

MONOPIX -RADIATION HARD MONOLITHIC CMOS PIXEL DETECTORS

NORBERT WERMES (UNIVERSITY OF BONN)

CERN, EP Detector Seminar, Feb. 07, 2020

OUTLINE

- □ Setting the stage
- □ The Monopix developments at UBonn (in coll. w/ CERN, CPPM, IRFU)
- Results on LF-Monopix1 and TJ-Monopix1
- □ The Monopix2's
- □ (Impressions on Bonn's new FTD)

TRACKER UPGRADES @ HL-LHC

2024/25++: Phase 2 ATLAS/CMS
 completely replace their trackers
 to face the very fierce environment

– <u>ATLAS:</u>

- ~ 165 m² silicon strips
 - ~ 12 m² silicon pixels (currently 2m²)

– <u>CMS:</u>

- ~ 220 m² silicon strips
- ~ 5-6 m² silicon pixels (currently 2m²)

FIERCE ENVIRONMENT AT THE HL-LHC (PP)

No need for fine pitch bump bonding between sensor and readout circuitry.

- → Easier to produce and easier to test (one detector entity)
- \rightarrow Large cost reduction: sensor + R/O chip + BB \rightarrow one chip
- → Plus all the advantages that large CMOS Fabs may offer, including fast turn around, large wafer sizes, large throughput

CMOS PIXEL DETECTORS

ARE THE FUTURE !

- for particle physics
- for high energy pp

UNIVERSITÄT BONN

for pCT	RHIC	ALICE-LHC	ILC /	HL-	LHC
for imaging appl.	STAR		CLIC	Outer	Inner
other	coming	next: Belle II up			
Req. time resolution [ns]	110	20 000	350 / 156	25	25
Particle Rate [MHz / cm ²]	0.4	< 10	< 3	100-200	2000
Fluence [n _{eq} / cm²]	> 10 ¹²	> 10 ¹³	< 10 ¹²	10 ¹⁵	2 x 10 ¹⁶
lon. Dose [MRad]	0.2	< 3	< 1	80	> 1000
	MAPS (e.g. ALPIDE)		Hybrid pixels -> DMAPS rejected		

HL-LHC devm't: radhard (TID & NIEL) + fast response time + fast readout => Q coll. by drift & full R/O arch.

WHAT IS NEEDED TO REALISE (RADHARD) DEPLETED CMOS PIXELS?

CERN Seminar, 07.02.2020, N.Wermes

LARGE VERSUS SMALL COLLECTION ELECTRODE (FILL FACTOR)

Electronics inside charge collection well

- large collection electrode
 => little low field regions
 => on average short(er) drift paths
 => less trapping -> radiation hard
- Larger sensor capacitance (pw & dnw!)
 => noise & speed/power penalty
 => possible x-talk (digital to sensor)

Electronics outside charge collection well

- small electrode
 - => very small sensor capacitance (< 5fF)
 - => lower analog power budget (noise, speed)

UNIVERSITÄ[®]

- => less prone to x-talk
- on average long(er) drift distances and potentially low field regions

 radiation hardness needs process mods

E.G. PROCESS MODIFICATION – TOWERJAZZ 180 NM CMOS

Standard process

- ALICE ITS type
- High res. p-type epi. (> 1 kΩ·cm)
 => thickness typ. 25 μm
- Quadruple-well
 - => deep pwell shields nwell => full CMOS
- Reverse bias typ. -6V
 - => enhanced (but not yet full) depletion
 - => some charge collected by diffusion only => slow

Modified process

- Additional planar medium dose N implant
 => depletion from two junction boundaries full volume can be depleted
 better charge collection in lateral direction
- Maintain small capacitance
- No significant circuit/layout changes

W. Snoeys et al. DOI: 10.1016/j.nima.2017.07.046

FOUNDRIES CONSIDERED & CHARACTERISED AT UBONN

LARGE WORLDWIDE INTEREST IN DEPLETED CMOS PIXELS

CERN Seminar, 07.02.2020, N.Wermes

THE TWO DEVELOPMENT LINES

Different electrode (large/small) approaches lead to different

DMAPS ANALOG FRONT END CHOICES

CERN Seminar, 07.02.2020, N.Wermes

ANALOG FRONT-ENDS - CSA VS. VOLTAGE AMPLIFIER

(a) Large fill-factor

Charge Sensitive Amplifier

- Choice for large electrode design
- Gain (ideally) independent of C_D => G ~ 1/C_f (typ. C_f ~ 5 fF)
- $\tau_{CSA} \propto \frac{C_D}{g_m \cdot C_f}$, $ENC^2_{therm} \propto \frac{kT}{g_m} \frac{C_D^2}{\tau}$ => requires larger g_m (power) for large C_D => typ. power 30 – 40 μ W per pixel
- threshold trimming is advised and a standard in typical implementations

ANALOG FRONT-ENDS - CSA VS. VOLTAGE AMPLIFIER

Voltage amplifier (ALPIDE like)

- => Profit from small sensor capacitance
 => large voltage signal Q/C_D @ input node
- Very compact design
 - => amplification + shaping in one stage
 - => simple inverter as discriminator

=> no threshold trimming used (see later)

- Optimized power for required timing
 - => ~1 µW/pixel for 25 ns peaking time

$$\frac{S}{N} \approx \frac{Q/C_D}{\sqrt{g_m}} \sim \frac{Q/C_D}{\sqrt[m]{P}}, \quad P \sim \left(\frac{Q}{C_D}\right)^{-m}$$

16

W. Snoeys, DOI: 10.1016/

j.nima.2013.05.073

DMAPS READOUT ARCHITECTURE CHOICES

wanted

- Small pixels
- High logic (memory) density

- Fast shaping
- High data transmission bandwidth

WE CHOSE A "COLUMN DRAIN" ARCHITECTURE

- Well established scheme in ATLAS FE-I3 like (current pixel detector)
- Demonstrated rate capability for the addressed goal (ITk outer pixel layers)
- Affordable in-pixel logic (storage & digital R/O)
- Challenges: preventing digital cross talk, pixel size, C_D (for large electrode design)

WE CHOSE A "COLUMN DRAIN" ARCHITECTURE

ALTERNATIVE: ASYNCHRONOUS READOUT SCHEMES

DMAPS with asynchronous matrix => time stamping at periphery

=> Hits transferred to periphery immediately => calls for massive parallelism

Shared bus by pixel groups

- Two high speed buses w/ short pulses (~1ns)
- Complicated balancing for multibit data to arrive simultaneously at bottom
- GHz synchronization needed
- Challenge: avoid data collisions

THE "MONOPIX1" CHIPS

- UNIVERSITÄT BONN
- Two large scale DMAPS chips were developed targeting data rates and radiation levels expected at ATLAS ITk outer layers
 - Following both, large and small electrode sensor designs employing two CMOS technologies
 - and using the "column drain" architecture for the R/O matrix
 - Simplified "downstream" data processing, e.g. no data buffering & triggering, no Gbps-link

RESULTS ON LFOUNDRY 150 NM DESIGNS

CCPD_LF

LF-CPIX

- Pixel size: 33 μ m imes 125 μ m
- Chip size: 5 mm \times 5 mm
- Fast R/O with FE-I4
- Thickness: 750/300/100 μm
- Design by Bonn/CPPM/KIT

- Pixel size: 50 μ m imes 250 μ m
- Chip size: 10 mm × 10 mm
- Fast R/O with FE-I4
- Thickness: 750/200/100 μm
- Design by Bonn/CPPM/IRFU

LF_Monopix1

- Pixel size: 50 μm × 250 μm
- Chip size: 10 mm \times 10 mm
- Integrated column drain R/O
- Thickness: 750/200/100 μm
- Design by Bonn/CPPM/IRFU

LFOUNDRY 150 NM LARGE ELECTRODE (55% FF)

LFA150:

- LFoundry 150 nm process (deep N-well/P-well)
- Quadrupel well
- 7 metal layers
- Resistivity > 2 kΩ·cm
- Backside processing
- Voltages > **350 V**

LF-MONOPIX1: PIXEL LAYOUT

Careful layout / precautions required to

prevent cross talk from circuit layer to sensing electrode through psub/dnw capacitance

- 1. Separated analog/digital power domains
- 2. Digital "bulk" (in a separate pwell) is separated from digital ground
- 3. Full custom in-pixel digital design, optimising transient signal switching

SENSOR IRRADIATION PERFORMANCE

Good radiation hardness of large electrode sensor proven in various prototypes

LFoundry 150 nm CMOS P-substrate > 2 k Ω ·cm Bias 100 - 400 V 7 metal layers

T. Hirono et al., DOI: 10.1016/j.nima.2016.01.088 P. Rymaszewski et al., DOI: 10.1088/1748-0221/11/02/C02045

1.0

0.8

[a.u.] 0.6

0.4

0.2

0.0

Entries

D.-L. Pohl et al., JINST 12 (2017) no. 06, P06020 25

CERN Seminar, 07.02.2020, N.Wermes

PASSIVE CMOS SENSORS

LFoundry 150 nm + FE-I4

D.-L. Pohl et al., JINST 12 (2017) no. 06, P06020 26

IRRADIATED ACTIVE SENSORS OF LF_MONOPIX1

- Guard ring structure essential for high breakdown voltage (up to 300 V)
- Full depletion voltage @ 100 μ m: unirr. V_{dep} = 7 V, irradiated V_{dep} = 130 V

TID PERFORMANCE

- LF-CPIX X-ray irradiated to 100 Mrad
 - Irradiated and measured at room temperature
 - Tunable thresholds with almost unchanged dispersion
 - Gain degradation <5%
 - Noise increase ~25%

(probably largely due to ileak increase after irrad.)

Normalized gain and ENC (LF-Monopix1)

UNIVERSITÄT BONN

T. Hirono, et. al, DOI: 10.1016/j.nima.2018.10.059²⁸

LF-MONOPIX1: IN-PIXEL DIGITAL LOGIC

668.0

685.0.1

CERN Seminar, 07.02.2020, N.Wermes

29

2.8 3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

time (us)

LF-MONOPIX1: EFFICIENCY

High and uniform efficiency even after irradiation

CERN Seminar, 07.02.2020, N.Wermes

TIMING?

>80% in-time efficient after 1 x 10¹⁵n_{eq}/cm².

<u>Remarkable</u> for $C_D \sim 400$ fF and promising for new design with smaller C_D

There is still plenty of room for improvement by tuning for lower thresholds and faster response optimise CSA tune, discriminator settings, etc., ... higher bias voltage, backside bias

RESULTS ON TOWER JAZZ 180 NM DESIGNS

TowerJazz 180 nm CMOS CIS

- Deep pwell allows full CMOS in pixel
- 6 metal layers
- High res. epi-layer: 1–8 kΩ·cm
 - => epi thickness: **18 40 μm**
- Modified process to improve lateral depletion

Derived from ALICE development (led by CERN)

TJ – MALTA AND TJ - MONOPIX

TJMonoPix

Small electrode designs

- Sensor design is identical
- Front ends similar (different biasing schemes)
- R/O architectures very different

"MALTA" Full ATLAS size

TJ-MONOPIX1: PIXEL LAYOUT

- Pixel size $36 \times 40 \ \mu m^2$
- 2 μm collection diode + 3 μm spacing
- Separated digital & analog region, several
- Full-custom digital design
 - 6 bit ToA & ToT
 - Minimized area for small pixel size

Four equal sectors with different pixel/periphery designs (4 × 224 × 112 pixels

112 columns

TJ-MONOPIX1 MEASUREMENTS (LAB & TESTBEAM)

- Good noise performance 10 15 e⁻
 -> Increased by ~10 e⁻ after 10¹⁵ n_{eq}/cm²
- Thres. dispersion 30 40 e⁻

-> 50 - 65 e⁻ after 10¹⁵ n_{eq}/cm²

Better noise & threshold tuning needed !

I. Caicedo et. al, DOI: 10.1088/1748-0221/14/06/C06006

CHARGE COLLECTION WITH SMALL ELECTRODES

- Epi thickness 20-30 μm
- Field strength and shape under DPW in pixel corners is critical
 - Full depletion under the DPW
 - > and operating at low threshold is essential

pitch

> Transverse field components in corners essential for radiation hardness

[mt] Y xod

CERN Seminar, 07.02.2020,

0.5

70

pos X [µm]

Irradiated 10¹⁵n/cm² @ 350e- threshold 2x2 pixel at 36 µm pitch

OPTIMATIONS FOR RADIATION HARDNESS

n-irradiated (IJS) to 2x10¹⁵ n_{eq}/cm² followed by DESY beam test Full-size MALTA sensor with original front-end design on HR pCz (i.e. only measure no. 3)

CERN Seminar, 07.02.2020, N.Wermes

FROM MONOPIX1 TO MONOPIX2

GOALS LF-MONOPIX2

- > Smaller cell size -> $50 \times 150 \,\mu\text{m}^2$
- Reduce detector capacitance from 400 fF -> 250 300 fF
- Optimise digital design for minimum dig./ana. coupling
- New amplifier design (faster timing)
- Keep conservative and safe design (e.g. wide power metals, guard rings) to ensure high breakdown tolerance

• 50 × 150 μm²

LFOUNDRY MONOPIX2 (LARGE ELECTRODE DESIGN)

				9.5 mm
	LF-Monopix1	LF-Monopix2	1 t	Pads (power)
Pixel size	50 × 250 μm²	50 × 150 μm²		Power metal distribution
Cd	~ 400 <u>fF</u>	250 – 300 fF		
Analog power/pixel (CSA + Discri.)	15 µA + 5 µA = 20 µA	10 μA + 2 μA = 12 μA		
Noise	~150 e ⁻ - 200 e ⁻	<mark>100 ~150 e⁻</mark>		
LE/TE time stamp	8-bit	6-bit	Ę	Matrix (340 × 56
<u>ToT</u> @ 6 <u>ke</u> -		200 – 250 ns	.8 n	
Max. <u>ToT</u>		400 ns	10	
(rms) thres. dispersion	(~ 100 e ⁻)	(80 e ⁻)		
Min. threshold	1500 e ⁻	1000 e ⁻		EoC circuit
In-time threshold	~ 2000 e ⁻	1500 e⁻		Digital periphery (slow con logic, etc.)

Tape out: April 2020

- 340 × 56 pixels
- 50 × 150 μm²

Large 2x2 cm2 sensor featuring

- Larger signal
 - high resistivity pCz material ?
- More efficient charge collection
 - modified sensor geometry (n-gap, extra dpw)
 - optimum (smaller) cell size for given electronics
- Lower noise and threshold operation
 - improved front end gain increase RTS noise reduced less threshold dispersion threshold trimming

- 512 × 512 pixels
- $33.04 \times 33.04 \ \mu m^2$

TOWERJAZZ MONOPIX2 (SMALL ELECTRODE DESIGN)

	TJ-Monopix1	TJ-Monopix2		
Chip Size	1x2 cm ² (224x448 pix)	2x2 cm ² (512x512 pix)		
Pixel size	$36 imes 40 \ \mu m^2$	$33.04 \times 33.04 \ \mu m^2$		
Noise	≅ 11 e ⁻	< 10e ⁻ (improved FE)		
LE/TE time stamp	6-bit	7-bit		
Threshold Dispersion	≅ 30 e⁻rms	< 20 e ⁻ rms (improved FE + tuning)		
Minimum threshold	≅ 300 e ⁻	<150 e ⁻		
In-time threshold	≅ 400e ⁻	250 - 300 e ⁻		
Efficiency	\cong 70 % (irradiated)	> 95% (irradiated)		

Tape out: April 2020

CONCLUSIONS

- Development of DMAPS with full R/O needs time (and care)
- MONOPIX developments with large and small electrode can be considered as viable options for HL-LHC trackers
- Col-drain architecture meets Layer 4 rates with a (x10) margin

Large electrode

- high beak down voltage
- large signal
- high efficiency after $10^{15} n_{eq}/cm^2$
- Small electrode
 - low capacitance, low noise
 - low power, large Q/C
 - ways towards radiation hardness identified
- Stay tuned for large MONOPIX2 chips

1989 - 100 100 100 100 100 100

TIT

FTD = RESEARCH & TECHNOLOGY CENTER FOR DETECTOR PHYSICS

- hosts 10 Groups from 2 institutes from
 - High Energy & Hadron Physics
 - LHC: ALICE, ATLAS, LHCb
 - Belle II, COMPASS, Crystal Barrel, BGO-OD, ILC, PANDA
 - RD42, RD50, RD53
 - Photonics
- 2 local accelerators
 - electron stretcher ring ELSA (3.5 GeV e-) cyclotron 15 MeV p (and ions)

FTD BUILDING

19600 76/00 reas.

Distri 00 <u>H1200</u> 7200 m/8.8.

B-m 02 1500 \$550 mAX

1400_6400 m88.

Ehrre 00 ______600__6080+308

Massari

eich-

Eatto-pytics. scienceart/ balle-.Commu

TARGET TECHNOLOGIES AND APPLICATIONS

clean room and lab area

EQUIPMENT

Existing equipment (standard for microlabs)

wire bonders (4)
wafer probers (2 x 8", 1 x 12")
laser test systems
rad. source test benches
microscopes
electronics meas. equipment (scopes, logic
analysers, function & pattern generators,
network analyser, etc.)

... has been updated within FTD acquisition

Newly acquired (big) equipment for FTD

A) New for micro electronics and detectors

B) Micro structuring (to try things out ... simple structures at first)

NEW EQUIPMENT: MICRO ELECTRONICS AND DETECTORS

NEW EQUIPMENT: MICRO ELECTRONICS AND DETECTORS

cyclotron

15 MeV p irradiation $10^{16} n_{eq}/cm^2$ in about 2 hrs

X-ray cabin for TID irradiation 100 kV, 2 Mrad / h

irradiation and measurements

3D measuring machine

laser-based tracker contact-less

1 μm resolution

MICRO STRUCTURING / POSTPROCESSING

IMPRESSIONS

