High-temperature superconducting undulators for compact free electron lasers

Sebastian C. Richter¹,², Daniel Schoerling¹ et al.

This work is supported by:
* The Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E15CHA)
** The DFG-funded Doctoral School „Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology“
About the project

• 3 prototype coils are planned:
 • Horizontal racetrack (HR),
 • Vertical racetrack (VR),
 • Helical design around the beam pipe (hel.).

• 2 of each kind to be built + 1 short model.
HR Coil
coil body + support

helical Coil
3D printed coil body

VR Coil
coil body + support
Points to be addressed

<table>
<thead>
<tr>
<th></th>
<th>Horizontal racetrack</th>
<th>Vertical racetrack</th>
<th>Helical design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator period λ_u</td>
<td>15 mm / 13 mm</td>
<td>13 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Gap between magnetic poles g</td>
<td>6 mm</td>
<td>6 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>Magnetic flux density B (amplitude) on axis for full model</td>
<td>$3.1 , \text{T} / 2.4 , \text{T}$</td>
<td>$2.2 , \text{T}$</td>
<td>$2.8 , \text{T}$</td>
</tr>
<tr>
<td>Conductor cross-section</td>
<td>$4 \times 5 , \text{mm}^2$</td>
<td>$4 \times 5 , \text{mm}^2$</td>
<td>$4 \times 6 , \text{mm}^2$</td>
</tr>
<tr>
<td>Geometry</td>
<td>mirror models or single coils</td>
<td>5 periods short model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anticryostat should be feasible</td>
<td>4 mm diameter pipe</td>
<td></td>
</tr>
<tr>
<td>Temperatures</td>
<td>4.2, 10, 20, 77 K; Quench/transition should be possible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

may freeze in humid environment (→ N2 ?)
Required measurements

- Single racetrack coils HR & VR:
 - one physical point

- Helical and mirror models:
 - For 5 periods every half period
 - and over time
 - Every 2 mm one point
 - and over time
Required measurements

- Addition for the helical undulator:
 - Measurement of cylindrical surface for $B_{x,y,z}$ within beam pipe
Simulations of superconducting undulators

REBCO (h) $B_y(80\%)$

- Beam axis
- vacuum
- 5 mm
- 3.5 T
- 1.5 kA/mm2, $B_{\text{conductor}}$
- iron
- tape

λ_u (mm)

$B_y(80\%)$ (T)

g (mm)

3 4 5 6 7 8 9 10 11 12

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.4