSTAR 3.5 2.0

DTT 6.0 5.5

Field on conductor: 𝐵0 =
𝐵𝑡𝑅𝑡
𝑅0

𝐵0 ~ 12 𝑇

In DTT, ITER, DEMO:

DEMO Magnetic

Field Maps

Images courtesy of: 

S. Turtù

Ampere’s law: 𝐵𝑡 =
𝜇0 𝐼

2 𝜋 𝑅𝑡
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In the latest generation of plasma 

devices, which are larger and 

have longer confinement times, 

the superconducting coils are a 

key enabling technology



Superconductivity and fusion energy
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Electrical cables at CERN – LEP vs. LHC 

(Photo by Cockcroft Institute)

For: - magnetic field levels (≈10 T)

- magnet size (≈10 m) and stored energy (≈10 GJ)

- pulse duration (≈100 ÷ 1000 sec)

the use of superconducting coils is inevitable



Some nomenclature
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in other words …..

what I would like to show you
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- Wire (or strand)

- Cable

- Conductor

- Coil
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Superconducting wires (strands): stability
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It’s thus necessary to couple
(stabilize) the material for example
with Copper or Aluminum

SuperconductorCu

a = Cu/nonCu ratio

In the normal state the superconductor, has high electrical

resistivity and low thermal conductivity

2kA(Tc-Top)/l = Jc
2rAl



Superconducting wires (strands): stability
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AC hysteresis losses + Flux Jumping

P =
nt

m0

dB

dt

æ

è
ç

ö

ø
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t =
m0
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AC coupling losses



Multi-filamentary superconducting wires
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SuperconductorCopper

The superconduct. wire is
formed of many thin filaments
of s.c. materials, twisted within

a Cu stabilizing matrix

Wire diameter 0.5÷1 mm

# supecond. filaments 1000÷10000

Filament diameter 5÷50 m

Cu/non Cu 4/1 ÷ 1/1

Wire

Filament

Bundle

Photo courtesy of Peter Lee, FSU

Photo courtesy of J. Minervini MIT

Φ = 0.81 mm

Φ  50-100 µm

Φ  few µm
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NbTi

Nb3Sn



Practical Materials
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NbTi

Nb3Sn

Tc(B=0) Bc2(T=0)

NbTi

(type II)
9.2 K 15 T

Ductile alloy – bcc

structure - cheap

Nb3Sn

(type II)
18 K 27 T

Intermetallic compound –

brittle – A15 structure –
expensive



Practical Materials
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NbTi

Nb3Sn

Bpeak determines the choice of the s.c. material to be used

ITER TF

ITER PF



The ITER strands
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Fabrication of s.c. wires
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NbTi



Fabrication of s.c. wires
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Nb3Sn

Courtesy of:
A. Godeke, Performance 

Boundaries in Nb3Sn 
Superconductors (2005)



Fabrication of s.c. wires
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Nb3Sn

Courtesy of:
A. Godeke, Performance 

Boundaries in Nb3Sn 
Superconductors (2005)

It requires a heat treament at 650 °C to form the s.c. phase.

Once formed, it is a brittle material!
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Heat Loads in fusion coils

38

Source of losses:

• Hysteresis
• AC
• Coupling
• Eddy-
• Neutrons
• Thermal radiation & Conduction

ITER design experience:

L. Muzzi – EASISchool 3 - 6 October 2020

R. Vallcorba_MATEFU

School 2009
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Source of losses:

• Hysteresis
• AC
• Coupling
• Eddy-
• Neutrons
• Thermal radiation & Conduction

Due to varying field
and currents

Specific of CS / PF conductors
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R. Vallcorba_MATEFU

School 2009
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AC losses in DTT CS coil
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L1 (HF)

CS currents Computed AC losses

Temperature margin



Heat Loads in fusion coils
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Source of losses:

• Hysteresis
• AC
• Coupling
• Eddy-
• Neutrons
• Thermal radiation & Conduction

ITER design experience:

Specific of TF conductors
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R. Vallcorba_MATEFU

School 2009



Nuclear heat load (in JT-60SA)
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Villari

Fus Eng Des 09



Heat Loads in fusion coils
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Source of losses:

• Hysteresis
• AC
• Coupling
• Eddy-
• Neutrons
• Thermal radiation & Conduction

ITER design experience:

Due to varying field
and currents

Specific of CS / PF conductors

Specific of TF conductors
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R. Vallcorba_MATEFU

School 2009



Cable-in-Conduit Conductors (CICCs)
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Typically: T ~ 4.5K, P ~ 6 10 bar

Steel

jacket

Empty fraction for forced He 

circulation

1000  5000

filaments

strand

Pressure relief channel

Strand bundle

qS-He = S ×hHe-S (TS -THe)

Convective heat transfer:

BUT: Low JENG

L. Muzzi – EASISchool 3 - 6 October 2020

- Effective cooling

- Mechanically strong

- Flexible layout

- Effective electrical

insulation

Hoenig; Montgomery; Iwasa (1975):

high cooling efficiency of single phase (supercritical) He in turbulent flow 

and in direct contact with a large wetted surface



D-shaped superconducting tokamaks

6.2m

EAST

KSTAR
1.8m

1.1m
SST-1

JT-60SA

3.1m

1.7m

ITER

2.1m
DTT

10.0 kA - 5.1 T  NbTi

14.3 kA - 5.8 T  NbTi

35.2 kA - 7.2 T  Nb3Sn

68.0 kA - 12 T  Nb3Sn

25.7 kA - 5.7 T  NbTi

 42.5 kA – 11.9 T  Nb3Sn

EAST

KSTAR

SST-1

ITER

DTT

JT-60SA



Cable-in-Conduit Conductors
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The ITER CICCs: the state-of-the-art
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TF CICC: 68 kA @ 11.8 T

F = 43.7 mm

CS CICC: 46 kA @ 13 T; L = 49 

mm

PF CICC:

52 kA  @  6.4 T

L = 53.8   mm
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CICC qualification tests: the SULTAN facility
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SULTAN facility at the:



CICC qualification tests: the SULTAN facility
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Sample configuration: 2 “Legs”, connected by

a bottom joint, and fed in series. Full set of

instrumentation (Temperature, voltage,

pressure sensors acquired)

B (up to 12T)
I (up to 100 kA)

I (up to 100 kA)

L. Muzzi – EASISchool 3 - 6 October 2020

SULTAN facility at the:



CICC qualification tests: Tcs
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Typical Current Sharing Temperature (Tcs) test

L. Muzzi – EASISchool 3 - 6 October 2020

SULTAN facility at the:

Repeated after e.m. loading cycles + Warm-up-Cooldown (WUCD) cycles

Breschi_SUST 2012



Degradation issue in Nb3Sn CICC
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ITER TF: Tcs measurements with cycles

L. Muzzi – EASISchool 3 - 6 October 2020

SULTAN facility at the:

M. Breschi

– A. Devred

http://www.iter.org/a/home.htm?v=03
http://fusionforenergy.europa.eu/
http://www.jaea.go.jp/english/index.shtml
http://www.iterkorea.org/
http://www.iterrf.ru/
http://www.usiter.org/
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Strain effects in Nb3Sn CICCs
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Nb3Sn inside CICC is subject to various strain components:

- mismatch of heat expansion coefficients of different materials, between
650 °C (reaction heat treatment) and 4.2K (operating Temp.):

eaxial  - 0.7% ÷ - 0.4%
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Strain effects in Nb3Sn CICCs
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Nb3Sn inside CICC is subject to various strain components:

- mismatch of heat expansion coefficients of different materials, between
650 °C (reaction heat treatment) and 4.2K (operating Temp.):

eaxial  - 0.7% ÷ - 0.4%

 only about 50% ÷ 80% of the 

current carrying capability of the 

material is actually available

Cheggour_IEEE TAS 2012
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Strain effects in Nb3Sn CICCs
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Nb3Sn inside CICC is subject to various strain components:

- mismatch of heat expansion coefficients of different materials, between
650 °C (reaction heat treatment) and 4.2K (operating Temp.):

eaxial  - 0.7% ÷ - 0.4%

- large e.m. loads together with cable structure and intrinsic presence of voids

cause bending at the strand level (+ contact stress, etc.)

ebending  0.2% ÷ 0.3%

Nijhuis_SUST 2008
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Degradation issue in Nb3Sn CICC
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Post-mortem metallographic studies of tested CICCs
C. Sanabria - NHMFL

Sanabria_SUST 2015
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Back to …. strain effects in Nb3Sn CICCs
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Nb3Sn inside CICC is subject to various strain components:

- mismatch of heat expansion coefficients of different materials, between 650 °C 

(reaction heat treatment) and 4.2K (operating Temp.):

eaxial  - 0.7% ÷ - 0.4%

- large e.m. loads together with cable structure and intrinsic presence of voids

cause bending at the strand level (+ contact stress, etc.)

ebending  0.2% ÷ 0.3%

(Reversible or irreversible) degradation is intrinsic in the nature of CICC



Degradation issue in Nb3Sn CICC
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 improve strand support, by:

- reducing the void fraction;

- optimizing cable twist pitches;

- changing conductor aspect ratio.

(BUT trade-off with AC losses and cooling requirements)

To mitigate the phenomenon down to acceptable levels

(i.e. maintaining sufficient DTmargin):

L. Muzzi – EASISchool 3 - 6 October 2020

The ITER CS example:



Degradation issue in Nb3Sn CICC
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 improve strand support, by:

- reducing the void fraction;

- optimizing cable twist pitches;

- changing conductor aspect ratio.

(BUT trade-off with AC losses and cooling requirements)

To mitigate the phenomenon down to acceptable levels

(i.e. maintaining sufficient DTmargin):

L. Muzzi – EASISchool 3 - 6 October 2020

The ITER CS example:



The ITER CS development strategy
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Sample 6

(STP design)

Samples 1, 2, 3

(REF. design)

Sample 4

(REF. design)

Sample 5

(LTP design)

Wire Cu:nonCu 1 1.5 1 1

Cable layout (2+1)x3x4x4x6 3x3x4x4x6 (2+1)x3x4x4x6 (2+1)x3x4x4x6

Twist Pitch

sequence (mm)

20/45/80/150/450 45/85/145/250/450 45/85/145/250/450 110/117/125/132/352

L. Muzzi – EASISchool 3 - 6 October 2020

Proposal supported by e.m. and mechanical 

simulations by A. Nijhuis (Un. Twente)



The ITER CS development strategy
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short cable twist pitch cures Tcs degradation

L. Muzzi – EASISchool 3 - 6 October 2020

Devred_SUST 2014



From ITER to (EU)-DEMO
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DEMO CAD model (30 April 2014)

www.euro-fusion.org/eurofusion/roadmap/
DEMOnstrate: 500 MW 

electric power

https://www.euro-fusion.org/eurofusion/roadmap/


TF magnet ITER July 2013 April 

2015

July 2018

Major radius (m) 6.2 9 9.072 9.073

Toroidal field on axis (T) 5.2 6.8 5.7 5.3

Plasma current (MA) 9.1 14 19.6 17.9

Number of TF coils 18 16 18 16

TF magnet ITOT (MA) 164 305.8 257.1 238.7

Stored energy/TF coil (GJ) 2.28 9.07 7.54 10.04

From ITER to (EU)-DEMO

63

2014

20142018

16 TF coils

ITFcoil=14.9 MA

20152015 18 TF coils

ITFcoil=14.3 MA

Bpeak=12.2 T

201316 TF coils

ITFcoil=19.1 MA

Bpeak=13.3 T

 since 2011 R&D activities in EU on the magnet system

L. Muzzi - EASISchool 3 - 6 October 2020
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From ITER to (EU)-DEMO

64

 since 2011 R&D activities in EU on the magnet system
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TF magnet ITER July 2013 April 

2015

July 2018

Major radius (m) 6.2 9 9.072 9.073

Toroidal field on axis (T) 5.2 6.8 5.7 5.3

Plasma current (MA) 9.1 14 19.6 17.9

Number of TF coils 18 16 18 16

TF magnet ITOT (MA) 164 305.8 257.1 238.7

Stored energy/TF coil (GJ) 2.28 9.07 7.54 10.04

CICC Operating Current 68 kA 70 – 95 kA

CICC Peak Magn. Field 12 T 11.5 – 13.5 T

E.m. Load (kN/m) 816 800 – 1200

DTmargin 0.7 K 1.5 – 2 K

From ITER to (EU)-DEMO

65

From ITER to DEMO,

CICC design is required to be:

- With optimized performance;

- With stable behavior;

- Cost-effective!

 Quite some effort is being spent 

on technology development

 since 2011 R&D activities in EU on the magnet system



Optimization margins for Nb3Sn CICCs
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Space for optimization of:

a. Materials: different type of strand, structural material, ….

L. Muzzi – EASISchool 3 - 6 October 2020



Optimization margins for Nb3Sn CICCs
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Space for optimization of:

a. Materials: different type of strand, structural material, ….

b. CICC layout: cable twist pitches, conductor geometry, 

manufacturing approach.
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Optimization margins for Nb3Sn CICCs

68

Space for optimization of:

a. Materials: different type of strand, structural material, ….

b. CICC layout: cable twist pitches, conductor geometry, 

manufacturing approach.

L. Muzzi – EASISchool 3 - 6 October 2020

MAIN AIM: improved strain management.



The SPC R&W flat cable CICC
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The SPC R&W flat cable CICC

70

“Rutherford-like” cable

Steel jacket
Mixed matrix stabilizer

He channels

 React & Wind (R&W) approach (reduced ethermal ; more effective use of Nb3Sn)

 Reduced cable size to allow winding with reduced e bending;

 Quasi-Monolithic cable (increased cable stiffness).



The SPC R&W flat cable CICC
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DC Test results

Nominal operating

conditions:

12.2 T ; 63.3 kA

(load: 770 kN/m)

eeff = -0.27% ; no performance degrad. with cycling



The W&R rectangular CICC
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The W&R rectangular CICC
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outer dimensions 38.8 mm x 80.6 mm

measured jacket 
thickness

6.9 mm

local VF in cable bundle 24.6%

L. Muzzi – EASISchool 3 - 6 October 2020



The W&R rectangular CICC: DC test results
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Tcs(@ 81.7kA and 13T)= 6.95 K ÷ 7.15 K

with stable performance during cycling.

L. Muzzi – EASISchool 3 - 6 October 2020

Muzzi_IEEE TAS 2017
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The W&R rectangular CICC: DC test results

75

Long Twist Pitch cable 

configuration … BUT

Rectangular geometry 

AND low void fraction

HERE:

ITER CSVery Short Twist Pitch cable

WR1 DEMO TF

Devred_SUST 2014
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 Magnetic confinement fusion: the tokamak concept

 Magnet system of a tokamak reactor

 Cable-in-Conduit conductors (CICCs)

 ITER CICCs and optimization margins

 Key components of fusion coils: the example of the 

Italian DTT Project.

 Summary and concluding remarks
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Divertor Tokamak Test (DTT) facility
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1. Divertor concept;

2. Magnetic configurations

3. Liquid metal plasma facing components

Construction starting in Frascati:

(strand contract already assigned)General objective: create a 

research infrastructure addressed 

to the solution of the power 

exhaust issues in view of DEMO.

Test Divertor alternative 

solutions & improve 

experimental knowledge in the 

PEX scientific area

R Martone et al., eds. DTT Divertor Tokamak Test facility Interim Design Report

ENEA (ISBN 978-88-8286-378-4), April 2019



DTT Magnet System
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18 TF coils:

Nb3Sn CICC: 42.5 kA – 11.9 T

providing 6.0 T over plasma major radius

(2.19 m)

6 CS modules (indipendently fed)

Nb3Sn CICC: 31.3 kA – 13.6 T

providing 16.6 Weber magnetic flux for 

plasma initiation at breakdown

6 PF coils

Nb3Sn (PF1 & PF6) CICC: 28.3 kA – 9.1 T

NbTi   (PF2 to PF5) CICC: 27.1 kA – 4.2 T

NbTi (PF3 to PF4) CICC: 28.6 kA – 5.3 T

+ 6 in-vessel Cu axial-symmetric coils

+ 18 in-vessel Cu not-axial-symmetric coils

Identical in pairs to guarantee full top/down symmetry



Main components of fusion coils
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TF coils are made of:

- Winding Pack (current carrying element)

- Steel casing

- Structures and supports

PF / CS coils are made of:
- Winding Pack (current carrying element)

- Pre-compression structure



Main components of fusion coils
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TF coils are made of:

- Winding Pack (current carrying element)

- Steel casing

- Structures and supports

PF / CS coils are made of:
- Winding Pack (current carrying element)

- Pre-compression structure



The DTT TF Coils
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- CICC operating current: 42.5 KA

- Bpeak: 11.9 T

- 3 rDP; 2 sDP; 84 turns

- Turn insulation: Fiber-glass + resin

- WindReactInsulateImpregnate

Overall TF energy: 2 GJ; L (1 TF coil): 48 mH

Volt. at discharge < 1 kV (terminal to terminal)

TF coil height ≈ 6 m; TF coil width ≈ 3.2 m



ITER TF Coil: completed, with casing and structures
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337 Tons



Toroidal Field Coils: forces
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Slide courtesy of A. Portone

ITER

ITER



Toroidal Field Coils: in-plane loads
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Centering force (Fc) is reacted by wedging on the casing «nose»

Fc

Fc

𝐹𝑐 ~ 400 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (ITER)

~ 54 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (DTT)



Toroidal Field Coils: in-plane loads
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Centering force (Fc) is reacted by wedging on the casing «nose»
Bursting force (Fz) translates into a Tension along the winding pack 

Fc 𝐹𝑐 ~ 400 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (ITER)

~ 54 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (DTT)

𝐹𝑧 ~ 200 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (ITER)

~ 30 𝑀𝑁 / 𝑐𝑜𝑖𝑙 (DTT)

Fz

Fz



Toroidal Field Coils: out-of-plane loads
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Toroidal Field Coils: out-of-plane loads



DTT Toroidal Field Coils: out-of-plane loads
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≤ 13.0 mm*

Stress intensity
Lateral displacement



DTT Toroidal Field Coils: out-of-plane loads
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Out-of-plane loads are sustained by inter-coil structures

Inner Inter-coil 

structures (IIS) - upper

Outer Inter-coil structures (OIS)

Inner Inter-coil 

structures (IIS) - lower



Main components of fusion coils
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TF coils are made of:

- Winding Pack (current carrying element)

- Steel casing

- Structures and supports

PF / CS coils are made of:
- Winding Pack (current carrying element)

- Pre-compression structure



CS Coil – overview and winding
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5.3 m

1,5 m

45 tons

The flux swing capability of the CS:

ΔΨ𝑂𝐻 =
𝜋

3
𝑅𝐶𝑆,𝑒
2 + 𝑅𝐶𝑆,𝑖

2 + 𝑅𝐶𝑆,𝑒 𝑅𝐶𝑆,𝑖 𝐵𝑚𝑎𝑥

To drive the plasma to the desired flat-top value Ip:

𝜋𝑅𝐶𝑆,𝑖
2 𝐵𝐶𝑆,𝑚𝑎𝑥 ≥ 2𝜇0𝑅𝑝𝐼𝑝



CS Coil – overview and winding
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5.3 m

1,5 m

45 tons

Design choices:

- 6 identical but independent modules

- Layer wound (optimized JE --> Flux > 

16.6 Weber

- Optimized concepts for inter-grade 

joints and terminations

High Field Section

• 810 s.c. wires

• 4.9 mm jacket

Low Field Section

• 180 s.c. wires

• 2.0 mm jacket

G-10 inter-module spacers

Medium Field Section

• 300 s.c. wires

• 3.9 mm jacket
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CS Coil currents and loads

93

CS currents-SN scenario

• CS and PF turn on the plasma and keep it stable;



CS Coil currents and loads
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• CS and PF turn on the plasma and keep it stable;
• A plasma scenario has various stages: induction of plasma current (a)  ovalization (b) 
 shaping to triangular (c).

b) c)

a)

b)

c)

CS - SN

PF - SN



CS currents-SN scenario
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CS Coil electromagnetic loads
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L. Giannini_IEEE TAS 20

SN - IM SN - EOFDN – Flat-top

The hoop stress is maximum 

at the inner radius and it

drops as the soleoid gets

thicker
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CS Coil electromagnetic loads
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Electro-magnetic loads

SN - IM SN - EOFDN – Flat-top

15.3 MN

- 60.4 MN

- 19.2 MN

10.2 MN

57.2 MN

18.0 MN

SN - IM
SN - EOF
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CS Coil electromagnetic loads
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Electro-magnetic loads

Essentially reacted

internally, through the 

steel jacket

Require external

structures



CS Coil – structures

CS Pre-compression structure



CS Coil – structures

CS Pre-compression structure

Tie plates



CS Coil – structures

Centering system

CS Pre-compression structure

Tie plates



CS Coil – structures

Centering system

CS Pre-compression structure

Tie plates

CS gravity support



PF coils: overview
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COIL PF1/6 PF2/5 PF3/4

Bmax (T) 8.5 4.4 5.4

Iop max (kA) 28.3 27.1 28.6

Hydraulic length (m) 178 193 381

Vmax (V) 2150 1350 3290

Weight (ton) 15 16 28

Delay / discharge const. 1.5 s / 6 s

CICC dimensions (mm) 23.4 x 28.3 26.4 x 27.7 26.4 x 27.7

Jacket thickness (mm) 3.0 3.0 3.0

# SC / Cu strands; 

0.82 mm
180 (Nb3Sn) / 216 162 (NbTi) / 324 324 (NbTi) / 162

PF Double or Quadri-pancake winding and 

joint (praying or shaking hands) boxes

DP winding for PF2 to 5



Outline
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 Magnetic confinement fusion: the tokamak concept

 Magnet system of a tokamak reactor

 Cable-in-Conduit conductors (CICCs)

 ITER CICCs and optimization margins

 Key components of fusion coils: the example of the 

Italian DTT Project.

 Mechanics of fusion magnets.

 Summary and concluding remarks
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Summary
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Steel
jacket

Empty fraction for forced He 
circulation

1000  5000
filaments

strand

Pressure relief channel

Strand bundleL. Muzzi – EASISchool 3 - 6 October 2020

 Fusion magnets are wound by Cable-in-Conduit Conductors, i.e. 

multi-stage cables compacted inside steel jacket, and cooled by 

forced flow of supercritical Helium.
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Summary
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 Fusion magnets are wound by Cable-in-Conduit Conductors, i.e. 

multi-stage cables compacted inside steel jacket, and are cooled by 

forced flow of supercritical Helium.

 large-size Nb3Sn CICCs subject to  large e.m. loads may exhibit 

performance degradation with loading cycles.



Summary
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 Fusion magnets are wound by Cable-in-Conduit Conductors, i.e. 

multi-stage cables compacted inside steel jacket, and are cooled by 

forced flow of supercritical Helium.

 large-size Nb3Sn CICCs subject to  large e.m. loads may exhibit 

performance degradation with loading cycles.

 The phenomenon is intrinsic in the nature of CICC, but may be 

mitigated by proper design choices.

ITER CS
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Summary
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 Fusion magnets are wound by Cable-in-Conduit Conductors, i.e. 

multi-stage cables compacted inside steel jacket, and are cooled by 

forced flow of supercritical Helium.

 large-size Nb3Sn CICCs subject to  large e.m. loads may exhibit 

performance degradation with loading cycles.

 The phenomenon is intrinsic in the nature of CICC, but may be 

mitigated by proper design choices.

 ITER represents the state-of-the-art of CICC technology, but further 

developments and extension of performance range have been 

demonstrated e.g. within the DEMO conductor development program.
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Summary
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 Fusion magnets are made of a winding pack (current carrying element) 

and massive structures to sustain the very high mechanical loads.
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Summary
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 Fusion magnets are made of a winding pack (current carrying element) 

and massive structures to sustain the very high mechanical loads.

 TF coil structures include: casing; inter-coil structures; gravity supports; 

PF and CS weight supports.
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Summary
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 Fusion magnets are made of a winding pack (current carrying element) 

and massive structures to sustain the very high mechanical loads.

 TF coil structures include: casing; inter-coil structures; gravity supports; 

PF and CS weight supports.
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 PF and CS Hoop forces are reacted internally. But pre-

compression structures are required, to sustain axial 

separating forces.



Luigi Muzzi

luigi.muzzi@enea.it
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ITER TF Coils: winding pack
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Conductor is wound in Double-Pancakes

9 m



ITER TF Coils: winding pack
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Radial Plates



ITER CS Coils
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Stress intensity (MPa)

DTT Toroidal Field Coils: 2D              stress analysis



DTT Toroidal Field Coils: 2D and 3D stress analysis
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Stress intensity (MPa)



CS Coil – mechanics: 2D static assessment
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Stress Intensity equivalent stress

Pm = 550 MPa < 667 MPa
Pm + Pb = 715 MPa < 867 MPa

[Pa]

SINT

EOF @ SN scenario


