2022 ASIA EUROPE PAC FIC SCHOOL OF HIGH-ENERGY P

Practical Statistics

Nicolas Berger (LAPP Annecy)

2022 ASIA EUROPE PAC FIC SCHOOL OF HIGH-ENERGY PH SICS

Practical Statistics

Statistics are everywhere

 "There are three types of lies - lies, damn lies, and statistics." - Benjamin Disraeli

Credits: mattbuck / wikimedia

And Physics ?

"If your experiment needs statistics, you ought to have done a better experiment" - E. Rutherford

Introduction

Statistical methods play a critical role in many areas of physics

Higgs discovery: "We have 5σ "!

Introduction

Sometimes difficult to distinguish a bona fide discovery from a background fluctuation...

Introduction

Sometimes difficult to distinguish a bona fide discovery from a background fluctuation...

Introduction

Precision measurements are another window into BSM effects
\rightarrow How to compute (and interpret) measurement intervals
\rightarrow How to model systematic uncertainties?
\rightarrow How to get the smallest achievable uncertainties ?

Lecture Plan

Statistics basic concepts (Today)
[Basic ingredients (PDFs, etc.)]
Statistical Modeling (PDFs for particle physics measurements)
Parameter estimation (maximum likelihood, least-squares, ...)

Computing statistical results (Tomorrow)
Model testing (χ^{2} tests, hypothesis testing, p-values, ...)
Discovery testing
Confidence intervals
Upper limits

Systematics and further topics (Saturday)
Systematics and profiling
[Bayesian techniques]

Disclaimer: the examples and methods covered in the lectures will be biased towards LHC techniques (generally close to the state of the art anyway)

The class will be based on both lectures and hands-on tutorials

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Image Credits:
S. Höche,

SLAC-PUB-16160

Randomness involved in all stages
\rightarrow Classical randomness: detector response
\rightarrow Quantum effects in particle production, decay

Hard scattering

PDFs, Parton shower, Pileup

Decays

Detector response

Reconstruction

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy

 of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy

 of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event
\Rightarrow Random process \Rightarrow Need a probabilistic description

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}{ }^{*} \rightarrow 4 \mathrm{I}$

Rare process: Expect 1 signal event every ~6 days

View online

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Statistical Modeling

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution:
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

100000 trials

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$

High PDF value
\Rightarrow High chance to get a measurement here

Generalizes to multiple variables:
$P(x, y)>0, \int P(x, y) d x d y=1$

Contours: $\mathrm{P}(\mathrm{x}, \mathrm{y})$

$$
P(x)>0, \quad \int P(x) d x=1
$$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

Generalizes to multiple variables :
$P(x, y)>0, \int P(x, y) d x d y=1$

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$

High PDF value
\Rightarrow High chance to get a measurement here

$$
P(x)>0, \int P(x) d x=1
$$

PDF Properties: Mean

$E(X)=\langle X\rangle$: Mean of X - expected outcome on average over many measurements

$$
\begin{align*}
\langle X\rangle & =\sum_{i} x_{i} P_{i} \tag{or}\\
\langle X\rangle & =\int x P(x) d x
\end{align*}
$$

\rightarrow Property of the PDF

For measurements $x_{1} \ldots x_{n}$, then can compute the Sample mean:

$$
\bar{x}=\frac{1}{n} \sum_{i} x_{i}
$$

\rightarrow Property of the sample
\rightarrow approximates the PDF mean.

PDF Mean

PDF Mean Sample Mean

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(\boldsymbol{X})=\left\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(\boldsymbol{X})=\left\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"
Correlation coefficient $\quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1$

"Linear" vs. "non-linear" correlations

For non-Gaussian cases, the Correlation coefficient ρ is not the whole story:

Source: Wikipedia
In particular, variables can still be correlated even when $\rho=0$: "Non-linear" correlations.

Some vocabulary...

$X, Y \ldots$ are Random Variables (continuous or discrete), a.ka. observables :
$\rightarrow X$ can take any value x, with probability $P(X=x)$.
$\rightarrow P(X=x)$ is the PDF of X, a.k.a. the Statistical Model.
\rightarrow The Observed data is one value $x_{\text {obs }}$ of X, drawn from $P(X=x)$.

Gaussian PDF

Gaussian distribution:

$$
G\left(x ; X_{0}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-X_{0}\right)^{2}}{2 \sigma^{2}}}
$$

\rightarrow Mean : X_{0}

\rightarrow Variance : $\sigma^{2}(\Rightarrow \mathrm{RMS}=\sigma)$

Generalize to \mathbf{N} dimensions:
\rightarrow Mean : X_{0}
\rightarrow Covariance matrix :

$$
\begin{aligned}
C & =\left[\begin{array}{ll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
\end{aligned}
$$

Central Limit Theorem

For an observable X with any ${ }^{\left({ }^{*}\right)}$ distribution, one has

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(\langle X\rangle, \frac{\sigma_{X}}{\sqrt{n}}\right)
$$

What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as $\sqrt{ } \mathbf{n}$: smaller fluctuations when averaging over many measurements

Another version: $\quad \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(n\langle X\rangle, \sqrt{n} \sigma_{X}\right)$
Mean scales like n, but RMS only like $\sqrt{ } n$

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Gaussian Quantiles

Consider $\quad \mathrm{z}=\left(\frac{\boldsymbol{x}-\boldsymbol{X}_{\mathbf{0}}}{\boldsymbol{\sigma}}\right) \quad$ "pull" of x
$G\left(x ; X_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{X}_{0}\right|>\mathrm{Z} \sigma\right)$ to be away from the mean:

Cumulative Distribution Function (CDF) of the Gaussian :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Gaussian Quantiles

$Z \quad P\left(\left|x-X_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{\boldsymbol{x}-X_{0}}{\sigma}\right) \quad$ "pull" of x
$G\left(x ; X_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{X}_{0}\right|>\mathrm{Z} \sigma\right)$ to be away from the mean:

Cumulative Distribution Function (CDF) of the Gaussian :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Gaussian Quantiles

$Z \quad P\left(\left|x-X_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{x-X_{0}}{\sigma}\right) \quad$ "pull" of x
$G\left(x ; X_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $P\left(\left|x-X_{0}\right|>Z \sigma\right)$ to be away from the mean:

Cumulative Distribution Function (CDF) of the Gaussian :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Chi-squared

Multiple Independent Gaussian variables x_{i} : Define

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:
χ^{2} / n should be $\lesssim 1$

Chi-squared

Multiple Independent Gaussian
variables x_{i} : Define

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:

χ^{2} / n should be $\mathfrak{1}$

Histogram Chi-squared

Histogram χ^{2} with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference

$$
\chi^{2}=12.9, \quad p\left(\chi^{2}=12.9, n=10\right)=23 \%
$$

Histogram Chi-squared

Histogram χ^{2} with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $\chi^{2}=12.9, p\left(\chi^{2}=12.9, n=10\right)=23 \%$ RED histogram vs. flat reference $\chi^{2}=38.8, p\left(\chi^{2}=38.8, n=10\right)=0.003 \%$

Histogram Chi-squared

Histogram χ^{2} with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $\chi^{2}=12.9, p\left(\chi^{2}=12.9, n=10\right)=23 \%$ RED histogram vs. flat reference $\chi^{2}=38.8, p\left(\chi^{2}=38.8, n=10\right)=0.003 \%$

RED histogram vs. correct reference x2 $=9.5, p(x 2=9.5, n=10)=49 \%$

Statistical Modeling

Example 1: Z counting

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$$
\sigma^{35000 \pm 187}=\frac{1}{n_{\text {data }}-N_{b k g}} \begin{gathered}
175 \pm 8 \\
C_{\text {fid }} L \\
0.552 \pm 0.006
\end{gathered}
$$

$$
\sigma^{\text {fid }}=0.781 \pm 0.004 \text { (stat) } \pm 0.018 \text { (syst) nb }
$$

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)
"Single bin counting" : only data input is $\mathbf{n}_{\text {data }}$.

Example 2: ftH $\rightarrow \mathrm{bb}$

Event counting in different regions:
Multiple-bin counting

Lots of information available

\rightarrow Potentially higher sensitivity
\rightarrow How to make optimal use of it ?

Example 3: unbinned modeling

All modeling done using continuous distributions:

$$
\boldsymbol{P}_{\text {total }}\left(m_{\gamma \gamma}\right)=\frac{S}{S+B} P_{\text {signal }}\left(m_{\gamma \gamma} ; m_{H}\right)+\frac{B}{S+B} \boldsymbol{P}_{\mathrm{bkg}}\left(m_{\gamma \gamma}\right)
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\lambda=N P
$$

$\lambda=0.5$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting
measurement,

$$
\mathrm{RMS}=\sqrt{ } \mathrm{N}
$$

Central limit theorem : becomes Gaussian for large λ :

$$
P(\lambda)^{\lambda \rightarrow \infty} \rightarrow G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting
measurement,

$$
\mathrm{RMS}=\sqrt{\mathrm{N}}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$\lambda=3$

$$
\lambda=N P
$$

$$
-(1-\boldsymbol{P})^{N-n n}{ }^{n}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\sim} e^{-\lambda}
$$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting
measurement,

$$
\mathrm{RMS}=\sqrt{ } \mathrm{N}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\lambda=N P
$$

$\lambda=5$

П! $(1-P)^{N-n} \stackrel{n \ll N}{\sim}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\sim} e^{-\lambda}$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting
measurement,

$$
\mathrm{RMS}=\sqrt{ } \mathrm{N}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\lambda=N P
$$

$\lambda=10$

L- $(1-\mathbb{P})^{N-n} n^{n \ll}\left(1-\frac{\lambda}{N}\right)^{N} e^{-\lambda}$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting measurement,

$$
\mathrm{RMS}=\sqrt{ } \mathrm{N}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\lambda=N P
$$

$$
\lambda=20
$$

П! $(1-P)^{N-n} \stackrel{n \ll N}{\sim}\left(1-\frac{\boldsymbol{\lambda}}{\boldsymbol{N}}\right)^{N} \stackrel{N \ngtr 1}{\sim} \boldsymbol{e}^{-\lambda}$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting measurement,

$$
\mathrm{RMS}=\sqrt{\mathrm{N}}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Statistical Model for Counting

Observable: number of events \mathbf{n}
Typically both Signal and Background present:

$$
P(n ; S, B)=e^{-(s+B)} \frac{(S+B)^{n}}{n!}
$$

S:\# of events from signal process
B : \# of events from bkg. processes)

Model has parameters S and B.
B can be known a priori or not (S usually not...)
\rightarrow Example: assume \mathbf{B} is known, use measured n to find out about \mathbf{S}.

Multiple counting bins

Count in bins of a variable \Rightarrow histogram $\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{N}}$.
(N : number of bins)
Per-bin fractions (=shapes)
of Signal and Background
$\boldsymbol{P}\left(\left\{n_{i}\right\} ; S, B\right)=\prod_{i=1}^{N} \underbrace{-\left(s f_{s, i}+B f_{p, i}\right)} \frac{\left(\boldsymbol{S f}_{S, i}+\boldsymbol{B} f_{B, i}\right)^{n_{i}}}{n_{i}!}$
Poisson distribution in each bin

Shapes f typically obtained from simulated events (Monte Carlo)
\rightarrow HEP: generally good modeling from simulation, although some uncertainties need to be accounted for.

Also not always possible to generate sufficiently large MC samples MC stat fluctuations can create artefacts, especially for S < B.

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure
$\rightarrow \mathrm{S}, \mathrm{m}_{\mathrm{w}}, \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
\rightarrow Background levels (B)
\rightarrow For binned data, frig $_{\mathrm{ig}}^{\mathrm{i}}, \mathrm{ffkg}_{\mathrm{i}}$

NPs must be either:
\rightarrow Known a priori (within uncertainties) or
\rightarrow Constrained by the data

Takeaways

Random data must be described using a statistical model:

Includes parameters of interest (POlIs) but also nuisance parameters (NPs)
Next step: use the model to obtain information on the POlIs

Maximum Likelihood Estimation

What a PDF is for

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

2, 5, 3, 7, 4, 9,
Each entry = separate "experiment"

What a PDF is also for: Likelihood

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=?)
$$

2

Likelihood: L(parameters) = P(data; parameters)
\rightarrow same as the PDF, but seen as function of the parameters

Maximum Likelihood Estimation

To estimate a parameter μ, find the value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu)$
Maximum Likelihood

$$
\hat{\mu}=\arg \max L(\mu)
$$

MLE: the value of μ for which this data was most likely to occur The MLE is a function of the data - itself an observable No guarantee it is the true value (data may be "unlikely") but sensible estimate

Gaussian case

Gaussian case

Gaussian case

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & (\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & (\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & (\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & L \mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & L \mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & L \mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
\lambda(\mu)=-2 \log L & L \mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-y_{i}(\mu)}{\sigma_{i}}\right)^{2} \\
\text { Maximum likelihood } \Leftrightarrow & \text { Minimum } \chi^{2} \\
\Leftrightarrow & \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Hands-ons

Each lecture statistics lecture comes with "hands-on" exercises.
The hands-on session will be based on Jupyter notebooks built using the numpy/scipy/pyplot stack.

If you have a computer, please install anaconda before the start of the class.
This provides a consistent installation of python, JupyterLab, etc.
\rightarrow Alternatively, you can also install JupyterLab as a standalone package.
\rightarrow Another solution is to run the notebooks on the public jupyter servers at mybinder.org. This will probably be slower but avoids a local install.

No hands-on today, but have a look after the course.
Please be prepared to run the hands-ons during lectures 2 and 3 !

Links to resources

The hands-on resources for each lecture are listed below:

Lecture 1	notebook [solutions]	binder [solutions]
Today		
Lecture 2	notebook	binder
Lecture 3	notebook	binder

- Use the notebook links if you have a local install: save the notebook locally and open it with your JupyterLab installation.
- Use the binder links to use public servers: the links will open the notebooks in a remote server sessions in your browser.

Notebooks with solutions to the exercises will be posted after the lectures. Please let me know in case of technical issues running the notebooks!

Extra Slides

Error Bars

Strictly speaking, the uncertainty is given by the model :
\rightarrow Bin central value ~ mean of the bin PDF
\rightarrow Bin uncertainty \sim RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

Error Bars

Strictly speaking, the uncertainty is given by the model:
\rightarrow Bin central value ~ mean of the bin PDF
\rightarrow Bin uncertainty \sim RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

Rare Processes?

HEP : almost always use Poisson distributions. Why ?

ATLAS :

- Event rate ~ 1 GHz

$$
\left(\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \sim 10 \mathrm{nb}^{-1} / \mathrm{s}, \sigma_{\mathrm{tot}} \sim 10^{8} \mathrm{nb},\right)
$$

- Trigger rate ~ 1 kHz
(Higgs rate $\sim 0.1 \mathrm{~Hz}$)
$\Rightarrow \mathrm{p} \sim 10^{-6} \ll 1\left(\mathrm{p}_{\mathrm{H} \rightarrow \mathrm{W}} \sim 10^{-13}\right)$
A day of data: $\mathrm{N} \sim 10^{14} \gg 1$
\Rightarrow Poisson regime! Similarly true in many other physics situations.

Unbinned Shape Analysis

Observable: set of values $m_{1} \ldots m_{n}$, one per event
\rightarrow Describe shape of the distribution of m
\rightarrow Deduce the probability to observe $m_{1} \ldots m_{n}$

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$-inspired example:

- Gaussian signal $\quad P_{\text {signal }}(m)=G\left(m ; m_{H}, \sigma\right)$
- Exponential bkg $\quad \boldsymbol{P}_{\text {bkg }}(m)=\alpha \boldsymbol{e}^{-\alpha m}$

Expected yields: S, B
\Rightarrow Total PDF for a single event:
$P_{\text {total }}(m)=\frac{S}{S+B} G\left(m ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m}$
\Rightarrow Total PDF for a dataset
Probability to observe the value m_{i}

Probability to observe n events
$P\left(\left\{m_{i}\right\}_{i=1 \ldots n}\right)=e^{-(S+B)} \frac{(S+B)^{n}}{n!} \prod_{i=1}^{n} \frac{S}{S+B} G\left(m_{i} ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m^{\downarrow}}$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}}{\boldsymbol{P}(n ; S)} e^{-s} \frac{S^{\boldsymbol{n}}}{n!}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-S} \frac{S^{5}}{5!}
$$

Poisson Example

$\begin{aligned} & \text { Assume Poisson distribution with } \mathrm{B}=0: \\ & \text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}\end{aligned} \quad \boldsymbol{e}(n ; S)=\boldsymbol{S}^{\boldsymbol{n}}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

49

Poisson Example

\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

49

Poisson Example

Assume Poisson distribution with $B=0$: Say we observe $n=5$, want to infer information on the parameter $S \quad e^{-s} \frac{S^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-S} \frac{S^{5}}{5!}
$$

49

MLEs in Shape Analyses

Binned shape analysis:

$$
L\left(\boldsymbol{S} ; \boldsymbol{n}_{\boldsymbol{i}}\right)=P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}\right)=\prod_{i=1}^{N} \operatorname{Pois}\left(\boldsymbol{n}_{i} ; \boldsymbol{S} \boldsymbol{f}_{i}+B_{i}\right)
$$

Maximize global L(S) (each bin may prefer a different \mathbf{S}) In practice easier to minimize

$$
\lambda_{\text {Pois }}(S)=-2 \log L(S)=-2 \sum_{i=1}^{N} \log \operatorname{Pois}\left(n_{i} ; \boldsymbol{S} f_{i}+B_{i}\right) \quad \text { Needs a computer... }
$$ In the Gaussian limit

$$
\lambda_{\text {Gas }}(\boldsymbol{S})=\sum_{i=1}^{N}-2 \log G\left(\boldsymbol{n}_{i} ; \boldsymbol{S} f_{i}+B_{i}, \sigma_{i}\right)=\sum_{i=1}^{N}\left|\frac{\boldsymbol{n}_{i}-\left(\boldsymbol{S} f_{i}+B_{i}\right)}{\sigma_{i}}\right|^{2} \quad x^{2} \text { formula! }
$$

\rightarrow Gaussian MLE (min x^{2} or min $\lambda_{\text {Gauss }}$) : Best fit value in a x^{2} (Least-squares) fit \rightarrow Poisson MLE (min $\lambda_{\text {polis }}$: Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, $\boldsymbol{\lambda}_{\text {Polis }} \Rightarrow$ RooAbsPdf: :fyi tTo(), $\boldsymbol{\lambda}_{\text {Gus }} \Rightarrow$ RooAbsPdf::chi2FitTo().

$\mathrm{H} \rightarrow \mathrm{\gamma} \gamma$

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\text {sig }}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\text {bkg }}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)
$$

Estimate the MLE \hat{S} of ?
\rightarrow Perform (likelihood) best-fit of model to data
\Rightarrow fit result for S is the desired $\hat{\mathbf{S}}$.

In particle physics, often use the MINUIT minimizer within ROOT.

MLE Properties

- Asymptotically Gaussian and unbiased $\langle\hat{\mu}\rangle=\mu^{*}$ for $n \rightarrow \infty$ $\underset{\boldsymbol{P}(\hat{\mu})}{\ln \exp }\left|-\frac{\left(\hat{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\hat{\mu}}^{2}}\right|$ for $n \rightarrow \infty$
Standard deviation of the distribution of $\hat{\mu}$ for large enough datasets
- Asymptotically Efficient : σ_{p} is the lowest possible value (in the limit $\mathrm{n} \rightarrow \infty$) among consistent estimators.
\rightarrow MLE captures all the available information in the data
- Also consistent: $\hat{\mu}$ converges to the true value for large n ,

- Log-likelihood: Can also minimize $\lambda=-2$ log L
\rightarrow Usually more efficient numerically
\rightarrow For Gaussian L, λ is parabolic:
- Can drop multiplicative constants in L(additive constants in λ)

Extra: Fisher Information

Fisher Information:

$$
I(\mu)=\left|\left|\frac{\partial}{\partial \mu} \log L(\mu)\right|^{2}\right|=-\left|\frac{\partial^{2}}{\partial \mu^{2}} \log L(\mu)\right|
$$

Measures the amount of information available in the measurement of μ.

Gaussian likelihood: $\quad I(\mu)=\frac{1}{\sigma_{\text {Gauss }}^{2}}$
\rightarrow smaller $\sigma_{\text {Gauss }} \Rightarrow$ more information.

$$
\operatorname{Var}(\tilde{\mu}) \geq \frac{1}{I(\mu)}
$$

Gaussian case:

- For a Gaussian estimator $\tilde{\mu}$

$$
P(\widetilde{\mu}) \propto \exp \left(-\frac{\left(\tilde{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\tilde{\mu}}^{2}}\right)
$$

- MLE: $\operatorname{Var}(\hat{\mu})=\sigma_{\hat{\mu}}{ }^{2}$

Cramer-Rao: $\operatorname{Var}(\tilde{\mu}) \geq \sigma_{\text {Gauss }}{ }^{2}=\sigma_{\tilde{\mathrm{H}}}{ }^{2}$
Cramer-Rao bound:

Some Examples

High-mass X $\boldsymbol{\text { WY S Search: JHEP } 0 9 \text { (2016) } 1}$

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

