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Lecture Plan

Statistics basic concepts (Today)
    [Basic ingredients (PDFs, etc.)]
    Statistical Modeling (PDFs for particle physics measurements)
    Parameter estimation (maximum likelihood, least-squares, …)
    
Computing statistical results (Today)
    Model testing (χ2 tests, hypothesis testing, p-values, …)
    Discovery testing
    Confidence intervals   
    Upper limits

Systematics and further topics (Tomorrow)
    Systematics and profiling
    [Bayesian techniques]

The class will be based on both lectures and hands-on tutorials

Disclaimer: the examples and 
methods covered in the 
lectures will be biased towards 
LHC techniques (generally close 
to the state of the art anyway)
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https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook1.ipynb


Statistical Modeling Reminders

Description Observable Likelihood

Counting
n Poisson

Binned shape 
analysis

ni, i = 1 .. Nbins
Poisson product

Unbinned 
shape analysis

mi, i = 1 .. nevts
Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig + B f i

bkg) (S f i
sig + B f i

bkg)n i

ni !

P(n;S ,B)=e−(S + B)
(S + B)n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Random data must be described using a statistical model:

Includes parameters of interest (POIs) but also nuisance parameters (NPs)
Next step: use the model to obtain information on the POIs 3 / 
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Hypothesis Testing 
and discovery
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Discovery Testing

We see an unexpected feature in our data, is it 
a signal for new physics or a fluctuation ?

e.g. Higgs discovery :  “We have 5σ” !

“5s”

Phys. Lett. B 716 (2012) 1-29
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http://www.sciencedirect.com/science/article/pii/S037026931200857X


Say we have a Gaussian measurement with
a background B=100, and we measure n=120

Did we just discover something ? Maybe :-) (but not very likely)

The measured signal is S = 20. 

Uncertainty on B is √B = 10
 ⇒ Significance Z = 2
 ⇒ we are ~2σ away from S=0.

Gaussian quantiles : 

Z = 2 happens p0 ~ 2.3% of the time if S=0

P-value: 

 ⇒ Rare, but not exceptional

Discovery Testing

B=100

√B=10

n

B=100

Obs: 120n

Obs: 120

Z= S
√B

p0= 1−Φ(Z)
Φ(Z) =∫−∞

Z
G (u ;0,1) du

S = nobs – B 
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Discovery Testing

nobs S Z p0

105 5 0.5σ 31%

110 10 1σ 16%

120 20 2σ 2.3%

130 30 3σ 0.1%

150 50 5σ 3 10-7

B=100

 √B=10

n

Evidence

Discovery

105
110

130 150

B=100

n
105
110

130

150

● Determine S
● Compute Z and p0 

120120

Straightforward in this Gaussian case

Need to be able to do the same in 
more complex cases:
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General Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H0 : S=0)

→ Goal : decide if H0 is favored or disfavored using a test based on the data

  Possible 
 outcomes:

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)

H0 is false 
(New physics!)  Discovery!  Missed

 discovery

H0 is true 
(Nothing new)

 False
 discovery

 No new physics, 
 None found

 "... the null hypothesis is never proved or established, but is possibly disproved, in the course 
of experimentation. Every experiment may be said to exist only to give the facts a chance of 
disproving the null hypothesis." – R. A. Fisher 
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General Hypothesis Testing

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

→ Usually set predefined level of
acceptable Type-I error (e.g. “5σ”)

S = 0

Type-I error
p-value

BSM

Type-II Error

Discriminant observable

Data disfavors H0 
(Discovery claim)

Data favors H0
(Nothing found)

H0 is false 
(New physics!) Discovery! Type-II error

(Missed discovery)

H0 is true 
(Nothing new)

Type-I error 
(False discovery)

No new physics, 
none found

p-value, significance

Hypothesis: assumption on model parameters, say value of S (e.g. H0 : S=0)

 

Lower Type-I errors ⇔ Higher Type-II errors and vice versa: cannot have everything!
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ROC Curves

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

→ Usually set predefined level of
acceptable Type-I error (e.g. “5σ”)

S = 0

Type-I error
p-value

BSM

Type-II Error

1- εType-II (= εS)

1-
 ε Ty

pe
-I (

=1
 - 

ε B)

1

1

Better

Be
tte

r

0

No discrimination

Increasingly
more powerful
discriminators

“Receiver operating characteristic” 
(ROC) Curve:
→ Shows Type-I vs Type-II rates for 
different selections
→ All curves monotonically 
decrease from (0,1) to (1,0)
→ Better discriminators more bent 
towards (1,1)

Discriminant observable
10 
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Discovery Testing in Gaussian counting

p-value

Z= S
√B

p0 = 1−Φ(Z)

S = nobs – B 

11 
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H0 and H1, the 

optimal discriminator is the Likelihood ratio (LR) 

e.g. 

As for MLE, choose the hypothesis that is more likely given the data we have.

L(H0 ; data)
L(H1 ;data)

L(S= 0 ; data)
L(S= 5 ; data)

Caveat: Strictly true only for simple 
hypotheses (no free parameters)

→ Always need an alternate hypothesis to test against the null.
→ Minimizes Type-II uncertainties for given level of Type-I uncertainties

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...

12 
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Discovery: Test Statistic

Discovery :
• H0 : background only (S = 0) against

• H1: presence of a signal (S > 0)

→ For H1, any S > 0 is possible, which to use ? The one preferred by the data, Ŝ.

 ⇒ Use Likelihood ratio:

→ In fact use the test statistic

Note: for Ŝ < 0, set q0=0 to reject negative signals (“one-sided test statistic”)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, 
Eur.Phys.J.C71:1554,2011

L(S=0)
L( Ŝ)

q0 = −2 log
L(S=0)
L( Ŝ)

13 
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https://arxiv.org/abs/1007.1727


Discovery p-value

Large values of

 ⇒ observed Ŝ is far from 0

 ⇒ H0(S=0) disfavored compared to H1(S≠0).

 ⇒ Large Ŝ !

Compute p-value in the tail of the distribution

to exclude H0 (... and claim a discovery!)

Need to know f(q0 | S=0), the distribution of the test statistic...

−2 log
L(S=0)
L( Ŝ)

Ŝ ≤ 0

Observed 
value q0

obs

data 
prefer
S = 0

data 
prefer
S > 0

f(q0|S=0) 

p0=∫
q0

obs

∞

f (q0∣S=0) dq0

large Ŝ

q0

if:

14 
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Asymptotic distribution of q0

 Gaussian regime for Ŝ (e.g. large nevts, Central-limit theorem) :

Wilks’ Theorem: q0 distributed as χ2 (npar) for S = 0

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

L(S) = exp[− 1
2 (
S− Ŝ
σ )

2] ⇒ q 0= ( Ŝσ )
2

⇒ √ q 0=
Ŝ
σ ∼ G (0 ,1) ⇒ q 0 ∼ χ 2(ndof=1 )

 ⇒ npar = 1 :  √q0 is distributed as a Gaussian

 ⇒ Can compute p-values from Gaussian quantiles

 ⇒ Even more simply, the significance is:

Typically works well already for for event counts of O(5) and 
above   Widely applicable⇒

S ≤ 0

q0

Observed 

value q0
obs

χ2(ndof=1) 

large S

p-value

√q0

(*) 1-line “proof” : asymptotically L and S are Gaussian, so

p0 = 1 − Φ(√ q0)

15 
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https://arxiv.org/abs/1007.1727


Homework 1: Gaussian Counting

Count number of events n in data

→ Assume n large enough so process is Gaussian

→ Assume B is known, and we measure S

Likelihood :

→ Find the best-fit value (MLE) Ŝ for the signal

    (can use λ = -2 log L instead of L for simplicity)

→ Find the expression of q0 for Ŝ > 0.

→ Find the expression for the significance

L(S ;nobs) = e
− 1

2 ( nobs−(S+B)
√S+B )

2

S+B

√(S+B)
nobs

Z = Ŝ
√B

16 
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Homework 2: Poisson Counting

Same problem as Homework 1, but now not assuming Gaussian behavior:

→ As before, compute Ŝ, and q0

→ Compute Z = √q0, assuming asymptotic behavior

Solution:

Exact result can be obtained using

pseudo-experiments → close to √q0 result

L(S ;n) = e−(S+ B)(S+B)n

Z= √ 2 [ ( Ŝ+B) log ( 1 + ŜB ) − Ŝ ]

Asymptotic formulas justified by Gaussian
regime, but remain valid even for small 

values of S+B (down to ~5 events!)
See G. Cowan’s slides for the 
case with B uncertainty

Eur.Phys.J.C71:1554,2011

(Can remove the n! constant since 
we’re only dealing with L ratios)

17 
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http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727


Evidence : 3σ  p⇔ 0 = 0.3%   1 chance in 300⇔

Discovery:  5σ  p⇔ 0 = 3 10-7   1 chance in 3.5M⇔

Why so high thresholds ? (from Louis Lyons):

• Look-elsewhere effect: searches typically cover 

multiple independent regions  Higher chance⇒
to have a fluctuation “somewhere”

Ntrials ~ 1000 : local 5σ   O(10⇔ -4) more reasonable

• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒

• History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

Discovery Thresholds

18 
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https://arxiv.org/abs/1409.1903


Highlights : Hypothesis Tests and Discovery

Given a PDF P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a single Gaussian measurement,

For a single Poisson measurement,

L(H 0)
L(H 1)

q0=−2 log L(S=0)
L( Ŝ)

Ŝ ≥ 0

Z = √ q0

Z = Ŝ
√B

Z = √ 2 [ ( Ŝ+B) log ( 1 + ŜB ) − Ŝ ] 19 
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Extra Slides
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Categories arXiv:2111.06712

Better sensitivity at high pT

→ lower B backgrounds, higher S/B

Backgrounds levels from simulation here 
→ Large systematic uncertainties!

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)

21 
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https://arxiv.org/abs/2111.06712


Categories arXiv:2111.06712

Signal regions only

Signal + Bkg regions

Include 
Background CRs

Backgrounds from 
simulation (large 
uncertainties!)

Backgrounds 
from control 
regions

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)

22 
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https://arxiv.org/abs/2111.06712


Þ Combined PDF : 

No overlaps between categories  ⇒ No statistical correlations 
Þ can simply take product of individual PDFs.

Multiple categories allows to constrain nuisance parameters (e.g. B)

Categories

P (S ,B ;{ni
(k)}i=1... nevts

( k)
k=1. ..ncats) =∏

k=1

ncats

Pk ( S , B ;{ni(k )}i=1 ...nevts
(k ) )

PDF for category k

arXiv:2111.06712

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)

23 
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https://arxiv.org/abs/2111.06712


Counting model, the full version

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

P (μ ,{θ j } j=1. .. nNP ;{ni
(k)}i=1... ndata

( k )

k=1. ..ncat ,{θ j
obs } j=1. .nNP)=

∏
k=1

ncats

P [ ni ;μ ϵi , k( θ⃗ ) N S , i , k( θ⃗ ) + Bi , k ( θ⃗) ] ∏
j=1

n syst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories! 24 
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CLs : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0 = 1.96 σ S

Sup = Ŝ + [Φ−1 (1− 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n = (±n + [ 1− Φ−1 (0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2 = S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011

25 
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https://arxiv.org/abs/1007.1727


Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

m=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)
L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron
LHC

m=0 Andrey Korytov, EPS 2011
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Wilks’ Theorem

To test the S=S0 hypothesis, consider

→ Assume Gaussian regime (e.g. large nevts, 

    Central-limit theorem) : then:

Wilk’s Theorem:  t(S0) is distributed as a χ2 

under S=S0:

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

f ( tS0
∣ S=S0 ) = f χ 2(ndof=1) ( tS0 )

 ⇒ In particular, the significance is:

S ≤ 0

q0

Observed 
value q0

obs

χ2(ndof=1) 

large S

p-value

√q0

t (S0) =−2 log
L(S=S0)

L( Ŝ)

27 
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https://arxiv.org/abs/1007.1727


Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLAS-CO
NF-2016-08

0

Fit

28 
/ 
35

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/


Profiling Issues

Too simple modeling can have unintended effects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full configuration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-fit

Post-fit

Pre -fit constraint Post -fit constraint

W. Verkerke, SOS 2014
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Test Statistics for Limit-Setting

t (μ0)=−2 log
L(μ=μ0)
L(μ̂ )

S0

H0H1

q(S0) = { −2 log
L(S=S0)

L( Ŝ)
  S0 > Ŝ

       0                      S0 ≤ Ŝ

S0Ŝ

H0

m0
H1

H1

“Two-sided” test

Interval :
H0 : μ = μ0

H1 : μ ≠ μ0

Limit-setting
H0 : S = S0

H1 : S < S0

Try to exclude values of S that are above Ŝ.
 ⇒ “One-sided” test : only interested in excluding above

Discovery is also one-
sided, for S>0 !

Try to exclude μ values
away from .μ̂

μ̂ 
μ1 μ2

30 
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Hands-on session

The hands-on session will be based on jupyter notebooks built using the 
numpy/scipy/pyplot stack.

If you have a computer with you, please install anaconda as this provides a 
consistent installation of python, JupyterLab, etc.
→ Alternatively, you can also install JupyterLab as a standalone package.

→ Another solution is to run the notebooks on the public jupyter servers at mybinder.org. 
This will probably be slower but avoids a local install.

The warmup item includes material that will not be covered in detail in the 
class, as well as an introduction to the notebooks. Please have a look before 
the beginning of the classes if you are unfamiliar with any of this. 

Lecture 1 notebook  [solutions] binder  [solutions]

Lecture 1 Lecture Notes notebook binder
Lecture 2 Lecture notes notebook binder

https://docs.anaconda.com/anaconda/install/
https://jupyter.org/install
http://mybinder.org/
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook0.ipynb
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook0_solutions.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook0.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook0_solutions.ipynb
https://cernbox.cern.ch/index.php/s/4uMBNWb69xkh1Us
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook1.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook1.ipynb
https://cernbox.cern.ch/index.php/s/R6SSmY8aoXP8jdR
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook2.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook2.ipynb


Neyman Construction
Tr

ue
 v

al
ue

 μ
*

Observed value μ̂

68% intervals for  μ̂

P(μ; μ*)

Peak Position

General case: build 1σ intervals of observed values for each true value 

 ⇒ Confidence belt
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Inversion using the Confidence Belt
Tr

ue
 v

al
ue

 μ
*

Observed value μ̂

General case: Intersect belt with given μ̂ , get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

P (μ̂ − σμ
- < μ* < μ̂ + σμ

+) = 68%
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Inversion using the Confidence Belt
Tr

ue
 v

al
ue

 μ
* σμ

+

μ̂

σμ
-

 μ̂ Observed value μ̂

General case: Intersect belt with given μ̂ , get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

σμ comes from the model, 

not the data
→ data only provides .μ̂

σμ
+ from negative side of  intervalsμ̂

σμ
- from positive side of  intervalsμ̂

Problem: Doesn’t generalize well to many 
parameters in realistic models

P (μ̂ − σμ
- < μ* < μ̂ + σμ

+) = 68%
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Test Statistics for Limit-Setting

t (μ0)=−2 log
L(μ=μ0)
L(μ̂ )

S0Ŝ

“Two-sided” test

Confidence
Interval :

Try to exclude μ values
away from .μ̂

Limit-setting

Try to exclude 
values of S that 
are above Ŝ.

“One-sided” test : only interested in excluding above
Discovery was also 
one-sided, for S>0

μ̂ 
μ1 μ2

q(S0) = { −2 log
L(S=S0)

L( Ŝ)
  S0 > Ŝ

       0                      S0 ≤ Ŝ
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S0) for some S0,
     get the exclusion p-value p(S0).

     Asymptotics:

→ Adjust S0 to get the desired exclusion
     Asymptotics: need √q(S95) = 1.64 for 95% CL

S1 : (too) strong exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS1

p-value for qS1

√q(S) = 1.64
(p = 5%)
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S0) for some S0,
     get the exclusion p-value p(S0).

     Asymptotics:

→ Adjust S0 to get the desired exclusion
     Asymptotics: need √q(S95) = 1.64 for 95% CL

S1 : (too) strong exclusion S2 : no exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS2

√qS1

√q(S) = 1.64
(p = 5%)
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S0) for some S0,
     get the exclusion p-value p(S0).

     Asymptotics:

→ Adjust S0 to get the desired exclusion
     Asymptotics: need √q(S95) = 1.64 for 95% CL

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS2

√qS1

√q(S) = 1.64
(p = 5%)

√qS3
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