2022 ASIA EUROPE PAC FIC SCHOOL OF HIGH-ENERGY PH SICS

Practical Statistics

Nicolas Berger (LAPP Annecy)

Lecture Plan

```
Statistics basic concepts (Today)
[Basic ingredients (PDFs, etc.)]
Statistical Modeling (PDFs for particle physics measurements)
Parameter estimation (maximum likelihood, least-squares, ...)
```

Computing statistical results (Today)
Model testing (χ^{2} tests, hypothesis testing, p-values, ...)
Discovery testing
Confidence intervals
Upper limits

Systematics and further topics (Tomorrow)
Systematics and profiling
[Bayesian techniques]

Disclaimer: the examples and methods covered in the lectures will be biased towards LHC techniques (generally close to the state of the art anyway)

The class will be based on both lectures and hands-on tutorials 2 /

Statistical Modeling Reminders

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(\boldsymbol{s}+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$\mathrm{n}_{\mathrm{i}}, \mathrm{i}=1 . . \mathrm{N}_{\text {bins }}$	Poisson product $P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\text {bins }}} e^{-\left(\boldsymbol{(S} f_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\mathrm{hgs})}\left(\boldsymbol{S} \boldsymbol{f}_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{n_{i}}\right.} \underset{n_{i}!}{ }$
Unbinned shape analysis	$\mathrm{m}_{\mathrm{i}}, \mathrm{i}=1 . . \mathrm{n}_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{\boldsymbol{n}_{\mathrm{evts}}!} \prod_{i=1}^{n_{\text {evs }}} \boldsymbol{S} P_{\text {sig }}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)$

Includes parameters of interest (POIs) but also nuisance parameters (NPs)
Next step: use the model to obtain information on the POIs

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation ?
e.g. Higgs discovery : "We have 5σ " !

Phys. Lett. B 716 (2012) 1-29

Discovery Testing

Say we have a Gaussian measurement with a background $\mathbf{B}=100$, and we measure $\mathbf{n}=120$

Did we just discover something ? Maybe :-) (but not very likely)

The measured signal is $S=20$.

$$
\mathrm{S}=\mathrm{n}_{\text {obs }}-\mathrm{B}
$$

Uncertainty on B is $\sqrt{ } \mathrm{B}=10$
\Rightarrow Significance Z $=2$
\Rightarrow we are $\sim 2 \sigma$ away from $S=0$.

Gaussian quantiles :

$Z=2$ happens $p_{0} \sim 2.3 \%$ of the time if $S=0$
P -value:

$$
p_{0}=1-\Phi(Z)
$$

\Rightarrow Rare, but not exceptional

$$
\Phi(Z)=\int_{-\infty}^{Z} G(u ; 0,1) d u
$$

Discovery Testing

$n_{\text {obs }}$	s	Z	p_{0}
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%
150	50	5σ	310^{-7}

$$
B=100
$$

n

Straightforward in this Gaussian case
Need to be able to do the same in more complex cases:

- Determine S

Evidence
Discovery

- Compute Z and p_{0}

General Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of $S\left(\right.$ e.g. $\mathbf{H}_{\mathbf{0}}: \mathbf{S}=\mathbf{0}$)
\rightarrow Goal : decide if H_{0} is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Discovery!	Missed discovery
H_{0} is true (Nothing new)	False discovery	

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." - R. A. Fisher

General Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(\right.$ e.g. $\left.H_{0}: S=0\right)$

	Data disfavo (Discovery cl	Data favors H_{0} (Nothing found)	
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)	en
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found	

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

General Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(\right.$ e.g. $\left.H_{0}: S=0\right)$

	Data disfavo (Discovery c	Data favors H_{0} (Nothing found)	
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)	
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found	

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

Discriminant observable
"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

ROC Curves

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

Discovery Testing in Gaussian counting

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_{0} and H_{1}, the optimal discriminator is the Likelihood ratio (LR)
$L\left(H_{0} ;\right.$ data $)$
$L\left(H_{1} ;\right.$ data $)$
e.g. $\frac{L(S=0 ; \text { data })}{L(S=5 ; \text { data })}$

Caveat: Strictly true only for simple hypotheses (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.
\rightarrow Always need an alternate hypothesis to test against the null.
\rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Discovery :

- H_{1} : presence of a signal $(\mathbf{S}>0)$
\rightarrow For H_{1}, any $\mathrm{S}>0$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{S}}$.
\Rightarrow Use Likelihood ratio: $\frac{L(S=0)}{L(\hat{S})}$
\rightarrow In fact use the test statistic $q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}$

Note: for $\hat{S}<0$, set $\mathrm{q}_{0}=0$ to reject negative signals ("one-sided test statistic") ${ }_{/}^{13}$

Discovery p-value

Large values of $-2 \log \frac{L(S=0)}{L(\hat{S})}$ if:

\Rightarrow observed S is far from 0
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.
\Rightarrow Large S !

Compute p-value in the tail of the distribution
 to exclude \mathbf{H}_{0} (... and claim a discovery!)

$$
p_{0}=\int_{q_{0}^{\text {obs }}}^{\infty} f\left(q_{0} \mid S=0\right) d q_{0}
$$

Need to know $f\left(a_{0} \mid S=0\right)$, the distribution of the test statistic...

Asymptotic distribution of q_{0}

Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$, Central-limit theorem) :
Wilks' Theorem: \mathbf{q}_{0} distributed as $\chi^{2}\left(n_{\text {par }}\right)$ for $S=0$
$\Rightarrow n_{\text {par }}=1: \sqrt{ } \mathrm{q}_{0}$ is distributed as a Gaussian
\Rightarrow Can compute p -values from Gaussian quantiles

$$
p_{0}=1-\Phi\left(\sqrt{q_{0}}\right)
$$

\Rightarrow Even more simply, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Typically works well already for for event counts of O (5) and above \Rightarrow Widely applicable
(*) 1-line "proof" : asymptotically L and S are Gaussian, so
$L(S)=\exp \left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow q_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow \sqrt{q_{0}}=\frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_{0} \sim \chi^{2}\left(n_{\mathrm{dof}}=1\right)$

Homework 1: Gaussian Counting

Count number of events \mathbf{n} in data

\rightarrow Assume n large enough so process is Gaussian
\rightarrow Assume B is known, and we measure S

Likelihood:

$$
L\left(S ; \boldsymbol{n}_{\mathrm{obs}}\right)=e^{-\frac{1}{2}\left(\frac{n_{\mathrm{abs}}-(S+B)}{\sqrt{S+B})}\right)^{2}}
$$

\rightarrow Find the best-fit value (MLE) Ŝ for the signal (can use $\lambda=-2 \log L$ instead of L for simplicity)
\rightarrow Find the expression of q_{0} for $\hat{\mathrm{s}}>0$.
\rightarrow Find the expression for the significance

$$
Z=\frac{\hat{S}}{\sqrt{B}}
$$

Homework 2: Poisson Counting

Same problem as Homework 1, but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n}
$$

\rightarrow As before, compute $\hat{\mathrm{S}}$, and q_{0}
\rightarrow Compute $\mathrm{Z}=\sqrt{ } \mathrm{q}_{0}$, assuming asymptotic behavior

Solution:

$$
Z=\sqrt{2\left[\left.(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S} \right\rvert\,\right.}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{q}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to ~ 5 events!)
(Can remove the n ! constant since we're only dealing with L ratios)

Eur.Phys.J.C71:1554,2011

Discovery Thresholds

Evidence : $3 \sigma \Leftrightarrow p_{0}=0.3 \% \Leftrightarrow 1$ chance in 300

Discovery: $5 \sigma \Leftrightarrow p_{0}=310^{-7} \Leftrightarrow 1$ chance in 3.5 M
Why so high thresholds? (from Louis Lyons):

- Look-elsewhere effect: searches typically cover multiple independent regions \Rightarrow Higher chance to have a fluctuation "somewhere"
$N_{\text {trials }} \sim 1000$: local $5 \sigma \Leftrightarrow O\left(10^{-4}\right)$ more reasonable

- Mismodeled systematics: factor 2 error in syst-dominated analysis \Rightarrow factor 2 error on Z...
- History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

Highlights : Hypothesis Tests and Discovery

Given a PDF P(data; $\mu)$, define likelihood $L(\mu)=P($ data $; \mu)$
To estimate a parameter, use the value $\hat{\boldsymbol{\mu}}$ that maximizes $\mathrm{L}(\mu) \rightarrow$ best-fit value
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(\boldsymbol{H}_{0}\right)}{L\left(\boldsymbol{H}_{1}\right)}$
To test for discovery, use $\boldsymbol{q}_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \quad \hat{S} \geq 0$
For large enough datasets ($n>\sim 5$), $\quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$

For a single Gaussian measurement, $\quad Z=\frac{\hat{\boldsymbol{S}}}{\sqrt{\boldsymbol{B}}}$
For a single Poisson measurement, $Z=\sqrt{2\left\lfloor(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

Extra Slides

Categories

Multiple analysis regions often used.

\rightarrow Exploit better sensitivity in some regions

Here (ftH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Hings)

Categories

Multiple analysis regions often used.

\rightarrow Exploit better sensitivity in some regions
\rightarrow Constrain NPs: Control regions for bkgs

Here (ttH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Higgs)
$\rightarrow 3$ Background Control Regions (CR)

Signal + Bkg regions

Categories

Multiple analysis regions often used.
\rightarrow Exploit better sensitivity in some regions
\rightarrow Constrain NPs: Control regions for bkgs
Here (ttH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Higgs)
$\rightarrow 3$ Background Control Regions (CR)
\Rightarrow Combined PDF :
PDF for category k
$\left.\boldsymbol{P}\left(\boldsymbol{S}, \boldsymbol{B} ;\left\{\boldsymbol{n}_{i}^{(k)}\right\}_{i=1 \ldots \boldsymbol{n}_{\text {eas }}}^{\boldsymbol{k}=1 . \ldots n_{\text {cat }}}\right)=\prod_{k=1}^{n_{\text {cats }}} \boldsymbol{P}_{k} \mid \boldsymbol{S}, \boldsymbol{B} ;\left\{\boldsymbol{n}_{i}^{(k)}\right\}_{i=1 \ldots n_{\text {eus }}}^{(k)}\right)$
No overlaps between categories \Rightarrow No statistical correlations
\Rightarrow can simply take product of individual PDFs.

Multiple categories allows to constrain nuisance parameters (e.g. B)

Counting model, the full version

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
S_{\text {up }}=\hat{S}+\left[\Phi^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{s}\right)\right)\right] \sigma_{S} \quad \sigma_{S}=\sqrt{B}
$$

Compute expected bands for $S=0$:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathrm{S}}=0: S_{\text {up,exp }}^{0}=1.96 \sigma_{S}$
$\rightarrow \pm$ no bands:

$$
S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
$$

n	$S_{\text {exp }}{ }^{ \pm n} / \sqrt{ } \mathrm{B}$
+2	3.66
+1	2.72
0	1.96
-1	1.41
-2	1.05

CLs:

- Positive bands somewhat reduced,
- Negative ones more so Band width from $\sigma_{s, A}^{2}=\frac{S^{2}}{\text { depends on } S \text {, for } \sigma_{S, A}}$
non-Gaussian cases, diffferent
values for each band...

25

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevatron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}_{0}}\right)}{L\left(\mu=1, \hat{\hat{\theta}_{1}}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

$$
\mu=0 \quad \mu=1
$$

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim x^{2}$
\rightarrow Still use TeVatron-style for discrete cases

Wilks' Theorem

To test the $\mathrm{S}=\mathrm{S}_{0}$ hypothesis, consider

$$
t\left(S_{0}\right)=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})}
$$

\rightarrow Assume Gaussian regime (e.g. large $\mathrm{n}_{\text {evts }}$,
Central-limit theorem) : then:
Wilk's Theorem: $\mathrm{t}\left(\mathrm{S}_{0}\right)$ is distributed as a χ^{2}
under $\mathrm{S}=\mathrm{S}_{0}: \quad \boldsymbol{f}\left(\boldsymbol{t}_{S_{0}} \mid \boldsymbol{S}=\boldsymbol{S}_{\mathbf{0}}\right)=\boldsymbol{f}_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(\boldsymbol{t}_{S_{0}}\right)$
\Rightarrow In particular, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Profiling Example: $\mathrm{ttH} \rightarrow \mathrm{bb}$

Analysis uses low-S/B categories to constrain backgrounds.
\rightarrow Reduction in large uncertainties on tt bkg
\rightarrow Propagates to the high-S/B categories through the statistical modeling \Rightarrow Care needed in the propagation (e.g. different kinematic regimes)

Profiling Issues

Too simple modeling can have unintended effects \rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Profiling Issues

Too simple modeling can have unintended effects \rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Test Statistics for Limit-Setting

Interval :

$H_{0}: \mu=\mu_{0}$
$H_{1}: \mu \neq \mu_{0}$
Try to exclude μ values away from $\hat{\mu}$.

$$
t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

Limit-setting
$H_{0}: S=S_{0}$
$\mathrm{H}_{1}: \mathrm{S}<\mathrm{S}_{0}$

$$
\begin{aligned}
\mathrm{H}_{1} & \xrightarrow{S_{0}} \mathrm{H}_{0} \\
q\left(S_{0}\right) & =\left(\begin{array}{cc}
-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} & S_{0}>\hat{S} \\
0 & S_{0} \leq \hat{S}
\end{array}\right.
\end{aligned}
$$

Try to exclude values of S that are above \hat{S}.
\Rightarrow "One-sided" test : only interested in excluding above

Discovery is also onesided, for $\mathrm{S}>0$!

Hands-on session

The hands-on session will be based on jupyter notebooks built using the numpy/scipy/pyplot stack.

If you have a computer with you, please install anaconda as this provides a consistent installation of python, JupyterLab, etc.
\rightarrow Alternatively, you can also install JupyterLab as a standalone package.
\rightarrow Another solution is to run the notebooks on the public jupyter servers at mybinder.org. This will probably be slower but avoids a local install.

Lecture 1		notebook [solutions]	binder [solutions]
Lecture 1	Lecture Notes	notebook	binder
Lecture 2	Lecture notes	notebook	binder

The warmup item includes material that will not be covered in detail in the class, as well as an introduction to the notebooks. Please have a look before the beginning of the classes if you are unfamiliar with any of this.

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\quad \boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\text {obs }} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\quad \boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\text {obs }} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\text {obs }} \mid \mu\right)$ varies with μ.

Test Statistics for Limit-Setting

Confidence Interval :

Try to exclude μ values away from $\hat{\mu}$.

$$
t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

"Two-sided" test

Limit-setting

Try to exclude values of S that are above \hat{S}.

$$
\begin{aligned}
& q\left(S_{0}\right)=\left\{-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad S_{0}>\hat{S}\right. \\
& 0
\end{aligned}
$$

Discovery was also one-sided, for $S>0$

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$
$\sqrt{q}(S)=1.64$
($p=5 \%$)

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$

$$
\sqrt{q}(S)=1.64
$$

$$
(p=5 \%)
$$

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$

$$
\sqrt{q}(S)=1.64
$$

