2022 ASIA EUROPE PACIFIC SCHOOL OF HIGH-ENERGY PHYSICS

Practical Statistics

For Particle Physicists

Nicolas Berger (LAPP Annecy)

Lecture Plan

Statistics basic concepts (Today)

- [Basic ingredients (PDFs, etc.)]
- Statistical Modeling (PDFs for particle physics measurements)

Parameter estimation (maximum likelihood, least-squares, ...)

Computing statistical results (Today)

Model testing (χ² tests, hypothesis testing, p-values, ...)Discovery testingConfidence intervalsUpper limits

Systematics and further topics (Tomorrow) Systematics and profiling [Bayesian techniques] Disclaimer: the examples and methods covered in the lectures will be biased towards LHC techniques (generally close to the state of the art anyway)

The class will be based on both lectures and hands-on tutorials

Statistical Modeling Reminders

Random data ı	must be described ι	using a statistical model:
Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$
Binned shape analysis	n _i , i = 1 N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i = 1 n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m_i}; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n_{\text{evts}}}!} \prod_{i=1}^{\boldsymbol{n_{\text{evts}}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m_i}) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m_i})$

Includes parameters of interest (POIs) but also nuisance parameters (NPs)

Next step: use the model to obtain information on the POIs

3/ 35

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation?

e.g. Higgs discovery : "We have 5σ" !

35

Discovery Testing

Say we have a Gaussian measurement with a background **B=100**, and we measure **n=120**

Did we just discover something ? *Maybe :-)* (but not very likely)

The measured signal is S = 20. $S = n_{obs} - B$

Uncertainty on B is $\sqrt{B} = 10$ \Rightarrow Significance Z = 2 \Rightarrow we are $\sim 2\sigma$ away from S=0.

Gaussian quantiles :

Z = 2 happens
$$p_0 \sim 2.3\%$$
 of the time if S=0

 $p_0 = 1 - \Phi(Z)$

 \Rightarrow Rare, but not exceptional

$$Z = \frac{S}{\sqrt{B}}$$

$$=0$$

$$B=100$$

$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0, 1) du$$

√B=10

Obs: 120

6/

35

/ ; `

Discovery Testing

n _{obs}	S	Z	р _о
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%
150	50	5σ	3 10 ⁻⁷

Straightforward in this Gaussian case

Need to be able to do the same in more complex cases:

Evidence

Discovery

- Determine S
- Compute Z and p_o

7 / 35

General Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H_o : S=0)

 \rightarrow Goal : decide if H₀ is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)		Data favors I (Nothing four	•	
H _o is false (New physics!)	Discovery!			Missed discovery	
H _o is true (Nothing new)	False discovery			No new physics, None found	The protection of the protecti

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." – R. A. Fisher

General Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_o: S=0)

	Data disfavors H _o (Discovery claim)		Data favors H _o (Nothing found)	
H _o is false (New physics!)	Discovery!		Type-II error (Missed discovery)	
H _o is true (Nothing new)	Type-I error (False discovery)		No new physics, none found	

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

 \rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

 \rightarrow Usually set predefined level of **acceptable Type-I error** (e.g. "5 σ ")

General Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_o: S=0)

	Data disfavors H _o (Discovery claim)	Data favors H _o (Nothing found)
H _o is false (New physics!)	Discovery!	Type-II error (Missed discovery)
H₀ is true (Nothing new)	Type-I error (False discovery)	No new physics,

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

 \rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

 \rightarrow Usually set predefined level of **acceptable Type-I error** (e.g. "5 σ ")

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-1} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent _ towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** 0.35 0.3 0.25 0.2 Type-I error 0.15 Type-I<mark>/</mark> Error p-value 0.1 0.05 05 10 2 -3 -2 3 4 _4 -1 0 5

Increasingly

Discriminant observable

 \rightarrow **Goal**: test that minimizes Type-II errors for given level of Type-I error.

 \rightarrow Usually set predefined level of acceptable Type-I error (e.g. "5 σ ")

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-1} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent _ towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** 0.35 0.3 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0.1 0.05 10 -3 -2 0 2 5 _4 _1 3 4

Increasingly

Discriminant observable

 \rightarrow **Goal**: test that minimizes Type-II errors for given level of Type-I error.

 \rightarrow Usually set predefined level of acceptable Type-I error (e.g. "5 σ ")

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent _ towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0.1 \rightarrow Usually set predefined level of 0.05 acceptable Type-I error (e.g. "5 σ ") 10 -3 -2 0 2 5 _1 3 4 _4

/

Discriminant observable

Increasingly

Discovery Testing in Gaussian counting

11 /

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the

optimal discriminator is the **Likelihood ratio** (LR)

$$\frac{L(\mathbf{S} = \mathbf{0}; data)}{L(\mathbf{S} = \mathbf{5}; data)}$$

e.g.

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.

- \rightarrow Always need an **alternate hypothesis** to test against the **null**.
- \rightarrow **Minimizes Type-II uncertainties** for given level of Type-I uncertainties

 \rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

$$\frac{L(\mathbf{H}_{0}; data)}{L(\mathbf{H}_{1}; data)}$$

12

Discovery: Test Statistic

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

Discovery:

- H₀: background only (S = 0) against
- H₁: presence of a signal (S > 0)

 \rightarrow For H₁, any S > 0 is possible, which to use ? The one preferred by the data, \hat{S} .

 \Rightarrow Use Likelihood ratio: -

$$\frac{L(S=0)}{L(\hat{S})}$$

 \rightarrow In fact use the **test statistic** $q_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$

Note: for $\hat{S} < 0$, set $q_0 = 0$ to reject negative signals ("one-sided test statistic") $\frac{13}{7}$

Discovery p-value

Large values of
$$-2 \log \frac{L(S=0)}{L(\hat{S})}$$
 if:

 \Rightarrow observed \hat{S} is far from 0

$$\Rightarrow$$
 H₀(S=0) *disfavored* compared to H₁(S≠0).

 \Rightarrow Large \hat{S} !

Compute *p-value* in the tail of the distribution

to exclude H_o (... and claim a discovery!)

Need to know $f(q_0 | S=0)$, the distribution of the test statistic...

Asymptotic distribution of q₀

Gaussian regime for \hat{S} (e.g. large n_{evts} , Central-limit theorem) :

Wilks' Theorem: q_0 distributed as χ^2 (n_{par}) for S = 0

$$\Rightarrow$$
 n_{par} = 1 : $\sqrt{q_0}$ is distributed as a Gaussian

⇒ Can compute p-values from Gaussian quantiles

 $p_0 = 1 - \Phi(\sqrt{q_0})$

 \Rightarrow Even more simply, the significance is:

 $Z=\sqrt{q_0}$

Typically works well already for for event counts of O(5) and above \Rightarrow Widely applicable

(*) 1-line "proof": asymptotically L and S are Gaussian, so $L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow q_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow \sqrt{q_0} = \frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_0 \sim \chi^2(n_{dof}=1)$

Homework 1: Gaussian Counting

Count number of events n in data

Li

- \rightarrow Assume n large enough so process is Gaussian
- \rightarrow Assume B is known, and we measure S

kelihood:
$$L(S;n_{obs}) = e^{-\frac{1}{2}\left(\frac{n_{obs}-(S+B)}{\sqrt{S+B}}\right)}$$

- \rightarrow Find the best-fit value (MLE) \hat{S} for the signal (can use λ = -2 log L instead of L for simplicity)
- \rightarrow Find the expression of q_0 for $\hat{S} > 0$.
- \rightarrow Find the expression for the significance

Same problem as Homework 1, but now *not* assuming Gaussian behavior:

$$L(S;n) = e^{-(S+B)}(S+B)^n$$

 \rightarrow As before, compute \hat{S} , and q_0

(Can remove the n! constant since we're only dealing with L ratios)

 \rightarrow Compute Z = $\sqrt{q_0}$, assuming asymptotic behavior

Exact result can be obtained using

pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to ~5 events!)

Discovery Thresholds

Evidence : $3\sigma \Leftrightarrow p_0 = 0.3\% \Leftrightarrow 1$ chance in 300

Discovery: $5\sigma \Leftrightarrow p_0 = 3 \ 10^{-7} \Leftrightarrow 1 \ chance \ in \ 3.5M$

Why so high thresholds ? (from Louis Lyons):

 Look-elsewhere effect: searches typically cover multiple independent regions ⇒ Higher chance to have a fluctuation "somewhere"

 $N_{trials} \sim 1000 : \text{local } 5\sigma \Leftrightarrow O(10^{-4}) \text{ more reasonable}$

- Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...
- History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

18 /

Highlights : Hypothesis Tests and Discovery

Given a PDF P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value $\hat{\mu}$ that maximizes $L(\mu) \rightarrow$ best-fit value

To decide between hypotheses H₀ and H₁, use the **likelihood ratio**

To test for **discovery**, use
$$q_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$$
 $\hat{S} \ge 0$

For large enough datasets (n >~ 5), $Z = \sqrt{q_n}$

For a single Gaussian measurement,

$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a single **Poisson** measurement,

$$Z = \frac{S}{\sqrt{B}}$$
$$Z = \sqrt{2\left[(\hat{S} + B) \log\left(1 + \frac{\hat{S}}{B}\right) - \hat{S} \right]}$$

 $\frac{L(H_0)}{L(H_1)}$

19

Extra Slides

Categories

Multiple analysis regions often used.

 \rightarrow Exploit better sensitivity in some regions

Here (ttH, H \rightarrow bb analysis) 7 regions: \rightarrow 4 Signal Regions (SR) split in p_T(Higgs)

Better sensitivity at high p_{T}

 \rightarrow lower B backgrounds, higher S/B

Backgrounds levels from simulation here

 \rightarrow Large systematic uncertainties!

Categories

arXiv:2111.06712

- \rightarrow Exploit better sensitivity in some regions
- \rightarrow Constrain NPs: **Control regions** for bkgs

Here (ttH, $H \rightarrow bb$ analysis) 7 regions: \rightarrow 4 Signal Regions (SR) split in p₁(Higgs)

 \rightarrow 3 Background Control Regions (**CR**)

Categories

arXiv:2111.06712

Multiple analysis regions often used.

 \rightarrow Exploit better sensitivity in some regions

 \rightarrow Constrain NPs: *Control regions* for bkgs

Here (ttH, H \rightarrow bb analysis) **7** regions: \rightarrow **4** Signal Regions (**SR**) split in p₁(Higgs)

 \rightarrow 3 Background *Control Regions* (**CR**)

 $\Rightarrow \textbf{Combined PDF}: \qquad \text{PDF for category } k$ $P(S, B; \{n_i^{(k)}\}_{i=1...n_{\text{evts}}}^{k=1...n_{\text{cats}}}) = \prod_{k=1}^{n_{\text{cats}}} P_k(S, B; \{n_i^{(k)}\}_{i=1...n_{\text{evts}}}^{(k)})$

No overlaps between categories \Rightarrow No statistical correlations \Rightarrow can simply take product of individual PDFs.

Multiple categories allows to **constrain nuisance parameters** (e.g. **B**)

Counting model, the full version

CL_s : Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$S_{\rm up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$

Compute expected bands for S=0:

→ Asimov dataset $\Leftrightarrow \hat{S} = 0$: → $\pm n\sigma$ bands:

$$S_{\text{up,exp}}^{0} = 1.96 \sigma_{s}$$

$$S_{\text{up,exp}}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{S,A}^2 = \frac{S^2}{q_S(\text{Asimov})}$ non-Gaussian cases, different values for each band...

$\sigma_{s} = \sqrt{B} = \sqrt{B} = \sqrt{S}^{50}$

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC
 - Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\mu = 1$ instead of best-fit $\hat{\mu}$

- \rightarrow Asymptotically:
- LEP/Tevaton: q linear in $\mu \Rightarrow$ ~Gaussian
- LHC: q quadratic in $\mu \Rightarrow ~\chi 2$

 \rightarrow Still use TeVatron-style for discrete cases

$$q_{LEP} = -2\log\frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$
$$q_{Tevatron} = -2\log\frac{L(\mu=0,\widehat{\theta}_0)}{L(\mu=1,\widehat{\theta}_1)}$$

26

Wilks' Theorem

To test the S=S₀ hypothesis, consider

$$t(S_0) = -2\log\frac{L(S=S_0)}{L(\hat{S})}$$

→ Assume **Gaussian regime** (e.g. large n_{evts} , Central-limit theorem) : then:

Wilk's Theorem: $t(S_0)$ is distributed as a χ^2

under S=S₀:
$$f(t_{S_0} | S=S_0) = f_{\chi^2(n_{dof}=1)}(t_{S_0})$$

 \Rightarrow In particular, the significance is:

$$Z=\sqrt{q_0}$$

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011

Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.

- \rightarrow Reduction in large uncertainties on tt bkg
- \rightarrow Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different

kinematic regimes)

Profiling Issues

Too simple modeling can have unintended effects

→ e.g. single Jet E scale parameter:
⇒ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties:

 \rightarrow Interpolation may not cover full configuration space, can lead to too-strong constraints

Profiling Issues

Too simple modeling can have unintended effects

→ e.g. single Jet E scale parameter:
⇒ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties:

 \rightarrow Interpolation may not cover full configuration space, can lead to too-strong constraints

Try to exclude values of S that are above Ŝ.

⇒ "One-sided" test : only interested in excluding above

Discovery is also onesided, for S>0 !

30

Hands-on session

The hands-on session will be based on **jupyter notebooks** built using the **numpy/scipy/pyplot** stack.

If you have a computer with you, **please install** anaconda as this provides a consistent installation of python, JupyterLab, etc.

 \rightarrow Alternatively, you can also install JupyterLab as a standalone package.

 \rightarrow Another solution is to run the notebooks on the public jupyter servers at mybinder.org. This will probably be slower but avoids a local install.

Lecture 1		notebook [solutions]	binder [solutions]
Lecture 1	Lecture Notes	notebook	binder
Lecture 2	Lecture notes	notebook	binder

The **warmup** item includes material that will not be covered in detail in the class, as well as an introduction to the notebooks. Please have a look before the beginning of the classes if you are unfamiliar with any of this.

Neyman Construction

General case: build 1σ intervals of observed values for each true value

⇒ Confidence belt

32 /

Neyman Construction

General case: build 1σ intervals of observed values for each true value

⇒ Confidence belt

32 /

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

33

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

/

Test Statistics for Limit-Setting

"One-sided" test : only interested in excluding above

Discovery was also one-sided, for S>0

/

34

Inversion : Getting the limit for a given CL

Procedure:

→ Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$ CLpRegion90%10% $\sqrt{q(S)} > 1.28$ 95%5% $\sqrt{q(S)} > 1.64$ 99%1% $\sqrt{q(S)} > 2.33$

 $\sqrt{q(S)} = 1.64$

→ Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

Inversion : Getting the limit for a given CL

Procedure:

- → Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$
- → Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

√q(\$) = 1.64 (p = 5%)

Inversion : Getting the limit for a given CL

Procedure:

- → Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$
- → Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

CL	р	Region
90%	10%	$\sqrt{q(S)} > 1.28$
95%	5%	$\sqrt{q(S)} > 1.64$
99%	1%	√q(S) > 2.33

 $\sqrt{q(S)} = 1.64$ (p = 5%)

