

INSTRUMENTATION AND DETECTORS

Part 1

AEPSHEP

Ingrid-Maria Gregor DESY/Universität Bonn

DISCLAIMER

- Particle Detectors are very complex, a lot of physics is behind the detection of particles:
 - particle physics
 - material science
 - electronics
 - mechanics,
- To get a good understanding, one needs to work on a detector project ...
- This lecture can only give a glimpse at particle detector physics, cannot cover everything
- Biased by my favourite detectors!

Maybe not the ideal detector physicist

OVERVIEW

- I. Detectors for Particle Physics
- II. Interaction with Matter
- **III.** Tracking Detectors
 - Gas detectors
 - Semiconductor trackers
 - Muon Detectors
- IV. Calorimeters
- V. Examples of what can go wrong

Sunday

Monday

Wednesday

MARK-I DETECTR@SLAC

Mark I detector: first 4 detector

Discoveries of the J/ψ particle and tau lepton, which both resulted in Nobel prizes (for Burton Richter in 1976 and Martin Lewis Perl in 1995)

DISCOVERY OF THE GLUON

Field theory predicted that the outgoing quarks radiate field quanta (gluons)
 3 jet events

The quantum of the strong force was discovered and studied at lepton colliders

EVOLUTION OF DETECTORS

ATLAS@LHC

Illustration: CERN

ATLAS CROSS SECTION

Foto: CERN

CMS@LHC

CMS CROSS SECTION

Foto: CERN

SIZE AND WEIGHT

Brandenburger Tor in Berlin

CMS is 65% heavier than the Eiffel tower

AMS@ISS

Weight: 6700 kg

Length: 6 m Diameter: 6 m

Solenoid-Field: 1.5 T

ICECUBE EXPERIMENT

Full movie: ATLAS experiment - Episode 2 - The Particles Strike Back

PARTICLE PHYSICS DETECTORS

- There is not one type of detector which provides all measurements we need -> "Onion" concept -> different systems taking care of certain measurement
- Detection of collision production within the detector volume
 - resulting in signals (mostly) due to electro-magnetic interactions

PARTICLE PHYSICS DETECTORS

Tracking detectors

- Silicon detectors:
 - pixel
 - strip
- Gas detectors
 - wire chambers
 - time projection chambers

....

Calorimeter

- Electromagnetic cal
- Hadronic cal
- Homogeneous
- Sampling

Muon detectors

- = outside tracker
- Gas detectors
 - Wire chambers
 - ...

DETECTOR DEVELOPMENT CYCLE

Full system (segment of detector) to be tested with particles (beam, cosmics)

Crazy-idea-detector: use glue to build the detector....

Crazy idea

Reality check

Fundamental R&D

Does the crazy-idea-detector "see" passing particles

Towards large-size systems incl. cooling, powering, monitoring

BONN

Prototyping, proof of concept

Can we build a small-size detector out of it? Test with "real" particles!

ANALOGY

Planes leave tracks in sky under certain conditions

BASIC DETECTION PRINCIPLE

To interpret the result, we need to know **how particles interact with matter**. So that's where we start.

INTERACTIONS OF CHARGED PARTICLES

CHARGED PARTICLES

- For charged particles the electromagnetic interaction is dominating
- Charged particles penetrating matter can initiate the following processes:
 - Ionisation of atoms
 - Excitation of atoms
 - Bremsstrahlung (only relevant for electrons and positrons)
 - Cherenkov radiation
 - Transition radiation

- All these processes cause energy loss of the penetrating particles.
- The relative contribution of these various processes to the total energy loss depends on the kinetic energy of the particle, the detector material, etc.

INTERACTION OF CHARGED PARTICLES

*****-*****-

- lacktriangle A charged particle traverses material of thickness Δx
- Upon exiting, the energy of the particle has decreased by ΔE
- The basis of ~all particle detectors: collect ΔE from the material

- \bigcirc Δx
- Material density ρ
- Particle mass M and charge ze
- Particle kinetic energy *T* and velocity β

The key to detector design is understanding **dE/dx**

$$\left[\left\langle \frac{\mathrm{dE}}{\mathrm{dx}} \right\rangle \right] = \frac{\mathrm{MeV}}{\mathrm{cm}}$$
or
$$\left[dE \right] \qquad \text{MeV}$$

$$\left[\left\langle \frac{\mathrm{dE}}{\mathrm{d\tilde{x}}} \right\rangle \right] = \frac{\mathrm{MeV}}{\mathrm{gcm}^{-2}}$$

$$\tilde{x} = \rho x$$

Linear stopping power

Mass stopping power

IONISATION

The primary contributor to dE/dx at typical energies

- Particle can collide with atomic electron (EM interaction)
- If enough energy is transferred, the electron escapes, ionising the atom and causing small -dE
 - can also excite the atom, if transferred energy is small
- In general, this happens frequently, with small energy transfers (<100eV), so energy loss is ~continuous

INTERACTIONS OF "HEAVY" PARTICLES WITH

Mean energy loss is described by the Bethe-Bloch formula

$$-\frac{dE}{dx} = 2\pi N_A r_e^2 m_e c^2 \sqrt{\frac{Z}{A}} \sqrt{\frac{Z}{R^2}} \ln\left(\frac{2m_e \sqrt{2}v^2 W_{max}}{I^2}\right) - 2\mathcal{B}^2 - \delta + 2\frac{C}{Z}$$

- Material; is the fraction of nucleons that are protons
- Properties of the particle

 W_{max} Maximum kinetic energy which can be transferred to the electron in a single collision

Excitation energy

 $\frac{C}{Z}$

Shell correction term, only relevant at lower energies

$$2\pi N_A r_e^2 m_e c^2 = 0.1535 \text{MeVcm}^2/\text{g}$$

 r_e : classical electron radius =

 m_e : electron mass

 N_A : Avogadro's number

I: mean excitation potential

Z: atomic number of absorbing material

A: atomic weight of absorbing material

 ρ : density of absorbing material

z: charge of incident particle in units of e

 $\beta: v/c$ of the incident particle

 $\gamma: 1/\sqrt{1-\beta^2}$

UNDERSTANDING BETHE BLOCH

UNDERSTANDING BETHE BLOCH

- Rise after βγ~5:
 - $dE/dx\sim ln(\beta\gamma)2$
 - due to more energy transfer from rare high-dE collisions
 - logarithmic rise due to lateral extension of electric field due to Lorentz transform Ey→γEy

FEYNMAN LECTURE

Understanding Bethe Bloch - Large $\beta\gamma$

Photon

dE/dx diverges at large E

Radiative losses equal ionisation losses at the critical energy E_c

Incident electron and

- Bremsstrahlung: photon emission by an charged particle accelerated in Coulomb field of another charged particle (nucleus)
 - due to conservation of energy (with hv=dE)

Bremsstrahlung photon.

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{1/3}} \propto \frac{Z^2 E}{m^2}$$

Effect plays a role only for e[±] and ultra-relativistic μ (>1000 GeV).

SUMMARY BETHE BLOCH

BONN

A CLOSER ACCOUNT OF ENERGY LOSS

- Bethe-Bloch displays only the average
 - energy loss is a statistical process
 - discrete scattering with different results depending on strength of scattering
 - primary and secondary ionisation

BONN

Primary ionisation

- Poisson distributed
- Large fluctuations per reaction

Secondary ionisation

- Created by high energetic primary electrons
- sometime the energy is sufficient for a clear secondary track: δ-Electron

Total ionisation = primary ionisation + secondary ionisation

Liquid hydrogen bubble chamber 1960 (~15cm).

ENERGY LOSS IN THIN LAYERS

- Bethe Bloch formula describes average energy loss
- Fluctuations about the mean value are significant and non-Gaussian
 - A broad maximum: collisions with little energy loss (more probable)
 - A long tail towards higher energy loss: few collisions with large energy loss T_{max}, δ-electrons.
 - -> Most probable energy loss shifted to lowed values

The Landau distribution is used in physics to describe the fluctuations in the energy loss of a charged particle passing through a thin layer of matter

$$P(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\lambda + e^{-\lambda})\right]$$

$$\lambda = \frac{\Delta E - \Delta E_{mp}}{\xi}$$

 ξ is a material constant

LANDAU TAILS

- Real detector measures the energy ΔE deposited in a layer of finite thickness δx
- For thin layers or low density materials
 - few collisions; some with high energy transfer

- Energy loss distributions show large fluctuations towards high losses
- Long Landau tails

- Many collisions
- Central limit theorem: distribution -> Gaussian

RADIATION LENGTH Xo

dE/dx for an electron

$$-\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{\frac{1}{3}}}$$

$$-\frac{dE}{dx} = \frac{E}{X_0} \qquad \qquad \boxed{E = E_0 e^{-x/X_0}}$$

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{\frac{1}{3}}}}$$

Parameters only depending on material the electron is passing through.

Thickness of material an electron travels through until the energy is reduced by Bremsstrahlung to 1/e of its original energy

- The radiation length is also an important quantity in multiple scattering
- A very important number when building detectors, one always has to keep in mind how much material is within the detector volume

- Usually quoted in [g/cm²], typical values are:
 - Air: 36.66 g/cm² ->~ 300 m
 - Water: 36.08 g/cm² -> ~ 36 cm
 - Silicon: 21.82 g/cm² -> 9.4 cm
 - Aluminium: 24.01 g/cm² -> 8.9 cm
 - Tungsten: 6.76 g/cm² -> 0.35 cm

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}}$$

$$\theta_0 = \frac{13.6 \,\text{MeV}}{\beta \, c \, p} \, z \, \sqrt{x/X_0} \, [1 + 0.038 \ln(x/X_0)]$$

INTERACTIONS OF PHOTONS

BIG DIFFERENCE

Charged particles

Photons

PHOTONS: INTERACTIONS

- Photons appear in detector systems
 - as primary photons,
 - created in Bremsstrahlung and de-excitations
- Photons are also used for medical applications, both imaging and radiation treatment.
- Photons interact via six mechanisms depending on the photon energy:
 - < few eV: molecular interactions</p>
 - < 1 MeV: photoelectric effect</p>
 - < 1 MeV: Rayleigh scattering</p>
 - ~ 1 MeV: Compton scattering
 - > 1 MeV: pair production
 - > 1 MeV: nuclear interactions

PHOTONS: MAIN INTERACTIONS

Most dominating effects:

Photo-Effect

A γ is absorbed and photoelectron is ejected.

- the γ disappears,
- the photo-electron gets an energy

$$E_{\rm p.e} = E_{\gamma} - E_{\rm binding}$$

Compton-Scattering

$$\gamma + e \rightarrow \gamma' + e'$$

Elastic scattering of a photon with a free electron

$$E_{\gamma}' = \frac{1}{1 + \epsilon(1 - \cos \theta_{\gamma})}$$

Pair creation

Only possible in the Coulomb field of a nucleus (or an electron) if

$$E_{\gamma} \geq 2 m_e c^2$$
 ~1.022 MeV

Reduction of photon intensity with passage through matter:

$$I(x) = I_0 e^{-\mu x}$$

PHOTONS: CLEAR DEPENDENCE ON Z OF MATERIAL

A SHORT SUMMARY

Lifetime of lambda: 2.6 10⁻¹⁰ sec -> a few cm

 $\pi^- + p \to K_s^0 + \Lambda$

SUMMARY PART 1

Ionisation and Excitation:

- Charged particles traversing material are exciting and ionising the atoms.
- Average energy loss of the incoming charged particle: good approximation described by the Bethe Bloch formula.
- The energy loss fluctuation is well approximated by the Landau distribution.

Multiple Scattering and Bremsstrahlung:

- Incoming particles are scattering off the atomic nuclei which are partially shielded by the atomic electrons.
- Measuring the particle momentum by deflection of the particle trajectory in the magnetic field, this scattering imposes a lower limit on the momentum resolution of the spectrometer.
- The deflection of the particle on the nucleus results in an acceleration that causes emission of Bremsstrahlungs-Photons. These photons in turn produced e+e- pairs in the vicinity of the nucleus....

OVERVIEW

- I. Detectors for Particle Physics
- II. Interaction with Matter
- **III.** Tracking Detectors
 - Gas detectors
 - Semiconductor trackers
 - Muon Detectors
- IV. Calorimeters
- V. Examples of what can go wrong

Monday

Wednesday

