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Statistics are everywhere

Credits: StatLabCredits: mattbuck / wikimedia

“There are three types of lies - lies, damn 
lies, and statistics.” – Benjamin Disraeli 

“If your experiment needs statistics, you ought to have 
done a better experiment” – E. Rutherford

And Physics ?
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https://data.library.virginia.edu/statlab/
http://commons.wikimedia.org/wiki/User:Mattbuck


Introduction

Statistical methods play a critical role in 
many areas of physics

Higgs discovery :  “We have 5σ” !

“5s”

Phys. Lett. B 716 (2012) 1-29
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http://www.sciencedirect.com/science/article/pii/S037026931200857X


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery from a  background fluctuation…

New Physics ?

3.9σ ? 2.1σ ?
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery from a  background fluctuation…

New Physics ?

3.9σ ? 2.1σ ?

A few months later...
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Introduction

Precision measurements are another window into BSM effects
→ How to compute (and interpret) measurement intervals
→ How to model systematic uncertainties ?
→ How to get the smallest achievable uncertainties ?
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https://cerncourier.com/a/cdf-sets-w-mass-against-the-standard-model/


Lecture Plan

Statistics basic concepts (Today)
    [Basic ingredients (PDFs, etc.)]
    Statistical Modeling (PDFs for particle physics measurements)
    Parameter estimation (maximum likelihood, least-squares, …)
    
Computing statistical results (Tomorrow)
    Model testing (χ2 tests, hypothesis testing, p-values, …)
    Discovery testing
    Confidence intervals   
    Upper limits

Systematics and further topics (Saturday)
    Systematics and profiling
    [Bayesian techniques]

The class will be based on both lectures and hands-on tutorials

Disclaimer: the examples and 
methods covered in the 
lectures will be biased towards 
LHC techniques (generally close 
to the state of the art anyway)
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https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook1.ipynb


Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes
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Randomness in High-Energy Physics

Randomness involved in all stages
→ Classical randomness: detector response
→ Quantum effects in particle production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

Reconstruction

Image Credits: 
S. Höche, 
SLAC-PUB-16160

Experimental data is produced by incredibly complex processes

More details in other lectures!
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https://arxiv.org/abs/1411.4085


Measurement Errors: Energy measurement

Example: measuring the energy 
of a photon in a calorimeter

g
Calorimeter Readout
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Example: measuring the energy 
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Energy
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Measurement Errors: Energy measurement

Example: measuring the energy 
of a photon in a calorimeter

Calorimeter Readout

g

Measure leakage into neighboring cells

Measure leakage behind calorimeter

Real 
life

Perfect
case

Cannot predict the measured value for a given event
 Random process ⇒  Need a ⇒ probabilistic description
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Quantum Randomness: H®ZZ*®4l
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Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006

11 
/ 
54



Quantum Randomness: H®ZZ*®4l

ht
tp

://
ww

w.
ph

dc
om

ics
.c

om
/c

om
ics

/a
rc

hiv
e.

ph
p?

co
m

ici
d=

14
89

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006

View online 
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https://cds.cern.ch/record/2230893/files/Higgs4l.gif?download=1



Quantum Randomness: H®ZZ*®4l
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“Will I get an event today ?” → only probabilistic answer

Rare process: Expect 1 signal 
event every ~6 days

Phys. Rev. D 91, 012006
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Statistical Modeling 
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Probability Distributions

Probabilistic treatment of possible outcomes 
Þ Probability Distribution

Example: two-coin toss
→ Fractions of events in each bin i 
converge to a limit pi

Probability distribution : 
{ Pi } for i = 0, 1, 2

Properties
• Pi > 0

• Σ Pi=1

15 
/ 
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Continuous Variables: PDFs
Continuous variable: can consider per-bin probabilities pi, i=1.. nbins

y

Contours: P(x,y)

x

Bin size → 0 : Probability distribution function P(x)

High PDF value 
⇒ High chance to get a measurement here

x

P(x) > 0,   ∫ P(x) dx = 1

Generalizes to multiple variables :

P(x,y) > 0, ∫ P(x,y) dx dy = 1

16 
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PDF Properties: Mean

E(X) = <X> : Mean of X – expected outcome 
on average over many measurements

→ Property of the PDF

For measurements x1... xn, 
then can compute the Sample mean:

→ Property of the sample
→ approximates the PDF mean.

⟨ X ⟩ =∫ x P ( x) dx

⟨ X ⟩ =∑
i
x i P i

or

PDF Mean Sample Mean

PDF Mean

x̄ = 1
n∑i x i

17 
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PDF Properties: (Co)variance

Variance of X:

→ Average square of deviation from mean
→ RMS(X) = ÖVar(X) = σX  standard deviation

Can be approximated by sample variance:

Covariance of X and Y: 

→ Large if variations of X and Y are “synchronized”

ŝ 2 = 1
n−1∑i (x i− x̄)2

RMS

Correlation coefficient ρ =
Cov (X ,Y )

√ Var(X )Var(Y )

Var(X )=⟨ (X − ⟨ X ⟩ )2 ⟩

Cov (X ,Y )=⟨ (X − ⟨ X ⟩ ) (Y − ⟨Y ⟩ ) ⟩

Cov(x, y) > 0

y

x

-1 ≤ ρ ≤ 1
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“Linear” vs. “non-linear” correlations

Source: Wikipedia

For non-Gaussian cases, the Correlation coefficient ρ is not the whole story:

In particular, variables can still be correlated even
when ρ=0 : “Non-linear” correlations.

ρ

ρ

ρ

tan 2α =
2ρs 1s 2

s 1
2−s2

2

19 
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https://en.wikipedia.org/wiki/Correlation_and_dependence


Some vocabulary...

X, Y... are Random Variables (continuous or discrete), a.ka. observables : 
→ X can take any value x, with probability P(X=x).

→ P(X=x) is the PDF of X, a.k.a. the Statistical Model.

→ The Observed data is one value xobs of X,
     drawn from P(X=x).

y

x
x

x

20 
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Gaussian PDF

Gaussian distribution:

→ Mean : X0

→ Variance : σ2 (⇒ RMS = σ)

Generalize to N dimensions:
→ Mean : X0

→ Covariance matrix :

G (x ; X0 ,s )= 1
s √2π

e
−
(x−X0)

2

2s2

X0

s

G (x ; X0 ,C )= 1
[(2π)N|C|]1/2 e

− 1
2
(x−X 0)

TC−1( x−X0)

C = [ Var (X 1) Cov (X1 , X2)
Cov (X2 , X1) Var (X2) ]

x1

x2

= [ s 1
2 ρs 1s2

ρs 1s 2 s 2
2 ]

tan 2α =
2ρs 1s 2

s 1
2−s 2

2

α
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For an observable X with any(*) distribution, one has

What this means:
• The average of many measurements is always Gaussian, whatever the 

distribution for a single measurement
• The mean of the Gaussian is the average of the single measurements
• The RMS of the Gaussian decreases as Ön : smaller fluctuations when 

averaging over many measurements

Another version:

Mean scales like n, but RMS only like Ön

Central Limit Theorem

x̄ = 1
n∑i=1

n

xi ∼
n→∞

G ( ⟨ X ⟩ ,
s X

√n
)

∑
i=1

n

xi ∼
n→∞ G ( n ⟨X ⟩ , √n s X)

(*) Assuming σX < ∞ 
and other regularity 
conditions 
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Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay cos θ*)

Distribution becomes Gaussian, although very non-Gaussian originally
Distribution becomes narrower as expected (as 1/√n )

x̄ = 1
n∑i=1

n

xi

x̄
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Gaussian Quantiles Z P(|x – X0| > Zσ)

1 0.317

2 0.045

3 0.003

4 3 x 10-5

5 6 x 10-7

Consider

G(x; X0,σ) depends only on z ~ G(z; 0,1)

Probability P(|x – X0| > Zσ) to be away from the mean:

Cumulative Distribution Function (CDF) 
of the Gaussian :

z = ( x−X0
s ) “pull” of x

Φ( z) =∫−∞

z
G(u ;0,1) du
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Multiple Independent Gaussian
variables  xi : Define

Measures global distance from 

reference point (x1
0 …. xn

0)

Distribution depends on n :

Rule of thumb:

Chi-squared σ1

σ2

χ2=
4χ2=

1

χ 2 =∑
i=1

n

( xi − xi
0

s i )
2

χ2

χ2 /n  should be ≾ 1 25 
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Histogram Chi-squared

BLUE histogram vs. flat reference

χ2 = 12.9,   p(χ2=12.9, n=10) = 23%
✔

Histogram χ2 with respect to a reference shape:

• Assume an independent Gaussian distribution in each bin

• Degrees of freedom = (number of bins) – (number of fit parameters)

26 
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χ2 = 12.9,   p(χ2=12.9, n=10) = 23%

RED histogram vs. flat reference

χ2 = 38.8,  p(χ2=38.8, n=10) = 0.003% ✘

✔

RED histogram vs. correct reference
χ2 = 9.5,  p(χ2=9.5, n=10) = 49% ✔

Histogram χ2 with respect to a reference shape:

• Assume an independent Gaussian distribution in each bin

• Degrees of freedom = (number of bins) – (number of fit parameters)
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Statistical Modeling 
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Example 1: Z counting

Measure the cross-section (event rate) of the 
Z→ ee process

s fid =
ndata−N bkg

C fid L

35000 ± 187

Phys. Lett. B 759 (2016) 601

175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfid = 0.781  ± 0.004 (stat)  ± 0.018 (syst) nb

“Single bin counting” : only data input is ndata.

Fluctuations in 
the data counts

Other uncertainties 
(assumptions, parameter values)

28 
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http://dx.doi.org/10.1016/j.physletb.2016.06.023


Example 2: ttH→bb 

Event counting in different regions: 
Multiple-bin counting

Lots of information available
→ Potentially higher sensitivity
→ How to make optimal use of it ?

arXiv:2111.06712

29 
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https://arxiv.org/abs/2111.06712


Example 3: unbinned modeling ATLAS-CONF-2017-045

All modeling done using continuous distributions:

P total(mg g ) =
S

S+B
P signal(mg g ;mH) +

B
S+B

Pbkg(mg g) 30 
/ 
54

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/


How to count

Common situation: produce many events N, select a (very) small fraction P
→ In principle, binomial process
→ In practice, P  1, N  1≪ ≫ ,  Poisson approximation.⇒
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution P (n ;λ)=e−λ λ n

n!
(1−P)N−n ∼

n≪N ( 1− λ
N )

N
∼

N≫1 e−λ

Mean = λ
Variance = λ
σ = √λ

Central limit theorem :
becomes Gaussian for large λ : 

P (λ) →
λ → ∞

G(λ , √λ )

For a counting 
measurement,

RMS = √N

λ = NP
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Statistical Model for Counting

Observable: number of events n

Typically both Signal and Background present:

Model has parameters S and B.

B can be known a priori or not (S usually not...)

→ Example: assume B is known, use measured n to find out about S.

P (n ;S , B)=e−(S + B) (S + B) n

n!
S : # of events from signal process
B : # of events from bkg. process(es)

32 
/ 
54



Multiple counting bins

Count in bins of a variable  ⇒ histogram n1 ... nN. 
(N : number of bins)
 

Shapes f typically obtained from simulated events (Monte Carlo)

→ HEP: generally good modeling from simulation, although some uncertainties need 

to be accounted for.

Also not always possible to generate sufficiently large MC samples
MC stat fluctuations can create artefacts, especially for S  B.≪

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i) (S f S , i+B f B , i)
ni

ni !

Per-bin fractions (=shapes)
of Signal and Background

Poisson distribution in each bin

33 
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Model typically includes:

• Parameters of interest (POIs) : what we want to measure

→ S, mW, …

• Nuisance parameters (NPs) : other parameters needed to define the model

→ Background levels (B)

→ For binned data, fsig
i , f

bkg
i

NPs must be either:
→ Known a priori (within uncertainties) or
→ Constrained by the data

Model Parameters

34 
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Takeaways

Description Observable Likelihood

Counting
n Poisson

Binned shape 
analysis

ni, i = 1 .. Nbins
Poisson product

Unbinned 
shape analysis

mi, i = 1 .. nevts
Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig + B f i

bkg) (S f i
sig + B f i

bkg)n i

ni !

P(n;S ,B)=e−(S + B) (S + B)n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Random data must be described using a statistical model:

Includes parameters of interest (POIs) but also nuisance parameters (NPs)
Next step: use the model to obtain information on the POIs 35 
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Maximum Likelihood Estimation

36 
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What a PDF is for

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned

Model describes the distribution of the observable: P(data; parameters)
⇒ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

37 
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What a PDF is also for: Likelihood

Estimate

P (λ=?) 2

Likelihood:  L(parameters) = P(data; parameters)

?

→ same as the PDF, but seen as function of the parameters

Model describes the distribution of the observable: P(data; parameters)
 ⇒ Possible outcomes of the experiment, for given parameter values

We want the other direction: use data to get information on parameters
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Maximum Likelihood Estimation

To estimate a parameter μ, find the value μ̂ that maximizes L(μ)

Observed 
Value n=5

S = 20S = 5

S = 0.5 

n
s

L(S) max 
@ Ŝ = 5

given n=5

μ̂ = argmax L(μ)

n
L(

S; 
n=

5)

P(
n;

 S)

Maximum Likelihood 
Estimator (MLE) :μ̂

MLE: the value of μ for which this data was most likely to occur
The MLE is a function of the data – itself an observable
No guarantee it is the true value (data may be “unlikely”) but sensible estimate 39 
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
40 
/ 
54



Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
40 
/ 
54



Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
40 
/ 
54



Multiple Gaussian bins

-2 log Likelihood:

Maximum likelihood    Minimum χ⇔ 2

  ⇔ Least-squares
      minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 ( ni – y i(μ)
s i )

2

However typically need to perform non-linear minimization in other cases.

HEP practice:
● MINUIT (C++ library within ROOT, numerical gradient descent)
● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Many algorithms – gradient-based, etc.
41 
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Multiple Gaussian bins
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Hands-ons

Each lecture statistics lecture comes with “hands-on” exercises.
The hands-on session will be based on Jupyter notebooks built using the 
numpy/scipy/pyplot stack.

If you have a computer, please install anaconda before the start of the class. 
This provides a consistent installation of python, JupyterLab, etc.
→ Alternatively, you can also install JupyterLab as a standalone package.

→ Another solution is to run the notebooks on the public jupyter servers at 
mybinder.org. This will probably be slower but avoids a local install.

No hands-on today, but have a look after the course.
Please be prepared to run the hands-ons during lectures 2 and 3 !

https://docs.anaconda.com/anaconda/install/
https://jupyter.org/install
http://mybinder.org/


Links to resources

The hands-on resources for each lecture are listed below:

Lecture 1 notebook [solutions] binder [solutions]

Lecture 2 notebook binder

Lecture 3 notebook binder

● Use the notebook links if you have a local install: save the notebook 
locally and open it with your JupyterLab installation.

● Use the binder links to use public servers: the links will open the 
notebooks in a remote server sessions in your browser.

Notebooks with solutions to the exercises will be posted after the lectures.
Please let me know in case of technical issues running the notebooks!

Today

https://github.com/fastprof-hep/stats-tutorial/blob/main/AEPSHEP2022/notebook1.ipynb
https://github.com/fastprof-hep/stats-tutorial/blob/main/AEPSHEP2022/notebook1_solutions.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=AEPSHEP2022/notebook1.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=AEPSHEP2022/notebook1_solutions.ipynb
https://github.com/fastprof-hep/stats-tutorial/blob/main/AEPSHEP2022/notebook2.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=AEPSHEP2022/notebook2.ipynb
https://github.com/fastprof-hep/stats-tutorial/blob/main/AEPSHEP2022/notebook3.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=AEPSHEP2022/notebook3.ipynb


Extra Slides
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Error Bars

Strictly speaking, the uncertainty is given by the model :
→ Bin central value ~ mean of the bin PDF
→ Bin uncertainty ~ RMS of the bin PDF
 The data is just what it is, a simple observed point.

⇒ One should in principle show the error bar on the prediction.
→ In practice, the usual convention is to have error bars on the data points.
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Rare Processes ?

HEP : almost always use Poisson

distributions. Why ?

ATLAS : 

• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, stot~108 nb, )

• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

 ⇒ p ~ 10-6  1 ≪ (pH→γγ ~ 10-13)

A day of data: N ~ 1014  1 ≫

Þ Poisson regime! Similarly true in many 

other physics situations.
W.J. Stirling, private 
communication

(Large N = design requirement, to get not-too-small λ=Np...)
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Unbinned Shape Analysis
Observable: set of values m1... mn, one per event

→ Describe shape of the distribution of m
→ Deduce the probability to observe m1... mn

H→γγ-inspired example:
• Gaussian signal 
• Exponential bkg

 ⇒ Total PDF for a single event:

 ⇒ Total PDF for a dataset

P signal(m) = G(m;mH ,s)

P total (m) = S
S+B

G (m;mH ,s) +
B

S+B
α e−α m

P bkg(m) = α e−αm

slope α

mH

s

Signal

Background

Total

P ({mi }i=1…n) = e−(S+B) (S+B)n

n! ∏
i=1

n
S

S+B
G(mi ;mH ,s) +

B
S+B

α e−αmi

Probability to observe
the value miProbability to observe n events

Expected yields : S, B
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S
→ Try different values of S for a fixed data value n=5
→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S Sn

n!

L(S ;n=5)=e−S S5

5!

Observed 
Value n=5

n 49 
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P (n ;S) = e−S Sn
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5!

Observed 
Value n=5

P(S = 20)
Low

likelihood

P(S = 5)
High

likelihood

P(S = 0.5)
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Assume Poisson distribution with B = 0 :
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P (n ;S) = e−S Sn

n!

L(S ;n=5)=e−S S5

5!

Observed 
Value n=5

P(S = 5)
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P(S = 0.5)
Low

likelihood
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Likelihood 
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S
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MLEs in Shape Analyses

Binned shape analysis:

L(S ;ni) = P(ni ;S) =∏
i=1

N

Pois (ni ;S f i + Bi)

λPois(S) =−2 log L(S) =−2∑
i=1

N

log Pois(ni ;S f i + Bi)

λGaus(S) =∑
i=1

N

−2 logG (ni ;S f i + Bi ,s i) =∑
i=1

N

( ni−(S f i + Bi)
s i )

2

χ2 formula!

In both cases, MLE  ⇔ Best Fit

Maximize global L(S) (each bin may prefer a different S)
In practice easier to minimize 

In the Gaussian limit

→ Gaussian MLE (min χ2 or min λGaus) : Best fit value in a χ2 (Least-squares) fit
→ Poisson  MLE (min λPois) : Best fit value in a likelihood fit (in ROOT, fit option “L”)
In RooFit, λPois ⇒ RooAbsPdf::fitTo(), λGaus ⇒ RooAbsPdf::chi2FitTo().

Needs a computer...
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H→γγ

Estimate the MLE Ŝ of S ?

→ Perform (likelihood) best-fit of 
model to data
⇒ fit result for S is the desired Ŝ.

In particle physics, often use the 
MINUIT minimizer within ROOT. 

L(S ,B ;mi)=e
−(S + B) ∏

i=1

nevts

S Psig (mi)+B Pbkg(mi)

ATLAS-CONF-2017-045

Ŝ 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/


MLE Properties

• Asymptotically Gaussian 
        and unbiased 

• Asymptotically Efficient : σμ̂ is the lowest possible value (in the limit n®¥) 
among consistent estimators.
→ MLE captures all the available information in the data

• Also consistent: μ̂ converges to the true value for large n,

• Log-likelihood : Can also minimize  λ = -2 log L
→ Usually more efficient numerically 

→ For Gaussian L, λ is parabolic: 
• Can drop multiplicative constants in L (additive constants in λ)

P (μ̂ ) ∝ exp (− (μ̂−μ*)2

2s μ̂
2 )     for n → ∞

for large enough datasets

μ̂ →
n→∞

μ*

Standard deviation of the distribution of μ̂ 

⟨ μ̂ ⟩ = μ*  for n → ∞
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Extra: Fisher Information

Fisher Information:

Measures the amount of information available in the measurement of μ.

Gaussian likelihood:

→ smaller σGauss  more information.⇒

Cramer-Rao bound:

For any estimator . μ̃
→ cannot be more precise than allowed by information in the measurement.

Efficient estimators reach the bound : e.g. MLE in the large dataset limit.

I (μ) = ⟨ ( ∂
∂μ log L(μ) )

2 ⟩ =− ⟨ ∂2

∂μ2 log L(μ) ⟩

I (μ ) = 1
sGauss

2

Var(~μ ) ≥ 1
I (μ )

Gaussian case: 
● For a Gaussian estimator μ̃ 

● MLE: Var(μ̂) = σμ̂
2 

P (~μ) ∝ exp (− (~μ−μ *)2

2s~μ
2 )

Cramer-Rao: Var(μ̃) ≥ σGauss
2 = σμ̃

2  
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Some Examples
High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

3.9σ
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http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X
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