Lecture III FPCP beyond SM

3.1 The need of going beyond SM
3.2 Anomalies in flavor physics
3.2 Model buildings for FPCP beyond SM

3.1 The need of going beyond SM

Thee SIM is a beautiful and successful model to describe strong and electroweak interactions. But how good is it and is there indications that is may not be the complete theory addressing all problems facing particle physics?

Yes, there are many hints. Some of the prominent phenomenological ones are:
The neutrino mass problem. Neutrino oscillations observed requires some of the neutrinos (at least two of them) to have non-zero masses. To give a mass to a fermion in the SM, one needs to pair up a left and right handed partners, example up, down quarks and charged leptons

$$
-\bar{Q}_{L} Y_{u} \tilde{H} u_{R}+\bar{Q}_{L} Y_{d} H d_{R}+\bar{L}_{L} Y_{e} H e_{R}+H . C .
$$

In the minimal $S M$, there is not right handed neutrinos in model available, therefore need to introduce them.

Need to introduces v_{R} in the model. Then one has $-\bar{L}_{L} Y_{\nu} \tilde{H} \nu_{R} \rightarrow \bar{\nu}_{L}\left(Y_{\nu} v / \sqrt{2}\right) \nu_{R}$
Then $m v=Y_{v} v /$ sqrt[2]! Problem: $m_{v} / m_{e}=Y_{v} / Y_{e}<10^{-6}$
Why such a small number?

Solutions

Seesaw models

Type I seesaw model: $\nu_{R}(1,1)(0)$ neutrinos, $-\bar{L}_{L} Y_{\nu} \tilde{H} \nu_{R}-(1 / 2) m_{R} \bar{\nu}_{R}^{c} \nu_{R}, \quad m_{\nu}=\left(Y_{\nu} v\right)^{2} / 2 m_{R}$
Type II seesaw model: $\chi(1,3)(-1)$ small vev $v_{\chi},-L_{L} Y_{\nu} \chi L_{L}^{c} \rightarrow-\nu_{L}\left(Y^{\nu} v_{\chi} / \sqrt{2}\right) \nu_{L}^{c}$
Type III seesaw model: $N_{R}(1,3)(0),-\bar{L}_{L} Y_{\nu} \tilde{H} N_{R}-(1 / 2) m_{R} \bar{N}_{R}^{c} N_{R}$,
$m_{\nu}=\left(Y_{\nu} v\right)^{2} / 2 m_{R}$

And models of generating neutrino masses at loop levels.
If only confined to leptons, flavor physics and CP violation will he affected in the lepton sector.

Cosmological evidences: Dark matter, Dark energy and matter-antimatter asymmetry

More theoretical ones

The hierarchy problem: Why electroweak scale $\sim \mathrm{v} \sim 300 \mathrm{GeV}$ is so much lower than the Planck scale $\sim m_{\text {Planck }} \sim 10^{19} \mathrm{GeV}$.

Cosmological constant problem, very small but none zero.

Strong CP problem, why $\theta<10^{-10}$ is so small?

Unification of all forces:
a) Grand unification of strong and electroweak interaction
b) Theory of Everything, unification of strong, electroweak and gravity

Too many free parameters in the theory? Possible to reduce them?
Why there are just 3 generations

The strong CP problem and neutron EDM

The CP violating term

$$
\delta L_{Q C D}=-\theta \frac{g^{2}}{16 \pi^{2}} \operatorname{Tr}\left(\tilde{G}^{\mu \nu} G_{\mu \nu}\right)=-\theta \frac{g^{2}}{32 \pi^{2}} \tilde{G}_{a}^{\mu \nu} G_{\mu \nu}^{a}
$$

can be written as surface integral for the action

$$
\begin{aligned}
& \delta S=-\theta \frac{g^{2}}{32 \pi^{2}} \int d^{4} x \tilde{G}_{a}^{\mu \nu} G_{\mu \nu}^{a}=-\theta \frac{g^{2}}{32 \pi^{2}} \int d^{4} x \partial_{\mu} K^{\mu}=-\theta \frac{g^{2}}{32 \pi^{2}} \int d \sigma_{\mu} K^{\mu} \\
& \text { with } K^{\mu}=\left(\epsilon^{\mu \alpha \beta \gamma} G_{\alpha}^{a}\left(G_{\beta \gamma}^{a}-\left(g_{3} / 3\right) f^{a b c} G_{\beta}^{b} G_{\gamma}^{c}\right)\right.
\end{aligned}
$$

The surface integral is usually dropped.
However, there are configuration the above integral is non-zero, θ-vacuum.
The integral is actually corresponding to the topological winding number ν

$$
\nu=\frac{g^{2}}{32 \pi^{2}} \int d \sigma_{\mu} K^{\mu}
$$

One cannot simply disregard it!

Some useful relations

The chiral anomaly relation, $\partial^{\mu}\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \psi\right)=\frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G)$,
leads to a chiral rotation $\psi \rightarrow e^{i \alpha \gamma_{5} / 2} \psi$ generates in the Lagrangian

$$
\delta L_{\alpha}=-\alpha \frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G)
$$

An imaginary matter term $\delta L=-\bar{\psi} m\left(\cos \alpha+i \sin \alpha \gamma_{5}\right) \psi$
can be transformed away by define $\psi^{\prime}=e^{-\alpha \gamma_{5} / 2} \psi$ and to

$$
\delta L=-\bar{\psi}^{\prime} m \psi^{\prime}+\alpha \frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G)
$$

If one write with more than one ψ the mass matrices as $\psi_{R} M \psi_{L}$
In general M is complex. Then

$$
\begin{aligned}
\delta L & =-\left(\bar{\psi}_{R} M \psi_{L}+H . C .\right)-\theta \frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G) \\
& =-\bar{\psi} \hat{M} \psi-\left(\theta-\operatorname{Arg}(\operatorname{Det}(M)) \frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G)\right.
\end{aligned}
$$

$\hat{M}=\operatorname{diag}\left(m_{1}, m_{2}, \ldots\right)$, with $m_{i}>0$

Calculation of EDM from θ-term

Making on each of the light quarks (u, d, s).
With appropriate chiral transformation, assuming small θ

$$
\begin{gathered}
L=-m_{u} \bar{u} u+m_{d} \bar{d} d+m_{s} \bar{s} s-\theta \frac{g_{3}^{2}}{16 \pi^{2}} \operatorname{Tr}(\tilde{G} G) \\
\rightarrow \quad-m_{u} \bar{u} u+m_{d} \bar{d} d+m_{s} \bar{s} s+i \theta \frac{m_{u} m_{d} m_{s}}{m_{u} m_{d}+m_{u} m_{s}+m_{d} m_{s}} \bar{u} \gamma_{5} u+\bar{d} \gamma_{5} d+\bar{s} \gamma_{5} s
\end{gathered}
$$

Using current algerbra, turn the above into nucleon-pion interactions
$<P^{a} B_{f}\left|\bar{u} \gamma_{5} u+\bar{d} \gamma_{5} d+\bar{s} \gamma_{5} s\right| n>=-i\left(\sqrt{2} / f_{p} i\right)<B_{f}\left|\bar{q} \lambda^{a} q\right| n>$
$L_{\pi^{i} B_{f} B}=-\sqrt{2} \bar{N}_{f} \sigma^{i}\left(i \gamma_{5} g_{\pi N N}+f_{\pi N N} \mid N>\right.$
$g_{\pi N N} \approx 14$ is CP conserving, and $f_{\pi N N}$ is CP violating coupling with
Crewther, Di Vecchia, Veneziano and Witten, PLB88, 13,(1979)

$$
f_{\pi N N}=-2 \frac{\left(m_{\Xi}-m_{\Sigma}\right)}{f_{\pi}} \frac{m_{u} m_{d} m_{s}}{m_{u} m_{d}+m_{u} m_{s}+m_{d} m_{s}}
$$

$D_{n} \sim-3.8 \times 10^{-16} \theta \mathrm{ecm}$
Including all $\mathrm{SU}(3)$ octet contributions:

$2.5 \times 10^{-16} \theta e c m<\left|D_{n}\right|<4.6 \times \theta e c m \quad$ He, McKellar and Pakvasa, IJMP A4, 5011 (1989))
Using data $\left|D_{n}\right|<3 \times 10^{-27} e c m,|\theta|<10^{-11}$!
Why θ is small is the strong CP problem.

Solutions to the strong CP problems

1. One of the quark mass is zero, since D_{n} is proportional to $m_{u} m_{d} m_{s}$. But all quarks have non-zero masses!
2. Making the theory left-right symmetric (parity conservation, θ is zero to start with) and quark mass matrices Hermintian $(\operatorname{Arg}(M)=0)$.
3. Spontaneous CP violation, making θ equal to zero first. Need to check whether after symmetry breaking, θ is not generated.
4. Dynamic solution driving θ small by imposing an additional chiral symmetry, the Peccei-Quinn symmetry. This solution leads to Axion which has not been discovered.
See Appendix D for PQ symmetry and Axion.

PQ symmetry

The most attractive solution is provided by Peccei-Quinn symmetry
Lagrangian symmetric under a $U(1)_{A}$ global chiral transformation
Chiral transformation for $\operatorname{SM} Q_{L}, u_{R}, d_{R}, L_{L}$ and e_{R} are independent
How f_{L} and f_{R}, if f transforms under $e^{i \alpha \gamma_{5}} f$?
$f_{R}=\frac{1}{2}\left(1+\gamma_{5}\right) f \rightarrow \frac{1}{2}\left(1+\gamma_{5}\right) e^{i \alpha \gamma_{5}} f$

$$
\begin{aligned}
& \frac{1}{2}\left(1+\gamma_{5}\right) e^{i \alpha \gamma_{5}} f=\frac{1}{2}\left(1+\gamma_{5}\right)\left(\cos \alpha+i \gamma_{5} \sin \alpha\right) f=\frac{1}{2}(\cos \alpha+i \sin \alpha)\left(1+\gamma_{5}\right) f=e^{i \alpha} f_{R}, \\
& \frac{1}{2}\left(1-\gamma_{5}\right) e^{i \alpha \gamma_{5}} f=\frac{1}{2}\left(1-\gamma_{5}\right)\left(\cos \alpha+i \gamma_{5} \sin \alpha\right) f=\frac{1}{2}(\cos \alpha-i \sin \alpha)\left(1-\gamma_{5}\right) f=e^{-i \alpha} f_{L} .
\end{aligned}
$$

$U(1)_{A}$ chiral model of QP symmetry for strong CP problem

$$
\begin{aligned}
& L=L_{S M}+\delta L_{\theta}, \delta L_{\theta}=-\theta\left(g_{3}^{2} / 16 \pi^{2}\right) \operatorname{Tr}(\tilde{G} G) \\
& u_{R} \rightarrow e^{i \alpha} u_{R}, d_{R} \rightarrow e^{i \alpha}, Q_{L} \rightarrow Q_{L}, L_{L} \rightarrow L_{l} \text { and } e_{R} \rightarrow e^{i \alpha} e_{R} \\
& \bar{\theta}=\theta \rightarrow \theta-2 \alpha,
\end{aligned}
$$

If $L_{S M}$ is symmetric under $U(1)_{A}, L \rightarrow L_{S M}+\delta L_{\bar{\theta}=\theta-2 \alpha}$
For $L_{S M}, \alpha$ is arbitrary, choose one such that $\bar{\theta}=\theta-2 \alpha=0$.
No strong CP term!
One then needs to show that the corresponding potentials are minimal to have a stable solution. More discussions in Appendix D.

3.2 Anomalies in flavor physics

There are also a few anomalies in flavor physics which show some deviations from SM predictions at some level, but not up to 5σ yet.

But they have generated a lot of concerns and people are trying to provide solutions to them. Here I discuss a few related to flavor physics.

The unitarity of CKM matrix; The g-2 muon anomaly; B -> $\mu \mu K^{(*)}, D^{(*)} T \vee \ldots$

CKM unitarity:

$$
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1,
$$

$\left|\mathrm{V}_{\mathrm{ub}}\right|^{2} \sim 10^{-5}$ negligible, so usually study $\Delta=\left|\mathrm{V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2-1}$

Zoom in superallowed 0+ -> 0+ nuclei transition and $K->\pi I v$ show about 3σ level deviation

$\Delta_{\text {CKM }}^{(1)}$	$-0.00176(56)$	$-0.00173(55)$	$-0.00162(56)$	$-0.00185(56)$	$-0.00171(55)$	$-0.00151(56)$	$-0.00195(56)$
	-3.1σ	-3.1σ	-2.9σ	-3.3σ	-3.1σ	-2.7σ	-3.5σ

aeXiv:2208.11707

Figure 1: Constraints in the $V_{u d}-V_{u s}$ plane. The partially overlapping vertical bands correspond to $V_{u d}^{0^{+} \rightarrow 0^{*}}$ (leftmost, red) and $V_{u d}^{\text {n. best }}$ (rightmost, violet). The horizontal band (green) corresponds to $V_{l s}^{K / 3}$. The diagonal band (blue) corresponds to $\left(V_{u s} / V_{u d}\right) K_{n} / \pi_{\sigma_{2}}$. The unitarity circle is denoted by the black solid line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yellow ($V_{u d}=0.97378(26), V_{u s}=0.22422(36), X^{2} /$ dof $=6.4 / 2, p$-value $\left.4.1 \%\right)$, it deviates from the unitarity line by 2.8σ. Note that the significance tends to increase in case τ decays are included.

Muon g-2 anomaly

The energy of a particle with magnetic dipole μ interact with a magnetic field \mathbf{B} is given by: $\mathrm{H}=-\mu \cdot \mathbf{B}$

Classically, a particle of charge q moving in circle in magnetic field with angular momentum L , the magnetic dipole: $\mu_{\mathrm{L}}=\mathrm{qL} / 2 \mathrm{~m}$.

Quantum mechanically, a Dirac particle has an intrinsic magnetic dipole moment: $\mu=\mathrm{qS} / \mathrm{m}$ which can be written as $\mu=\mathrm{g} \mathrm{qS} / 2 \mathrm{~m},------\mathrm{g}=2$. g is called the g -factor. (Dirac)

In quantum field theory, there is correction at loop level making $\mathrm{a}=(\mathrm{g}-2) / 2$ not zero. This is the anomalous dipole moment of a particle. At one loop for charge leptons, $\mathrm{i}=\mathrm{e}, \mu, \mathrm{T}, \quad \mathrm{a}_{\mathrm{i}}=\mathrm{a} / 2 \pi \quad$ (Schwinger)

In the SM, including QEC, Strong and electroweak contributions, a_{μ} has been calculated to very high precision.

BNL experiment (1997-2001) final result for $\Delta a_{\mu}=a_{\mu}(\exp)-a_{\mu}(S M)$ at 2.7σ larger than zero.
FNL experiment first result announce in April, 2021, conf
 high confidence level at 3.3 σ.

Combining BNL and FNL results, $\Delta \mathrm{a}_{\mu}=251(59) \times 10^{-11}$. The deviation away from SM is at 4.2σ level!

Recent Lattice calculation indicate the deviation is only at one σ level. More accurate theory calculations and Experimental measurement needed to confirm this anol

Even the anomaly itself still needs to be confirmed, but a lot of efforts have been made to explore the anomaly through beyond SM physics to match data.
Z', leptoquark, higgs....

Z^{\prime} contribution to muon $\mathrm{g}-2, \mathrm{a} \mathrm{U}(1) \mu-\tau$ example

arXiv: 2112.0992
The simplest version has Z^{\prime} coupling to μ and T in diagonal form. An additional anomalous $\Delta \mathrm{a}_{\mu}$ will be generated at one loop level

$$
\Delta a_{\mu}^{Z^{\prime}}=\frac{\tilde{g}^{2}}{8 \pi^{2}} \frac{m_{\mu}^{2}}{m_{Z^{\prime}}^{2}} \int_{0}^{1} \frac{2 x^{2}(1-x) d x}{1-x+\left(m_{\mu}^{2} / m_{Z^{\prime}}^{2}\right) x^{2}} .
$$

In the large $\mathrm{m}_{z^{\prime}} \gg \mathrm{m}_{\mu}$ limit, $\quad \Delta a_{\mu}^{Z^{\prime}}=\left(\tilde{g}^{2} / 12 \pi^{2}\right)\left(m_{\mu}^{2} / m_{Z^{\prime}}^{2}\right)$.
To explain the muon $\mathrm{g}-2$ anomaly: $\quad \tilde{g}^{2} / m_{Z^{\prime}}^{2}=(2.66 \pm 0.63) \times 10^{-5} \mathrm{GeV}^{-2}$.

One must check if the above region is ruled out by other processes.

The trident neutrino scattering data come in and rule out the above solution For large Z' mass indicated above!

Small Z' Mass Solution for Muon g-2

The trident neutrino constraint

Normalize SM contribution to experimental measurement, $\sigma_{\text {exp }} / \sigma_{\mathrm{SM}}$.

If data agree with $\mathrm{SM}, \sigma / \sigma(\mathrm{SM})=1$.

Experimental data: $\quad \sigma_{\text {exp }} /\left.\sigma_{S M}\right|_{\text {trident }}: 1.58 \pm 0.57,0.82 \pm 0.28$ and $0.72_{-0.72}^{+1.73}$ from CHARM-II, CCFR and NuTeV.

With Z^{\prime} contribution:

$$
\left.\frac{\sigma_{Z^{\prime}}}{\sigma_{S M}}\right|_{\text {trident }}=\frac{\left(1+4 s_{W}^{2}+8 \tilde{g}^{2} m_{W}^{2} / g^{2} m_{Z^{\prime}}^{2}\right)^{2}+1}{1+\left(1+4 s_{W}^{2}\right)^{2}}
$$

Using central value for $2.66 \times 10^{-5} \mathrm{GeV}^{-2}$ for $\tilde{g}^{2} / m_{Z^{\prime}}^{2}$ one obtains $\sigma_{Z^{\prime}} / \sigma_{S M}=5.86$ The model is ruled out as a solution for muon $\mathrm{g}-2$ anomaly for large Z^{\prime} mass!

Small Z' solution

What about small mass $\mathrm{m}_{\mathrm{z}^{\prime}} \ll \mathrm{m}_{\mathrm{T}}$?
In this region, the previous result for trident neutrino scattering is not valid because the q^{2} exchange by Z^{\prime} is comparable, the heavy Z^{\prime} mass limit Cannot be applied!

More involved numerical calculations obtain the results shown in the figure On the right.

It is a folklore that in $\mathrm{U}(1)_{\mathrm{L} \mu-\mathrm{LT}}$ in order to explain muon $\mathrm{g}-2$ anomaly, $\mathrm{m}_{\mathrm{z}^{\prime}}$ must be less than 300 MeV !

There are model which can invade this folklore, example arXiv:2112.09920

$R_{D(*)}$ anomalies in $B->D^{(*)}$ TV

Before 2019

$$
R\left(D^{(*)}\right)=\frac{B r\left(D^{(*)} \rightarrow \tau \bar{\nu}_{\tau}\right)}{\operatorname{Br}\left(D^{(*)} \rightarrow l \bar{\nu}\right)}
$$

$$
R(D)=\frac{B\left(\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{r}\right)}{B\left(\bar{B} \rightarrow D \ell^{-} \bar{\nu}_{\ell}\right)}=0.407 \pm 0.039 \pm 0.024
$$

$$
R\left(D^{\star}\right)=\frac{B\left(\bar{B} \rightarrow D^{\star} \tau^{-} \bar{\nu}_{\tau}\right)}{B\left(\bar{B} \rightarrow D^{\star} \ell^{-} \bar{\nu}_{\ell}\right)}=0.304 \pm 0.013 \pm 0.007
$$

4σ effects!

$$
R(J / \psi)=\frac{B\left(B_{c}^{+} \rightarrow J / \psi \tau^{+} \nu_{\tau}\right)}{B\left(B_{c}^{+} \rightarrow J / \psi \mu^{+} \nu_{\mu}\right)}=0.71 \pm 0.17 \pm 0.18
$$

SM prediction

...Others....
R. Aaij et al. [LHCb Collaboration], arXiv:1711.05623 [hep-ex]

Measurement of $\mathcal{R}(D)$ and $\mathcal{R}\left(D^{*}\right)$ with a semileptonic tagging method

We report a measurement of the ratios of branching fractions $\mathcal{R}(D)=\mathcal{B}\left(\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}(\bar{B} \rightarrow$ $\left.D \ell^{-} \bar{\nu}_{\ell}\right)$ and $\mathcal{R}\left(D^{*}\right)=\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}\right)$, where ℓ denotes an electron or a muon. The results are based on a data sample containing $772 \times 10^{6} B \bar{B}$ events recorded at the $\Upsilon(4 S)$ resonance with the Belle detector at the KEKB $e^{+} e^{-}$collider. The analysis utilizes a method where the tag-side B meson is reconstructed in a semileptonic decay mode, and the signal-side τ is reconstructed in a purely leptonic decay. The measured values are $\mathcal{R}(D)=0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}\left(D^{*}\right)=0.283 \pm 0.018 \pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within 0.2 and 1.1 standard deviations, respectively, while their combination agrees with the Standard Model predictions within 1.2 standard deviations.

Still 3.6 to 3.1 sigma effect for world average.

New physics?

- Most precise measurement of $R(D)$ and $R\left(D^{\star}\right)$ to date
- First R(D) measurement performed with a semileptonic tag
- Results compatible with SM expectation within $\mathbf{1 . 2 \sigma}$
- $R(D)-R\left(D^{*}\right)$ Belle average is now within $\mathbf{2 \sigma}$ of the SM prediction
- $R(D)-R\left(D^{*}\right)$ exp. world average tension with SM expectation decreases from 3.8 $\mathbf{6}$ to $\mathbf{3 . 1 \sigma}$
from Belle
G Caria @ Moriond 2019

B -> $\quad \mathrm{K}^{(*)}$ anomalies

Before 2019

LHCb arXiv:1705.03274

All these processes are induced by b-> s II interaction.
Consistently lower than SM predictions. Combined effects are now about 4o!

Whät's new since 2019?

R_{K} result with 2011 to 2016 data LHCb-Paper-2019-009
uch Imperial College LWCB London
THumair @ Moriond 2019

Using 2011 and 2012 LHCb data, R_{K} was:

$$
R_{K}=0.745_{-0.074}^{+0.090} \text { (stat.) } \pm 0.036 \text { (syst.) },
$$

$\sim 2.6 \sigma$ from SM (PRL113(2014)151601).
Adding 2015 and 2016 data, R_{K} becomes:

$$
R_{K}=0.8466_{-0.054}^{+0.060}(\text { stat. })_{-0.014}^{+0.016}(\text { syst. })
$$

$\sim 2.5 \sigma$ from SM .

Search for lepton-universality violation in $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$decays

LHCb collaboration

Abstract

A measurement of the ratio of branching fractions of the decays $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$ and $B^{+} \rightarrow K^{+} e^{+} e^{-}$is presented. The proton-proton collision data used corre spond to an integrated luminosity of $5.0 \mathrm{fb}^{-1}$ recorded with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV . For the dilepton mass-squared range $1.1<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4}$ the ratio of branching fractions is measured to be $R_{K}=0.846_{-0.054}^{+0.060}{ }_{-0.014}^{0.016}$, where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R_{K} to date and is compatible with the Standard Model at the level of 2.5 standard deviations.

New results: R_{K} from LHCb
Branching fractions and other results LHCb-Paper-2019-009 If instead the Run 1 and Run 2 were fitted separately:

$$
\begin{array}{ll}
R_{K \text { Run 1 }}^{\text {new }}=0.717_{-0.071}^{+0.083}+0.017 \\
R_{K ~ R u n ~ 1 ~}^{0.016} & =0.745_{-0.074}^{+0.090} \pm 0.036
\end{array} \quad R_{K \text { Run 2 }}=0.928_{-0.076}^{+0.089+0.020}, \underline{(\text { PRL113(2014)151601 })} .
$$

Compatibility taking correlations into account:

- Previous Run 1 result vs. this Run 1 result (new reconstruction selection): $<1 \sigma$;
- Run 1 result vs. Run 2 result: 1.9σ.
$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$branching fraction:
- Compatible with previous result (JHEP06(2014)133) at $<1 \sigma$;
- Run 1 and Run 2 results compatible at $<1 \sigma$.

Test of lepton flavor universality in $B \rightarrow K^{*} \ell^{+} \ell^{-}$decays at Belle

We present a measurement of $R_{K^{*}}$, the ratio of the branching fractions $\mathcal{B}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$and $B\left(B \rightarrow K^{*} e^{+} e^{-}\right)$, for both charged and neutral B mesons. The ratio for charged B mesons, $R_{K}{ }^{*+}$, is the first measurement ever performed. The analysis is based on a data sample of $711 \mathrm{fb}^{-1}$, containing $772 \times 10^{6} \mathrm{BB}$ events, recorded at the $\Upsilon(4 S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^{+} e^{-}$collider. The obtained results are compatible with standard model expectations.

$q^{2}\left(\mathrm{GeV}^{2} / c^{4}\right)$

q^{2} in $\operatorname{cov}^{2} / \mathrm{cc}^{4}$	All modes	B^{0} modes	B^{+}modes
[0.045, 1.1]	$0.52_{-0.26}^{+0.36} \pm 0.05$	$0.46{ }_{-0.27}^{+0.55} \pm 0.07$	$0.62_{-0.36}^{+0.60} \pm 0.10$
[1.1, 6]	$0.96{ }_{-0.29}^{+0.45} \pm 0.11$	$1.06_{-0.38}^{+0.63} \pm 0.13$	$0.72^{+0.99} \pm 0.18$
[0.1, 8]	$0.90_{-0.21}^{+0.29} \pm 0.10$	$0.88_{-0.24}^{+0.39} \pm 0.08$	$0.96{ }_{-0.35}^{+0.56} \pm 0.14$
[15, 19]	1. $18_{-0.32}^{+0.52} \pm 0.10$	$1.122_{-0.36}^{+0.61} \pm 0.10$	$1.400_{-0.68}^{+1.99} \pm 0.11$
[0.045,]	$0.94{ }_{-0.14}^{40.17} \pm 0.08$	$1.12{ }_{-0.21}^{+0.27} \pm 0.09$	$0.70_{-0.19}^{+0.24} \pm 0.07$

M Prim @ Moriond 2019

- All measured values are in accordance with the SM and other recent measurements.
- First measurement of $\mathrm{R}\left(\mathrm{K}^{*+}\right)$.

$$
\begin{array}{lll}
\left.\overline{R_{\left.K^{+}+1.1,6.0\right]}^{\exp }=0.846_{-0.039}^{+0.042}+0.012}+1\right] & R_{K^{+}}^{\mathrm{th}}=1.00 \pm 0.01[3,4] & 3.1 \sigma \\
R_{K^{+0}[0.045,1.1]}^{\exp }=0.66_{-0.07}^{+0.11} \pm 0.03[2] & R_{K^{* 0}[0.045,1.1]}^{\mathrm{th}}=0.922 \pm 0.022[4] & 2.3 \sigma \\
R_{K^{*} 0}^{\exp [1.1,6.0]}=0.69_{-0.07}^{+0.11} \pm 0.05[2] & R_{K^{*}[1.1,6.0]}^{\mathrm{th}}=1.000 \pm 0.006[4] & 3.4 \sigma
\end{array}
$$

$$
\text { LHCb data still show a } 3.1 \sigma \text { deviation from SM prediction } \underbrace{b}_{\mu^{b}}
$$

New physics?

All the anomalies need further experimental confirmation! But one can explore possible directions new physics may come in.

anomaly - Cambridge Dictionary

noun [Cor U] • UK *) Iə ndm.ə.li/ US (4) Iə'na:.mə.li/FORMAL

* a person or thing that is different from what is usual, or not in agreement with something else and therefore not satisfactory:
Statistical anomalies can make it difficult to compare economic data from one year to the next.
The anomaly of the social security system is that you sometimes have more money without a job.
B decays and muon g-2 that are different from SM predictions and therefore not satisfactory.

These anomalies might be some hints of something more that just SM.

Will these anomalies stand with time??? More Data!!!

B-> s II in the SM and beyond

$$
\mathcal{H}_{\mathrm{eff}, \mathrm{NP}}^{b s \ell \ell}=-\mathcal{N}\left(C_{7}^{b s} O_{7}^{b s}+C_{7}^{\prime b s} O_{7}^{\prime b s}+\sum_{\ell=e, \mu} \sum_{i=9,10, S, P}\left(C_{i}^{b s \ell \ell} O_{i}^{b s \ell \ell}+C_{i}^{\prime b s \ell \ell} O_{i}^{\prime b s \ell \ell}\right)\right)+\text { h.c. }
$$

with the normalization factor

$$
\mathcal{N}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{e^{2}}{16 \pi^{2}}
$$

The dipole operators are given by ${ }^{1}$

$$
O_{7}^{b s}=\frac{m_{b}}{e}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}, \quad O_{7}^{\prime b s}=\frac{m_{b}}{e}\left(\bar{s} \sigma_{\mu \nu} P_{L} b\right) F^{\mu \nu}
$$

where $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$, and the semi-leptonic operators

$$
\begin{array}{ll}
O_{9}^{b s \ell \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & O_{9}^{\text {bsse }}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \\
O_{10}^{b s \ell \ell}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), & O_{10}^{\text {bsel }}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), \\
O_{S}^{b s \ell \ell}=m_{b}\left(\bar{s} P_{R} b\right)(\bar{\ell} \ell), & O_{S}^{\text {bsel }}=m_{b}\left(\bar{s} P_{L} b\right)(\overline{\ell \ell}), \\
O_{P}^{s s \ell \ell}=m_{b}\left(\bar{s} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right), & O_{P}^{\text {bsel }}=m_{b}\left(\bar{s} P_{L} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) .
\end{array}
$$

$\mathcal{C}_{7 \mathrm{eff}, 9,10}^{\mathrm{SM}}\left(\mu_{b}\right)=(-0.29,4.07,-4.31) \quad \mu_{b}=4.8 \mathrm{GeV}$

Coeff.	best fit	1σ	2σ	pull
$C_{9}^{b s \mu \mu}$	-0.95	$[-1.10,-0.79]$	$[-1.26,-0.63]$	5.8σ
$C_{9}^{\prime b s \mu \mu}$	+0.09	$[-0.07,+0.24]$	$[-0.23,+0.39]$	0.5σ
$C_{10}^{b s \mu \mu}$	+0.73	$[+0.59,+0.87]$	$[+0.46,+1.01]$	5.6σ
$C_{10}^{\prime s \mu \mu}$	-0.19	$[-0.30,-0.07]$	$[-0.41,+0.04]$	1.6σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	+0.20	$[+0.05,+0.35]$	$[-0.09,+0.51]$	1.4σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	-0.53	$[-0.62,-0.45]$	$[-0.70,-0.36]$	6.5σ
$C_{9}^{b s e e}$	+0.88	$[+0.62,+1.15]$	$[+0.36,+1.44]$	3.4σ
$C_{9}^{\prime b s e e}$	+0.32	$[+0.09,+0.61]$	$[-0.16,+0.91]$	1.3σ
$C_{10}^{b s e e}$	-0.82	$[-1.06,-0.59]$	$[-1.31,-0.37]$	3.7σ
$C_{10}^{\text {bsee }}$	-0.27	$[-0.52,-0.05]$	$[-0.78,+0.17]$	1.2σ
$C_{9}^{b s e e}=C_{10}^{b s e e}$	-1.65	$[-1.93,-1.36]$	$[-2.19,-1.02]$	4.0σ
$C_{9}^{b s e e}=-C_{10}^{b s e e}$	+0.45	$[+0.31,+0.59]$	$[+0.19,+0.74]$	3.6σ
$\left(C_{S}^{b s \mu \mu}=-C_{P}^{b s \mu \mu}\right) \times \mathrm{GeV}$	-0.005	$[-0.008,-0.003]$	$[-0.013,-0.001]$	2.6σ
$\left(C_{S}^{b s \mu \mu}=C_{P}^{\prime b s \mu \mu}\right) \times \mathrm{GeV}$	-0.005	$[-0.008,-0.003]$	$[-0.013,-0.001]$	2.6σ

Latest fit: J. Aebischer et a;., arxiv:1903.1043 Older fits: arXiv:1307.5683, 1510.04239, 1703.09189

$$
\mathcal{H}_{\mathrm{eff}}=2 \sqrt{2} G_{F} V_{c b}\left[\left(1+C_{V}^{L}\right) O_{V}^{L}+C_{S}^{R} O_{S}^{R}+C_{S}^{L} O_{S}^{L}+C_{T} O_{T}\right]
$$

M. Blanke et al., arXiv:1901811.09603

$$
\begin{aligned}
O_{V}^{L} & =\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}\right) \\
O_{S}^{R} & =\left(\bar{c} P_{R} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
O_{S}^{L} & =\left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
O_{T} & =\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau}\right)
\end{aligned}
$$

1D hyp.	best-fit	1σ range	2σ range	p-value (\%)	pull SM
C_{V}^{L}	0.11	$[0.09,0.13]$	$[0.06,0.15]$	35	4.6
$\left.C_{S}^{R}\right\|_{10 \%}$	0.15	$[0.13,0.15]$	$[0.08,0.15]$	1.7	3.8
$\left.C_{S}^{R}\right\|_{30 \%, 60 \%}$	0.16	$[0.13,0.20]$	$[0.08,0.23]$	1.8	3.8
C_{S}^{L}	0.12	$[0.07,0.16]$	$[0.01,0.20]$	0.02	2.2
$C_{S}^{L}=4 C_{T}$	-0.07	$[-0.12,-0.03]$	$[-0.15,0.02]$	0.01	1.6

Similar work: P. Asadi and D. Shih, arXiv: 1905.03311

B. 3 Model buildings for FPCP beyond SM

F.Model building with new gauge bosons and new fermions

Quantum field theory with chiral fermion fields, have triangle anomalies generated as shown in the figure with three gauge fields as external ones and the chiral fermion in the loop. These anomalies if exist in a theory, ward identities will be destroyed and cannot be an consistent theory level. They must be cancelled - gauge anomaly cancellation.

Normalizing the contributions by right handed $1+\gamma_{5}$ chiral fermion in the loop to be positive proportional to the couplings, then left handed $1-v_{5}$ chiral fermion in the loop will be negative.
 The total sign also depends on the couplings $\mathrm{g}_{1} \mathrm{~T}^{1} \mathrm{~g}_{2} \mathrm{~T}^{2} \mathrm{~g}_{3} \mathrm{~T}^{3}$.

The cancellation can happen by summing up left and right handed
Fermion with appropriate couplings contributions. If vector fermion, no anomalies generated.
This is a powerful tool for model building with new fermions and gauge bosons.

Gauge anomaly cancellation in the SM

The standard model of strong and electroweak interaction has gauge group

Type of anomalies:

$$
\begin{aligned}
& S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \text { with gauge bosons } \\
& 8 S U(3)_{C} \text { Gluons : } G^{\mu}=\frac{\lambda^{a}}{2} G_{a}^{\mu}, \operatorname{Tr}\left(\frac{\lambda^{a}}{2} \frac{\lambda^{b}}{2}\right)=\frac{\delta^{a b}}{2} . \\
& 3 S U(2)_{L} \text { W-bosons : } W^{\mu}=\frac{\sigma^{i}}{2} W_{i}^{\mu}, \operatorname{Tr}\left(\frac{\sigma^{i}}{2} \frac{\sigma^{j}}{2}\right)=\frac{\delta^{i j}}{2} . \\
& 1 U(1)_{Y} \text { B boson : } B^{\mu}
\end{aligned}
$$

The building blocks of fermions are chiral fields $f_{L, R}=\frac{1 \mp \gamma_{5}}{2} f$
The SM fermions are leptons L_{L}, E_{R} and quarks Q_{L}, U_{R} and D_{R}
$L_{L}=\left(\nu_{L}, e_{L}:(1,2)(-1 / 2)^{T}, e_{R}:(1,1)(-1)\right.$,
$Q_{L}=\left(u_{L}, d_{L}\right)^{T}:(3,2)(1 / 6), u_{R}:(3,1)(2 / 3), d_{R}:(3,1)(-1 / 3)$.
GGG (3 grkuons): automatically zero, because under $\mathrm{SU}(3)_{\mathrm{c}}$ all fermions are vector like.
WWW: also automatically zero, because $\left.\mathrm{T}_{\mathrm{i}}=\sigma_{\mathrm{i}} \operatorname{Tr}\left(\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}+\sigma_{\mathrm{j}} \sigma_{\mathrm{i}}\right) \sigma_{\mathrm{k}}\right)=0$
GGW, WWG, BBG, BBW, GWB all are zero due to trace of one single T_{i} is zero.
Nonzero ones: GGB, WWB, BBB, and ggB for individual fermion in the loop
Two gravitation gg and a B

One generation of SM fermion contributions to gauge anomalies

	u_{R}	d_{R}	u_{L}	d_{L}	e_{R}	v_{L}	e_{L}	sum
GGB	$2 / 3$	$-1 / 3$	$-(1 / 6)$	$-(1 / 6)$	0	0	0	0
WWB	0	0	$-3(1 / 6)$	$-3(1 / 6)$	0	$-(-1 / 2)$	$-(-1 / 2)$.	0
BBB	$3(2 / 3)^{3 .}$	$3(-1 / 3)^{3 .}$	$-3(1 / 6)^{3 .} \cdot-3(1 / 6)^{3 .}$	$(-1)^{3}$	$-(-1 / 2)^{3}$	$-(-1 / 2)^{3}$	0	
GgB	$2 / 3$	$-1 / 3$	$-(1 / 6)$	$-(1 / 6)$	-1	$-(-1 / 2)$	$-(-1 / 2)$	0
All anomalies are automatically cancelled!								

One of the reasons for having two Higgs doublets $\mathrm{H}_{1}(1,2)(-1 / 2)$ and $\mathrm{H}_{2}(1,2)(1 / 2)$
Because Higgsino is a chiral fermion, it produce gauge anomalies
WWB $-1 / 2+1 / 2=0 ; \quad$ BBB $\quad(-1 / 2)^{3}+(1 / 2)^{3}=0 ; \quad$ ggB. $(-1 / 2)+(1 / 2)=0$!
$U(1)_{\mu-T}$ charges: 0 for $u_{R}, d_{R}, u_{L} d_{L}$ and $e_{R} e_{L,}$

$$
+1 \text { for } \mu_{R,} v_{\mu L}, \mu_{L \prime} \quad-1 \text { for } T_{R} v_{T L}, T_{L}
$$

New anomalies (indicate $U(1)_{\mu-\tau}$ gauge boson as Z^{\prime})

	μ_{R}	v_{μ}	μ_{L}	$T_{\text {TR }}$	$\mathrm{v}_{\text {TL }}$	TL	sum
WWZ'	1	-1	-1	-1	-(-1)	-(-1)	0
BBZ'	$(-1)^{2} \times 1$	$-(-1 / 2)^{2 \times(1)}$	$-(-1 / 2)^{2} \times(1)$.	$(-1)^{2} \times(-1)$	$-(-1 / 2)^{2} \times(-1)$	$-(-1 / 2)^{2} \times(-1)$	0
Z'Z'B	(1) $2^{2}(-1)$) $-12(-1 / 2)$	$-1^{2}(-1 / 2)$	$(-1)^{2} \times(-1)$) $-(-1)^{2}(-1 / 2)$	$-(-1)^{2}(-1 / 2)$	0
$Z^{\prime} Z^{\prime} Z^{\prime}$	1^{3}	-1^{3}	-1^{3}	$(-1)^{3}$.	$-(-1)^{3}$	-(-1) ${ }^{3}$	0
ggZ'	1	-1	-1	-1	-(-1)	-(-1)	0

Gauge anomaly free. The simplest model with a new Z' model!
|Models for muon $\mathrm{g}-2, \mathrm{R}_{\mathrm{D}\left(^{*}\right)}$ and $\mathrm{R}_{\mathrm{K}\left(^{*}\right)}$ anomalies

Many theoretical models have been proposed to solve the muon $g-2, R_{D(*)}$ and $\mathrm{R}_{\mathrm{K}(*)}$ anomalies discussed previously.

Multy Higgs, SUSY, Z', Leptoquarks...
Some of them dealing with only for muon $\mathrm{g}-2$, or $\mathrm{R}\left(\mathrm{D}_{\left({ }^{*}\right)}\right)$ or $\mathrm{R}\left(\mathrm{K}^{(*)}\right)$
Relatively easy.

When want to solve two of them, the constrain become more stringent
When want to take on three of them together, the task becomes more difficult But efforts have been made and possible!
I now discuss some examples.

A gauge model solving $\mathrm{R}_{\mathrm{D}(*)}$ and $\mathrm{R}_{\mathrm{K}(*)}$ anomalies $S U(3) \times S U(2)_{l} \times S U(2)_{h} \times U(1)_{Y}$ S. Bouncenna et al., arxiv:1604.03088
 C-W. Chiang, X-G He, G. Valencia,PRD93,074003.
 $Q_{L}^{1,2}:(3,2,1,1 / 3), Q_{L}^{3}:(3,1,2,1 / 3), U_{R}^{1,2,3}:(3,1,1,4 / 3), D_{R}^{1,2,3}:(3,1,1,-2 / 3)$,
 $L_{L}^{1,2}:(1,2,1,-1), L_{L}^{3}:(1,1,2,-1), E_{R}^{1,2,3}:(1,1,1,-2)$,
 $\mathrm{SU}(2)$, for $1^{\text {st }}$ generation $\mathrm{SU}(2)_{\mathrm{h}}$ for $2^{\text {nd }}$ and $3^{\text {rd }}$ generations $\mathrm{SU}(2) \mathrm{L}$

The charged quark currents can be in the quark mass eigen-basis as

$$
\begin{aligned}
\mathcal{L}_{\text {charged }} & =\frac{g}{\sqrt{2} s_{E} c_{E}} W_{h}^{+\mu}\left(s_{E}^{2} \bar{U}_{L} \gamma_{\mu} V_{K M} D_{L}-\bar{U}_{L} T_{U} N T_{D}^{\dagger} D_{L}\right) \\
& +\frac{g}{\sqrt{2}} W_{l}^{+\mu}\left(\bar{U}_{L} \gamma_{\mu} V_{K M} D_{L}\right)+h . c .
\end{aligned}
$$

The matrices $T_{\psi, U, D}$ diagonalize the left handed fermion weak eigen-states to obtain the mass eigen-states. The weak eigen-states are given by $T_{\psi} \psi$. In the limit $s_{E}^{2} c_{\beta}^{2}-c_{E}^{2} s_{\beta}^{2}=0, Z_{l, h}$ and $W_{l, h}$ are mass eigen-states with

$$
\begin{aligned}
& m_{z_{M}^{2}, W_{H}}=\frac{u^{2} g^{2}}{2 c_{E}^{2} s_{E}^{2}}+\frac{v^{2} g^{2}}{4}, m_{Z_{1}}^{2} \frac{v^{2}\left(g^{2}+g^{2}\right)}{4}, m_{W_{i}}^{2}=\frac{v^{2} g^{2}}{4} . \\
& \mathcal{L}_{N C}=\frac{g}{s_{E} c_{E}} Z_{h}^{\mu}\left[\bar{D}_{L} \gamma_{\mu}\left(s_{E}^{2} T_{3}+\frac{1}{2} T_{D} N T_{D}^{\dagger}\right) D_{L}+\bar{U}_{L} \gamma_{\mu}\left(s_{E}^{2} T_{3}-\frac{1}{2} V_{K M} T_{D} N T_{D}^{\dagger} V_{K M}^{\dagger}\right) U_{L}\right] \\
& \mathcal{L}_{\text {charged }}=\frac{g}{\sqrt{2} s_{E} c_{E}} W_{h}^{+\mu}\left(s_{E}^{2} \bar{U}_{L} V_{K M} \gamma_{\mu} D_{L}-\bar{U}_{L} V_{K M} \gamma_{\mu} T_{D} N T_{D}^{\dagger} D_{L}\right)
\end{aligned}
$$

Similar for Z_{h} and W_{h} interactions with leptons.

S_{E} small limit works well !

Triplet vector and $\operatorname{SU}(3)_{\mathrm{C}} \mathrm{xSU}(2) \mathrm{xSU}(2)_{\mathrm{h}} \mathrm{xU}(1)_{\mathrm{Y}}$
D. Buttazzo et al., arXiv: 1706.07808, Cheng-Wei Chiang, X-G He and G. Valencia $X_{\mu}:(3,1)(0)$ This is the W_{h} in $\operatorname{SU}(3)_{\mathrm{C}} \mathrm{xSU}(2) \mathrm{xSU}(2)_{\mathrm{h}} \mathrm{xU}(1)_{\mathrm{Y}}$

$$
\begin{aligned}
X_{\mu}= & \frac{1}{\sqrt{2}}\left(\begin{array}{rr}
X_{\mu}^{0} & \sqrt{2} X_{\mu}^{+} \\
\sqrt{2} X_{\mu}^{-} & -X_{\mu}^{0}
\end{array}\right) \quad L_{\text {int }}=\bar{Q}_{L} \gamma^{\mu} X_{\mu} \Delta^{Q} Q_{L}+\bar{L}_{L} \gamma^{\mu} X_{\mu} \Delta^{L} L_{L} \\
H_{e f f}= & \frac{1}{m_{X \pm}^{2}}\left[\bar{u}_{L} \gamma^{\mu} V_{K M} \Delta^{Q} d_{L} \bar{e}_{L} \gamma_{\mu} \Delta^{L} \nu_{L}+\bar{d}_{L} \gamma^{\mu} \Delta^{Q} V_{K M}^{\dagger} u_{L} \bar{\nu}_{L} \gamma_{\mu} \Delta^{L} e_{L}\right] \\
& +\frac{1}{2 m_{X^{0}}^{2}}\left[\bar{u}_{L} \gamma^{\mu} V_{K M} \Delta^{Q} V_{K M}^{\dagger} u_{L} \bar{\nu}_{L} \gamma_{\mu} \Delta^{L} \nu_{L}-\bar{d}_{L} \gamma^{\mu} \Delta^{Q} d_{L} \bar{\nu}_{L} \gamma_{\mu} \Delta^{L} \nu_{L}\right. \\
& \left.\quad-\bar{u}_{L} \gamma^{\mu} V_{K M} \Delta^{Q} V_{K M}^{\dagger} u_{L} \bar{e}_{L} \gamma_{\mu} \Delta^{L} e_{L}+\bar{d}_{L} \gamma^{\mu} \Delta^{Q} d_{L} \bar{e}_{L} \gamma_{\mu} \Delta^{L} e_{L}\right] .
\end{aligned}
$$

Exchange X_{μ} obtains

$$
\begin{aligned}
& H_{e f f}\left(R_{D^{(*)}}\right)=\frac{\left(V_{K M} \Delta^{Q}\right)_{23} \Delta_{3 l}^{L}}{m_{X^{ \pm}}^{2}} \bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L}^{l}, \\
& H_{e f f}\left(R_{K^{(*)}}\right)=\frac{\Delta_{23}^{Q} \Delta_{22}^{L}}{2 m_{X^{0}}^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\mu}_{L} \gamma_{\mu} \mu_{L} .
\end{aligned}
$$

For $\mathrm{R}_{\mathrm{D}(*)}$

$$
\begin{aligned}
H_{e f f} & =\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left(\delta_{3, l}+\epsilon_{3, l}\right) \bar{c} \gamma^{\mu} P_{L} b \bar{\tau} \gamma_{\mu} P_{L} \nu^{l}, \\
\epsilon_{3, l} & =\frac{\sqrt{2}}{4 G_{F} V_{c b}} \frac{V_{2 i} \Delta_{i 3}^{Q} \Delta_{3 l}^{L}}{m_{X^{ \pm}}^{ \pm}} . \\
H_{e f f} & =-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum C_{i} O_{i}
\end{aligned}
$$

For $\mathrm{R}_{\mathrm{K}(*)}$

$$
C_{9}^{N P}=-C_{10}^{N P}=-\frac{\sqrt{2} \pi}{\alpha G_{F} V_{t b} V_{t s}^{*}} \frac{\Delta_{23}^{Q} \Delta_{22}^{L}}{4 m_{X^{0}}^{2}}
$$

Try the best fit values: $\epsilon_{3, \tau}=0.11$ and $C_{9}^{N}=-0.53 . V_{c b} \approx 0.04, V_{t s} \approx-0.04$
Allow $\frac{\Delta m_{B s}^{N P}}{\Delta m_{B_{s}}^{S M}}$ to be 0.1 (2σ bound), $\Delta_{23}^{Q} \approx \pm 0.0068$ with $m_{X}=1 \mathrm{TeV}$.
Solve $R_{K^{(*)}}$ anomaly, $C_{9}^{N P} \approx-0.56 \rightarrow \Delta_{22}^{L} \approx \mp 0.26$.
Solve $R_{D^{(*)}}$ anomaly, $\sum_{l} \epsilon_{3, l} \approx 0.11$.
$\epsilon \sim\left(V_{c d} \Delta_{13}^{Q}+V_{c s} \Delta_{23}^{Q}+V_{c b} \Delta_{33}^{Q}\right) \Delta_{33}^{L}$
Prefer to have Δ_{23}^{Q} positive.
Then $\Delta_{33}^{Q} \Delta_{33}^{L} \approx 4$, taking each about 2,
large, but OK solution, although kind of large.
limit from $R_{B \rightarrow K \nu \bar{\nu}}<4$, OK
$D \rightarrow \mu^{+} \mu^{-}$OK, since can set $\Delta_{12}^{Q}=0$.
The model can have reasonable solution for both $R_{D(*)}$ and $R_{K(*)}$ anomalies. However, difficult to get muon g-2 right.

Scalar Leptoquarkls

$$
\begin{aligned}
& \bar{Q}_{L} e_{R} R_{1}, \quad \bar{U}_{R} L_{L} R_{2}, ; \bar{D}_{R} L_{L} \tilde{R}_{2} \bar{L}_{L}^{c} Q_{L} S_{1,3}, \bar{e}_{R}^{c} U_{R} S_{1}, \bar{e}_{R}^{c} D_{R} S_{2}, \\
& S_{1}:(\overline{3}, 1)(1 / 3), \quad S_{3}:(\overline{3}, 3)(1 / 3), \quad R_{2}:(3,2)(7 / 6), \quad \tilde{R}_{2}:(3,2)(1 / 6)
\end{aligned}
$$

$R_{2}: C_{9}=C_{10}$ out ; $\quad \tilde{R}_{2}$ cannot explain $R_{D^{(*)}}$ out ;
S_{2} cannot explain $R_{D^{(-)}}$out ; S_{3} dose not allow $R_{D^{(\cdot)}}^{\exp }>R_{D^{(\cdot)}}^{S M}$ out
S_{3} and $S_{1}=\phi$ interactions

$$
\begin{aligned}
& L_{1}=\bar{L}_{L}^{c} X Q_{L} \phi+\bar{U}_{R} Y e_{R}^{c} \phi^{*}+\text { h.c. }, \quad X=\left(x_{i j}\right), \quad X V_{K M}^{\dagger}=\left(z_{i j}\right), \quad Y=\left(y_{i j}\right) \\
& L_{3}=\bar{L}_{L}^{c} \tilde{X} Q_{L} S_{3}+\bar{U}_{R} \tilde{Y} e_{R}^{c} S_{3}^{*}+\text { h.c. }, \quad \tilde{X}=\left(\tilde{x}_{i j}\right), \quad \tilde{X} V_{K M}^{\dagger}=\left(\tilde{z}_{i j}\right), \quad Y=\left(\tilde{y}_{i j}\right) .
\end{aligned}
$$

The S_{3} case: problem with $R_{D(*)}$

$$
\begin{aligned}
H_{3}= & -\frac{\tilde{x}_{i j} \tilde{x}_{k l}^{*}}{m_{S_{3}}^{2}}\left(\bar{d}_{L}^{l} \gamma_{\mu} d_{L}^{j} \bar{e}_{L}^{k} \gamma^{\mu} e_{L}^{i}+\left(\bar{u}_{L} V_{K M}\right)^{l} \gamma_{\mu}\left(V_{K M}^{\dagger} u_{L}\right)^{j} \bar{\nu}_{L}^{k} \gamma^{\mu} \nu_{L}^{i}\right. \\
& +\frac{1}{2}\left(\left(\bar{u}_{L} V_{K M}\right)^{l} \gamma_{\mu} d_{L}^{j} \bar{e}_{L}^{k} \gamma^{\mu} \nu_{L}^{i}+\bar{d}_{L}^{l} \gamma_{\mu}\left(V_{K M}^{\dagger} u_{L}\right)^{j} \bar{\nu}_{L}^{k} \gamma^{\mu} e_{L}^{i}\right) \\
& \left.+\frac{1}{2}\left(\bar{d}_{L}^{l} \gamma_{\mu} d_{L}^{j} \bar{\nu}_{L}^{l} \gamma^{\mu} \nu_{L}^{i}+\left(\bar{u}_{L} V_{K M}\right)^{l} \gamma_{\mu}\left(V_{K M}^{\dagger} u_{L}\right)^{j} \bar{e}_{L}^{k} \gamma^{\mu} e_{L}^{i}\right)\right)
\end{aligned}
$$

The contribution to $R_{D^{(*)}}$ is proportional to

$$
-\tilde{x}_{33}\left(\tilde{x}_{33}^{*}+\frac{V_{c d}}{V_{c b}} \tilde{x}_{31}^{*}+\frac{V_{c s}}{V_{c b}} \tilde{x}_{32}^{*}\right)
$$

The first term dominate.
This make $R_{D^{(*)}}^{\text {exp }}<R_{D^{(*)}}^{S M}$, and therefore is ruled out.

The S_{1} case: tree and one loop level

$$
\begin{aligned}
& -\frac{1}{2 m_{\phi}^{2}}\left[x_{i j} z_{i^{\prime} j^{\prime}} \bar{\nu}_{L}^{i^{\prime}} \gamma^{\mu} e_{L}^{i} \bar{d}_{L}^{j^{\prime}} \gamma_{\mu} u_{L}^{j}-x_{i j} z_{i^{\prime} j^{\prime}} \bar{e}_{L}^{i^{\prime}} \gamma^{\mu} \nu_{L}^{i} \bar{u}_{L}^{j^{\prime}} \gamma_{\mu} d_{L}^{j}\right] \\
& +\frac{1}{2 m_{\phi}^{2}}\left[y_{i j} y_{i^{\prime} j^{\prime}} \bar{e}_{R}^{i^{\prime}} \gamma^{\mu} e_{R}^{i} \overline{\mathrm{~B}}_{R}^{j^{\prime}>\mathrm{D}^{(*)}(\rho, \pi) \operatorname{lv}, \mathrm{B}_{\mathrm{c}}->\text { TV }} \begin{array}{l}
\mathrm{D}->\mu \mu, \pi \mu \mu
\end{array} \gamma_{R}^{j}+x_{i j} y_{i^{\prime} j^{\prime}}\left(\bar{e}_{R}^{i^{\prime}} \nu_{L}^{i} \bar{u}_{R}^{j^{\prime}} \gamma_{\mu} d_{L}^{j}-\frac{1}{2} \bar{e}_{R}^{i} \sigma_{\mu \nu} \nu_{L}^{i^{\prime}} \bar{u}_{R}^{j^{\prime}} \sigma_{\mu \nu} d_{L}^{j}\right)\right]
\end{aligned}
$$

Solution to $R\left(D^{(*)}\right)$

Solution to (g-2) μ
M. Bauer and M. Neubert, arXiv: 1511.01900; X-G. He and N. Deshpande, arXiv: 1608.04817

If R-parity violating interaction, exchange sd-quark, the last line is absent. That is the reason why R-parity cannot solve $R\left({ }_{\left(\left(^{*}\right)\right.}\right)$ and $\mathrm{b}->\mathrm{s} \mu^{+} \mu^{-}$anomalies (Deshpande and He)

Also why Baur\&Neubert, and Becrivic et al could not work, neglect last term contributions to $R\left(D\left(^{*}\right)\right.$) and lead to conflict for $b->s \mu^{+} \mu^{-}$when other constraints are included, important one B -> $K(*) v v!\left(R=B\left(B->K^{(*)} v v\right)_{\exp } / B(B->K(*) v v)_{S M}<4.3!\quad\right.$ (Becirevic et al.)

Combining S_{1} and a ϕ^{+}to also solve KM unitarity anomaly

D. Marzocca and s. Trifinopoulos, arXiv: 2104.0573

S1: $\left(3^{*}, 1\right)(1 / 3) ; \phi^{+}(1,1)(1)$. New contributions

$\mathcal{L}_{S 1+\phi}=\frac{1}{2} \lambda_{\alpha \beta} \overline{\bar{l}}_{\alpha}^{c} \epsilon \ell_{\beta} \phi^{+}+\lambda_{i \alpha}^{1 L} \bar{q}_{i}^{c} \epsilon \ell_{\alpha} S_{1}+\lambda_{i \alpha}^{1 R} \bar{u}_{i}^{c} e_{\alpha} S_{1}+$ h.c.
$\Delta a_{\mu} \approx \frac{m_{\mu} m_{t} \lambda_{b \mu}^{L L} \lambda_{t \mu}^{1 R}}{4 \pi^{2} M_{1}^{2}}\left(\log M_{1}^{2} / m_{t}^{2}-\frac{7}{4}\right)$
$R_{D} \approx 0.299-0.235 \frac{\lambda_{b}^{1 L} \lambda_{1}^{1 R}}{m_{1}^{2}}\left(1+0.05 \log m_{1}^{2}\right)$,
$\delta(\mu \rightarrow e \nu \nu) \approx \frac{v^{2}\left|\lambda_{12}\right|^{2}}{4 M_{\phi}^{2}}+\frac{\left.3 m_{t}^{2}| |_{b}^{1 L}\right|^{2}}{32 \pi^{2} M_{1}^{2}}\left(\frac{1}{2}-\log \frac{M_{1}^{2}}{m_{t}^{2}}\right)$
$R_{D^{*}} \approx 0.258-0.088 \frac{\lambda_{b}^{2 L} \lambda_{1}^{1 / \pi}}{m_{1}^{2}}\left(1+0.02 \log m_{1}^{2}\right)$,

$$
V_{u s}^{\beta} \equiv \sqrt{1-\left(V_{u d}^{\beta}\right)^{2}-\left|V_{u b}\right|^{2}}
$$

$$
\begin{aligned}
& \simeq V_{u s}^{\text {CKM }}\left[1-\left(\frac{V_{d K}^{\text {CKM }}}{V_{u s}^{\text {CKM }}}\right)^{2} \delta(\mu \rightarrow e \nu \nu)\right] \\
& =1.35
\end{aligned}
$$

$C_{L R} \approx-\frac{\left|\lambda_{c \mu}^{1 R}\right|^{2} \lambda_{b \tau}^{1 L} \lambda_{s \tau}^{1 L *}}{64 \pi^{2} M_{1}^{2}}$.

$$
\lambda_{e \mu}=1.35, \quad \lambda_{\mu \tau}=3.17,
$$

$$
\begin{array}{lll}
\lambda_{b \tau}^{I L}=1.46, & \lambda_{s \tau}^{1 L}=-0.54, & \lambda_{b \mu}^{1 L}=2.07, \\
\lambda_{c \tau}^{1 R}=-3.28, & \lambda_{t \mu}^{1 R}=0.01, & \lambda_{c \mu}^{1 / R}=2.35,
\end{array}
$$

Muon $\mathrm{g}-2, \mathrm{R}_{\mathrm{D}\left(^{*}\right)}, \mathrm{R}_{\mathrm{K}(*)}$ and KM unitarity anomalies can all be addressed!

What is the origin of CPV? Is there other ways CPV can present in a model?
There are many ways CPV can show up when going beyond SM:
Superweak model, $C P$ is only violated in $\triangle S=2$ current-current interactions. Too small $\varepsilon^{\prime} / \varepsilon$. Ruled out by data.

In left-right $\mathrm{SU}(3)_{\mathrm{C}} \mathrm{xSU}(2)_{\mathrm{L}} \mathrm{xSU}(2)_{\mathrm{R}} \mathrm{xU}(1)_{B-L}$ symmetric model, there are similar mixng matrix $\mathrm{VR}_{\mathrm{KM}}$ charged current for right-handed fermions by exchanging W_{R}. More phases, only two generations can have CPV.

Seesaw Model, there are new phases in Right-handed neutrino mass matrix.

CP violated by vacuum? Not explicitly violated as that in SM, T-D Lee, spontaneous CP violation.

Spontaneous CP violation in two Higg doublet model

In the SM it is not possible to have spontaneous $C P$ violation.
It requires at least two Higgs doublets to have a realistic model,
H_{1} and H_{2} transforming as (1,2,1/2)

$$
\begin{aligned}
V\left(H_{1}, H_{2}\right) & =\mu_{i j}^{2} H_{i}^{\dagger} H_{j}+\lambda_{i}\left(H_{i}^{\dagger} H_{i}\right)^{2}+\lambda_{i j}^{\prime}\left(H_{i}^{\dagger} H_{j}\right)\left(H_{j}^{\dagger} H_{i}\right) \\
& +\left[\delta\left(H_{1}^{\dagger} H_{2}\right)\left(H_{1}^{\dagger} H_{2}\right)+\delta_{1}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{1}^{\dagger} H_{1}\right)\right. \\
& \left.+\delta_{2}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{2}\right)+H . C .\right] .
\end{aligned}
$$

The vevs minimizes the potentais are: $\left\langle H_{i}\right\rangle \rightarrow v_{i} \exp \left(i \theta_{i}\right) / \sqrt{2}$,
The Higgs fields can be written as: $H_{i}=\left(h_{i}^{+}, \frac{1}{\sqrt{2}}\left(v_{i} e^{i \theta_{i}}+h_{i}^{0}+i I_{i}^{0}\right)\right)$

The minmimaztion condition for the phase is

$$
\begin{aligned}
& \left(\mu_{12}^{2}+\mu_{21}^{2}\right) v_{1} v_{2} \sin \theta+2 \delta v_{1}^{2} v_{2}^{2} \sin (2 \theta)+\left(\delta_{1} v_{1}^{3} v_{2}+\delta_{2} v_{1} v_{2}^{3}\right) \sin \theta=0, \\
& \theta=0, \text { or }, \theta=-\arccos \left(\frac{\left(\mu_{12}^{2}+\mu_{21}^{2}\right)+\delta_{1} v_{1}^{2}+\delta_{2} v_{2}^{2}}{4 \delta v_{1} v_{2}}\right)
\end{aligned}
$$

Here $\theta=\theta_{1}-\theta_{2}$.
$\sin \theta=0$ solution is no CP violating, $\cos \theta \neq \pm 1$, violates CP.

The most general Yukawa interactions with quarks are given by

$$
L_{Y}=-\bar{Q}_{L}\left(\lambda_{1}^{U} \tilde{H}_{1}+\lambda_{2}^{U} \tilde{H}_{2}\right) U_{R}-\bar{Q}_{L}\left(\lambda_{1}^{D} H_{1}+\lambda_{2}^{D} H_{2}\right) D_{R}+H . C .
$$

All $\lambda_{i}^{U, D}$ are real (spontaneous CPV)

$$
\begin{aligned}
L_{Y} & =-\bar{D}_{L}\left[\left(\lambda_{1}^{U}\right)\left(-\left(h_{1}^{+}\right)^{*}\right)+\left(\lambda_{2}^{U}\right)\left(-\left(h_{2}^{+}\right)^{*}\right)\right) D_{L}-\bar{U}_{L}\left(\lambda_{1}^{D} h_{1}^{+}+\lambda_{2}^{D} h_{2}^{+}\right] D_{R} \\
& -\bar{U}_{L}\left[\lambda_{1}^{U} \frac{1}{\sqrt{2}}\left(v_{1} e^{-i \theta_{1}}+\left(h_{1}^{0}+i I_{1}^{0}\right)^{*}\right)+\lambda_{2}^{U} \frac{1}{\sqrt{2}}\left(v_{2} e^{-i \theta_{2}}+\left(h_{2}^{0}+i I_{2}^{0}\right)^{*}\right)\right] U_{R} \\
& -\bar{D}_{L}\left[\lambda_{1}^{D} \frac{1}{\sqrt{2}}\left(v_{1} e^{i \theta_{1}}+h_{1}^{0}+i I_{1}^{0}\right)+\lambda_{2}^{D} \frac{1}{\sqrt{2}}\left(v_{2} e^{i \theta_{2}}+h_{2}^{0}+i I_{2}^{0}\right)\right] D_{R} \\
& +H . C .
\end{aligned}
$$

Remove Goldstone bosons Z_{I} and h_{W}^{+}"eaten" by Z and W^{+}

$$
Z_{I}=\frac{v_{1} e^{-i \theta_{1}} I_{1}^{0}+v_{2} e^{-i \theta_{2}} I_{2}^{0}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, h_{W}^{+}=\frac{v_{1} e^{-i \theta_{1}} h_{1}^{+}+v_{2} e^{-i \theta_{2}} h_{2}^{+}}{\sqrt{v_{1}^{2}+v_{2}^{2}}},
$$

The orthogonal components are

$$
A=\frac{-v_{2} e^{i \theta_{2}} I_{1}^{0}+v_{1} e^{i \theta_{1}} I_{2}^{0}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, H^{+}=\frac{-v_{2} e^{i \theta_{2}} h_{1}^{+}+v_{1} e^{i \theta_{1}} h_{2}^{+}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}
$$

Normalize in a same way for real scalars

$$
h=\frac{v_{1} e^{-i \theta_{1}} h_{1}^{0}+v_{2} e^{-i \theta_{2}} h_{2}^{0}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \quad H=\frac{-v_{2} e^{i \theta_{2}} h_{1}^{0}+v_{1} e^{i \theta_{1}} h_{2}^{0}}{\sqrt{v_{1}^{2}+v_{2}^{2}}},
$$

Quark mass matrices

$$
\begin{gathered}
\bar{U}_{L} M^{u} U_{R}=\bar{U}_{L} \frac{1}{\sqrt{2}}\left(\lambda_{1}^{U} v_{1} e^{-i \theta_{1}}+\lambda_{2}^{U} v_{2} e^{-i \theta_{2}}\right) U_{R} \\
\bar{D}_{L} M^{d} D_{R}=\bar{D}_{L} \frac{1}{\sqrt{2}}\left(\lambda_{1}^{D} v_{1} e^{i \theta_{1}}+\lambda_{2}^{D} v_{2} e^{i \theta_{2}}\right) D_{R} \\
L_{Y}=-\bar{D}_{L}\left(\lambda_{1}^{U} v_{2} e^{-i \theta_{2}}-\lambda_{2}^{U} v_{1} e^{-i \theta_{1}}\right) U_{R} \frac{h^{-}}{v}+\bar{U}_{L}\left(\lambda_{1}^{D} v_{2} e^{i \theta_{2}}-\lambda_{2}^{D} v_{1} e^{i \theta_{1}}\right) D_{R} \frac{h^{+}}{v} \\
\\
-\bar{U}_{L}\left[M^{u}\left(1+\frac{h}{v}\right)-\left(\lambda_{1}^{U} v_{2} e^{-i \theta_{2}}-\lambda_{2}^{U} v_{1} e^{-i \theta_{1}}\right) \frac{H-i A}{\sqrt{2} v}\right] U_{R} \\
-\bar{D}_{L}\left[M^{d}\left(1+\frac{h}{v}\right)-\left(\lambda_{1}^{D} v_{2} e^{i \theta_{2}}-\lambda_{2}^{D} v_{1} e^{i \theta_{1}}\right) \frac{H+i A}{\sqrt{2} v}\right] D_{R} \\
+
\end{gathered}
$$

Making making chiral rotations: $U_{R} \rightarrow e^{-i \theta_{1} \gamma_{5}} U_{R}$ and $D_{R} \rightarrow e^{i \theta_{1} \gamma_{5}} D_{R}$
Note that the net contribution to strong θ is zero: $\theta_{u}+\theta_{d}=\theta_{1}-\theta_{1}=0$

Finally, we have

$$
\begin{aligned}
L_{Y} & =-\bar{D}_{L}\left(\lambda_{1}^{U} v_{2} e^{-i \theta}-\lambda_{2}^{U} v_{1}\right) U_{R} \frac{h^{-}}{v}+\bar{U}_{L}\left(\lambda_{1}^{D} v_{2} e^{i \theta}-\lambda_{2}^{D} v_{1}\right) D_{R} \frac{h^{+}}{v} \\
& -\bar{U}_{L}\left[M^{u}\left(1+\frac{h}{v}\right)-\left(\lambda_{1}^{U} v_{2} e^{-i \theta}-\lambda_{2}^{U} v_{1}\right) \frac{H-i A}{v}\right] U_{R} \\
& -\bar{D}_{L}\left[M^{d}\left(1+\frac{h}{v}\right)-\left(\lambda_{1}^{D} v_{2} e^{i \theta}-\lambda_{2}^{D} v_{1}\right) \frac{H+i A}{v}\right] D_{R} \\
& + \text { H.C. }
\end{aligned}
$$

In this basis,

$$
\begin{aligned}
& \bar{U}_{L} M^{u} U_{R}=\bar{U}_{L} \frac{1}{\sqrt{2}}\left(\lambda_{1}^{U} v_{1}+\lambda_{2}^{U} v_{2} e^{-i \theta}\right) U_{R} \\
& \bar{D}_{L} M^{d} D_{R}=\bar{D}_{L} \frac{1}{\sqrt{2}}\left(\lambda_{1}^{D} v_{1}+\lambda_{2}^{D} v_{2} e^{i \theta}\right) D_{R}
\end{aligned}
$$

Where are CP violation?

1. The $M^{u, d}$ are complex, rotating into real quark eigen-mass basis,
generate a $\theta-\operatorname{term}=\operatorname{Arg}\left(\operatorname{Det}\left(M^{u} M^{d}\right)\right)$.
2. Diagonalize quark mass matrices, generating complex $V_{K M}$.
3. h^{+}, H and A have complex couplings, new source of CP violation!
4. h, H and A are not mass eigen-state yet.

Mixing of h and H with A, new source of CP violation.
Similar analysis can be carried out.
5. Where new FCNC come in?

Neutral Higgs H and A coupling to both λ_{1} and λ_{2}
Can avoid FCNC, then need more Higgs doublets, Weinberg Model, 3 Higgs doublets.

Forbidden FCNC by symmetry principle

The previous Two has Higgs doublet model has FCNC. If want does not want such FCNC to mediated by the new neutral Higgs bosons H and A, what can one do? Usual practice by symmetry principle.

Example: Z_{2} symmetry: $H_{1}->H_{1}, H_{2}->-H_{2}, U_{R}->U_{R}, D_{R}->-D_{R}, Q_{L}->Q_{L}$
others no changes, require Lagrangian L does not change under this transformation, the Yukawa and Higgs potential term on L are given by

$$
\begin{aligned}
& L_{Y}=-\bar{Q}_{L} \lambda_{1}^{U} \tilde{H}_{1} U_{R}-\bar{Q}_{L} \lambda_{2}^{D} H_{2} D_{R}+H . C . \\
& \begin{aligned}
V\left(H_{1}, H_{2}\right)= & \mu_{1}^{2} H_{1}^{\dagger} H_{1}+\mu_{2}^{2} H_{2}^{\dagger} H_{2}+\lambda_{1}\left(H_{1}^{\dagger} H_{1}\right)^{2}+\lambda_{2}\left(H_{2}^{\dagger} H_{2}\right)^{2}+\lambda_{12}\left(H_{1}^{\dagger} H_{1}\right)\left(H_{2}^{\dagger} H_{2}\right) \\
& +\lambda_{12}^{\prime}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{1}\right)+\left(\delta\left(H_{1}^{\dagger} H_{2}\right)\left(H_{1}^{\dagger} H_{1}\right)+H . C .\right)
\end{aligned}
\end{aligned}
$$

Removing Goldstone bosons 'eaten' by W and Z,

$$
\begin{aligned}
L_{Y} & =-\bar{U}_{L} \hat{M}^{u}\left(1+\frac{h}{v}-\sin \beta \frac{H-i A}{v}\right) U_{R}-\bar{D}_{L} \hat{M}^{d}\left(1+\frac{h}{v}-\cos \beta \frac{H+i A}{v}\right) D_{R} & & \text { But because } \mu_{12,21}^{2}, \delta_{1,} \\
& -\sqrt{2} \bar{D}_{L} V_{K M} \hat{M}^{u} U_{R} \tan \beta \frac{h^{-}}{v}-\sqrt{2} \bar{D}_{R} \hat{M}^{d} V_{K M}^{\dagger} U_{L} \frac{1}{\tan \beta} \frac{h^{-}}{v}+H . C . & & \text { spontane, no }
\end{aligned}
$$

h, H and A have no FCNC Interaction!
$\sin \beta=v_{2} / v$ and $\cos \beta=v_{1} / v$
Type II THDM

A practice model solving all the problems

S-L. Chen, Deshpand, X-G He, J. Jiang and L-H Tsai, Eur. Phys. J. C53, 607(2008)
Solve strong CP problem, implement PQ symmetry,

Identify spontaneous CP breaking phase as KM phase,

Making Axion invisible,
Three doublets and a singlet.

Is there any solution exist! Yes!

Work with M_{d} is diagonal example.

$$
\begin{aligned}
& M_{u}=M_{u 1}+e^{i \delta} M_{u 2} \quad \hat{M}_{u}=V_{C K M} M_{u} V_{R}^{\dagger} . \\
& \mathrm{V}_{\mathrm{R}}=\mathrm{I} \quad M_{u}=V_{C K M}^{\dagger} \hat{M}_{u} . \quad V_{C K M}^{\dagger}=\left(M_{u 1}+e^{i \delta} M_{u 2}\right) \hat{M}_{u}^{-1} . \\
& V_{C K M}=\left(\begin{array}{ccc}
-i \delta_{13} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
c_{12} c_{13} e^{i \delta_{13}} & s_{12} c_{13} e^{i \delta_{13}} & s_{13} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i i_{13}} & c_{23} c_{13}
\end{array}\right), \\
& M_{u 1}=\left(\begin{array}{ccc}
0 & -s_{12} c_{23} & s_{12} s_{23} \\
0 & c_{12} c_{23} & -c_{12} s_{23} \\
s_{13} & s_{23} c_{13} & c_{23} c_{13}
\end{array}\right) \hat{M}_{u}, M_{u 2}=\left(\begin{array}{ccc}
c_{12} c_{13}-c_{12} s_{23} s_{13} & -c_{12} c_{23} s_{13} \\
s_{12} c_{13}-s_{12} s_{23} s_{13} & -s_{12} c_{23} s_{13} \\
0 & 0 & 0
\end{array}\right) \hat{M}_{u}
\end{aligned}
$$

There is solution to identify KM phase with spontaneous CP violating phase!

Consequence? large fermion EDMs

One loop
Review, He et al.
IJMPA, A4, 5011(1989)

Weinberg operator PRL63, 2333, (1989)
Braaten, C-S Li, T-C Yuan
PRL 64, 1709(1990)
Correct CD running

Barr-Zee, Gunion-Wyler BZ, PRL 65, 21(1990)
GW, PLB 248, 170(1990)

Neutron and electron EDMs can be as large as experimental bounds.

(a)

(a)

Reducing model parameters and Grand Unified theory

Grand Unification: Unify the 3 gauge groups into a single
Looking for a gauge group which contains $\operatorname{SU}(3) \times \mathrm{SU}(2) \mathrm{xU}(1)$ as subgroups The minimal one SU(5). Georgi and Glashaw Reduce 3 gauge couplings into 1. Unification scale is about $10^{16} \mathrm{GeV}$!

The Fermions Higgs:

$$
\overline{\mathbf{5}}_{F}=\left(\begin{array}{c}
u_{1} \\
d_{2}^{c} \\
d_{3}^{c} \\
e \\
e \\
-\nu
\end{array}\right) \quad \mathbf{0}_{F}=\left(\begin{array}{ccccc}
0 & u_{3}^{c} & -u_{2}^{c} & u_{1} & d_{1} \\
-u_{3}^{c} & 0 & u_{1}^{c} & u_{2} & d_{2} \\
u_{2}^{c} & -u_{1}^{c} & 0 & u_{3} & d_{3} \\
-u_{1} & -u_{2} & -u_{3} & 0 & e_{R} \\
-d_{1} & -d_{2} & -d_{3} & -e_{R} & 0
\end{array}\right)
$$

$24 \rightarrow(8,1)_{0} \oplus(1,3)_{0} \oplus(1,1)_{0} \oplus(3,2)_{-\frac{5}{6}} \oplus(\overline{3}, 2)_{\frac{5}{6}} \quad$ vev breaks $\operatorname{SU}(5)->\operatorname{SU}(3) \times S U(2) \times U(1)$ $\mathbf{5}_{H}=\left(T_{1}, T_{2}, T_{3}, H^{+}, H^{0}\right)^{T} \quad$ vev give masses to fermions and breaks SM symmetry.
Relate quark and lepton masses... $\mathrm{m}_{\mathrm{e}}=\mathrm{m}_{\mathrm{d}}, \mathrm{m}_{\mathrm{v}}=\mathrm{m}_{\mathrm{s}}, \mathrm{m}_{\mathrm{T}}=\mathrm{m}_{\mathrm{b}}$ at gut scale, at low energy $\mathrm{m}_{\mathrm{b}} \sim 3 \mathrm{~m}_{\mathrm{T}}$ (good), but not good for the other two!
Smoking gun prediction: Proton decay. Not yet discovered!

SO(10) gut model

Gauge boson in 45 representation
Fermions in 16
Higgs fields 10 and 120, anti-126, 210...

$$
\begin{aligned}
45 & \rightarrow 24_{0} \oplus 10_{-4} \oplus \overline{10}_{4} \oplus 1_{0} \\
16 & \rightarrow 10_{1} \oplus \overline{5}_{-3} \oplus 1_{5} \\
10_{H} & \supset(1,2)_{1 / 2} \oplus(1,2)_{-1 / 2} \equiv \Phi_{10}^{d} \oplus \Phi_{10}^{u} \\
120_{H} & \supset(1,2)_{1 / 2} \oplus(1,2)_{-1 / 2} \oplus(1,2)_{1 / 2} \oplus(1,2)_{-1 / 2} \\
& \equiv \Phi_{120}^{d} \oplus \Phi_{120}^{u} \oplus \Sigma_{120}^{d} \oplus \Sigma_{120}^{u} \\
\overline{126}_{H} & \supset(1,2)_{1 / 2} \oplus(1,2)_{-1 / 2} \oplus(1,1)_{0} \oplus(1,3)_{1} \\
& \equiv \Sigma_{126}^{d} \oplus \Sigma_{126}^{u} \oplus \Delta_{R} \oplus \Delta_{L} .
\end{aligned}
$$

16 contains the SM one generation of fermions plus a right handed neutrino!

Naturally have neutrino mass and also natural Seesaw mechanism.

SO(10) Predictions

$$
16_{F}\left(Y_{10} 10_{H}+Y_{126} \overline{126}_{H}+Y_{120} 120_{H}\right) 16_{F}
$$

$$
\begin{aligned}
M_{u} & =\kappa_{u} Y_{10}+\kappa_{u}^{\prime} Y_{126} \\
M_{d} & =\kappa_{d} Y_{10}+\kappa_{d}^{\prime} Y_{126} \\
M_{\nu}^{D} & =\kappa_{u} Y_{10}-3 \kappa_{u}^{\prime} Y_{126} \\
M_{l} & =M_{\nu L}=\left\langle\Delta_{R}\right\rangle Y_{126}-3 \kappa_{d}^{\prime} Y_{126}
\end{aligned}
$$

Good prediction for θ_{13}
$\bar{\delta}$ Away from $-\pi / 2!!!$ Tobe tested!!

Model has only 11 real parameters plus 7 phases

Babu, Mohapatra (1993) Fukuyama, Okada (2002)
Bajc, Melfo, Senjanovic, Vissani (2004) Fukuyama, Ilakovac, Kikuchi, Meljanac, Okada (2004)
Aulakh et al (2004)

Bertolini, Frigerio, Malinsky (2004)
Babu, Macesanu (2005)
Bertolini, Malinsky, Schwetz (2006 Dutta, Mimura, Mohapatra (2007)
Bajc, Dorsner, Nemevsek (2009)
Jushipura, Patel (2011).

Homework

Problem 1

Work out the masses (mass matrices) for $\mathrm{h}^{+}, \mathrm{h}, \mathrm{H}$ and A for the two Higgs doublet potential given in the lecture.

Problem 2

Show that $\mathrm{SU}(3)_{\mathrm{C}} \mathrm{xSU}(2)_{\mathrm{L}} \mathrm{xU}(1)_{\mathrm{Y}} \mathrm{xU}(1)_{\mathrm{B}-\mathrm{L}}$ is gauge anomaly free.
In this model all quarks have $B=1 / 3$ and all leptons have $L=1$ (with also 3 generation of right handed neutrinos).

Problem 3

Work out the Z^{\prime} gauge boson of the $U(1)_{B-L}$ couplings to quarks and Leptons.

Appendix A: Lagrangian under P, C, T transformation (examples)

How fields and Lagrangian transform under C, P and T ?
Take QED with fermion ψ and scalar ϕ fields as example.

$$
\begin{aligned}
& L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma_{\mu} D^{\mu}-m_{\psi}\right) \psi+\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)-m_{\phi}^{2} \phi^{\dagger} \phi-V\left(\phi^{\dagger} \phi\right), \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, D_{\mu}=\partial_{\mu}+i e Q A_{\mu} \\
& \phi \text { spin- } 0, A^{\mu} \text { spin-1 (communting), } \psi \text { spin-1/2 (anti-communting) } \\
& V\left(\phi^{\dagger} \phi\right) \text { - potential of } \phi \text { and is invariant under Lorentz Transformation. }
\end{aligned}
$$

The theory is invariant under the following gauge transformation,
$A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha(x), \psi(x) \rightarrow e^{i e Q \alpha(x)} \psi(x)$ and $\phi(x) \rightarrow e^{i e Q \alpha} \phi(x)$.
The Dirac γ-matrices are

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}, g^{\mu \nu}=\operatorname{Diag}(1,-1,-1,-1), \\
& \gamma^{0}=\left(\begin{array}{ll}
I & 0 \\
0 & -I
\end{array}\right), \gamma^{i}=\left(\begin{array}{ll}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) .
\end{aligned}
$$

P transformed Lagrangian $L^{P}(x)=L^{P}\left(x, \partial^{\mu}, \psi_{P}(x), \phi_{P}(x), A_{P}^{\mu}(x)\right)$
Using transformation table $L^{P}(x)=L\left(x^{\prime}\right)\left(x=\left(x^{0}, x^{i}\right)\right.$ and $\left.x^{\prime}=\left(x^{0},-x^{i}\right)\right)$
Example:
$F_{P}^{\mu \nu}(x) F_{P, \mu \nu}(x)=\left(\partial^{\mu} A_{P}^{\nu}(x)-\partial^{\nu} A_{P}^{\mu}(x)\right)\left(\partial_{\mu} A_{P, \nu}(x)-\partial_{\nu} A_{P, \mu}(x)\right)$
$=\left(\partial^{\mu} A_{\nu}\left(x^{\prime}\right)-\partial^{\nu} A_{\mu}\left(x^{\prime}\right)\right)\left(\partial_{\mu} A^{\nu}\left(x^{\prime}\right)-\partial_{\nu} A^{\mu}\left(x^{\prime}\right)\right)$
$=\left(\partial_{\mu}^{\prime} A_{\nu}\left(x^{\prime}\right)-\partial_{\nu}^{\prime} A_{\mu}\left(x^{\prime}\right)\right)\left(\partial^{\prime \mu} A^{\nu}\left(x^{\prime}\right)-\partial^{\prime \nu} A^{\mu}\left(x^{\prime}\right)\right)=F^{\mu \nu}\left(x^{\prime}\right) F_{\mu \nu}\left(x^{\prime}\right)$
$\bar{\psi}_{P}(x) \psi_{P}(x)=\bar{\psi}\left(x^{\prime}\right) \psi\left(x^{\prime}\right), \ldots$
$S=\int_{-\infty}^{\infty} d x^{4} L^{P}(x)=\int_{-\infty}^{\infty} d x^{4} L\left(x^{\prime}=\left(x^{0},-x^{i}\right)\right)$
$=\int_{-\infty}^{\infty} d x^{4} L\left(x=\left(x^{0}, x^{i}\right)\right)=\int_{-\infty}^{\infty} d x^{4} L(x)$
The action does not change!
Similarly $S=\int_{-\infty}^{\infty} L^{C} d^{4} x=\int_{-\infty}^{\infty} L^{T} d^{4} x=\int_{-\infty}^{\infty} L^{C P} d^{4} x=\int_{-\infty}^{\infty} L^{C P T} d^{4} x$

Similarly $S=\int_{-\infty}^{\infty} L^{C} d^{4} x=\int_{-\infty}^{\infty} L^{T} d^{4} x=\int_{-\infty}^{\infty} L^{C P} d^{4} x=\int_{-\infty}^{\infty} L^{C P T} d^{4} x$
Be careful when when making T transformed L^{T}, a complex conjugate action should be taken
$L^{T}=L^{*}\left(\phi_{T}, \psi_{T}, A_{T}^{\mu}\right)$
Any constant c in L is transformed to c^{*}.
Example: $\bar{\psi}(x) i \gamma^{\mu} \partial_{\mu} \psi(x) \rightarrow \bar{\psi}_{T}(x)\left(-i \partial^{\mu}\right) \gamma_{\mu}^{*} \psi_{T}(x)$
$\left.=\bar{\psi}\left(x^{\prime}\right)\left(-i \gamma^{3 \dagger} \gamma^{1 \dagger}\right) \gamma^{0}\left(-i \partial^{\mu}\right) \gamma_{\mu}^{*}\right)\left(i \gamma^{1} \gamma^{3}\right) \psi\left(x^{\prime}\right)=\bar{\psi}\left(x^{\prime}\right)\left(-i \partial^{\mu}\right) \gamma^{\mu} \psi\left(x^{\prime}\right)=\bar{\psi}\left(x^{\prime}\right) i \partial_{\mu}^{\prime} \gamma^{\mu} \psi\left(x^{\prime}\right)$.

An outline for CTP theorem proof

For a more general L, there may be tensors with arbitrary numbers of Lorentz indices $\Gamma^{\mu_{1} \mu_{2} \ldots \mu_{N}}$ results from combinations of $\partial^{\mu}, \phi(S, P), T^{\mu \nu}, A^{\mu}$ and a^{μ} The $\epsilon^{\mu \nu \alpha \beta}$ tensor

Under P and T it changes to $-\epsilon_{\mu \nu \alpha \beta}$. It does not change under C .
Using transformation properties of $S, P, T^{\mu \nu}, A^{\mu}, a^{\mu}$ and $\epsilon^{\mu \nu \alpha \beta}$ and under $C P T$ a constant c is transformed into c^{*}

One obtains: $\left(\Gamma^{\mu_{1} \ldots \mu_{N}}\right)^{C P T}=(-1)^{N}\left(\Gamma^{\mu_{1} \ldots \mu_{N}}\right)^{\dagger}$
Since L is Lorentz scalar, the Lorentz indices must be contracted Then $L^{C P T}(x)=(-1)^{2 N} L^{\dagger}(-x)$

If the theory is Hermmitian $L^{\dagger}=L \rightarrow L^{C P T}(x)=L(-x)$!

Where spin-statistics matters?
When prove the transformation table for C transformation.
A sample calculation: $\bar{\psi}_{C}^{\prime}(x) \psi_{C}(x)$
$\psi_{C}=C \gamma^{0} \psi^{*}, \quad \bar{\psi}_{C}=-\psi^{T} C^{\dagger}$,
$\bar{\psi}_{C}^{\prime} \psi_{C}=-\psi^{\prime T} C^{\dagger} C \gamma^{0} \psi^{*}=-\psi^{\prime T} \gamma^{0 T} \psi^{*}$.

Switching ψ and ψ^{\prime} a minus sign is generated because they are fermion fields
$\bar{\psi}_{C}^{\prime} \psi_{C}=-\psi^{\prime} T \gamma^{0 T} \psi^{*}=\psi^{\dagger} \gamma^{0} \psi^{\prime}=\bar{\psi} \psi^{\prime}$

Particle and anti-Particle masses and lifetimes

a) The existence of an anti-particle for each particle $\left(\mid P>_{m}, m-s p i n\right)$
$\Theta\left|P>_{m}=\eta^{C P T}\right| \bar{P}>_{-m}$. If $\Theta=C P T$ is good, $\mid \bar{P}>_{-m}$ exists.
b) $m_{P}=m_{P}$
$m_{P}=<P|H| P>_{m}=<P\left|\Theta^{-1} \Theta H \Theta^{-1} \Theta\right| P>_{m}$
$=\langle\bar{P}| H^{\dagger} \mid \bar{P}>_{-m}=\langle\bar{P}| H|\bar{P}\rangle_{-m}=m_{\bar{P}}$.
c) $\tau_{P}=\tau_{\bar{P}}$

$$
\begin{aligned}
& \tau_{P}^{-1}=2 \pi \sum_{i} \delta\left(E_{i}-E_{P}\right)|<i(\infty)| U(\infty, 0) H_{i n t}\left|P>_{m}\right|^{2} \\
& \tau_{\bar{P}}^{-1}=2 \pi \sum_{\bar{i}} \delta\left(E_{\bar{i}}-E_{\bar{P}}\right)|<\bar{i}(\infty)| U(\infty, 0) H_{i n t}\left|\bar{P}>_{m}\right|^{2} \\
& \tau_{P}^{-1}=2 \pi \sum_{i} \delta\left(E_{i}-E_{P}\right)|<i(\infty)| \Theta^{-1} \Theta U(\infty, 0) H_{i n t} \Theta \Theta^{-1}\left|P>_{m}\right|^{2} \\
& =2 \pi \sum_{i} \delta\left(E_{i}-E_{P}\right)|<\bar{i}(-\infty)| U(-\infty, 0) H_{i n t}\left|\bar{P}>_{-m}\right|^{2} \\
& E_{P}=E_{\bar{P}} \text { and } E_{i}=E_{\bar{i}} \\
& \rightarrow 2 \pi \sum_{\bar{i}} \delta\left(E_{\bar{i}}-E_{\bar{P}}\right)\left|\sum_{\bar{j}}<\bar{i}(-\infty)\right| S \dagger|\bar{j}(\infty)><\bar{j}(\infty)| U(\infty, 0) H_{i n t}\left|\bar{P}>_{-m}\right|^{2} \\
& \quad=2 \pi \sum_{\bar{i}, \bar{j}, \bar{j}^{\prime}}<\bar{i}(-\infty)|S \dagger| \bar{j}(\infty)><\bar{j}(\infty)\left|U(\infty, 0) H_{i n t}\right| \bar{P}>_{-m} \\
& \quad\left(<\bar{i}(-\infty)|S \dagger| \bar{j}^{\prime}(\infty)>\right)^{*}\left(<\bar{j}^{\prime}(\infty)\left|U(\infty, 0) H_{i n t}\right| \bar{P}>_{-m}\right)^{*}
\end{aligned}
$$

Summ over \bar{i},

$$
\begin{aligned}
& \rightarrow 2 \pi \sum_{\bar{j}, \bar{j}^{\prime}} \delta_{j j^{\prime}}<\bar{j}(\infty)\left|U(\infty, 0) H_{i n t}\right| \bar{P}>_{-m}\left(<\bar{j}^{\prime}(\infty)\left|U(\infty, 0) H_{i n t}\right| \bar{P}>_{-m}\right)^{*} \\
& \quad=2 \pi \sum_{\bar{j}} \delta\left(E_{\bar{j}}-E_{\bar{P}}\right)|<\bar{j}(\infty)| U(\infty, 0) H_{i n t}\left|\bar{P}>_{-m}\right|^{2}
\end{aligned}
$$

There is no difference in lifetime with different third spin component: $\tau_{P}=\tau_{\bar{P}}$!

Appendix B: Measurement of DM in meson oscillations

Without Tagging, one can also obtain important information
Let f to be a positively charged particle and \bar{f} then has negative charge.
The time integrated event number N^{+}is proportional to
$N^{+}(M) \sim \int_{0}^{\infty}|<f| H|M(t)>|^{2} d t=\frac{\left|A_{f}\right|^{2}}{2} \frac{\Gamma}{\Gamma_{H} \Gamma_{L}}\left(1+\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)$
$N^{+}(\bar{M}) \sim \int_{0}^{\infty}|<f| H\left|M(t)>\left.\right|^{2} d t=\frac{\left|A_{f}\right|^{2}}{2} \frac{\Gamma}{\Gamma_{H} \Gamma_{L}}\left(1-\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)\right| p /\left.q\right|^{2}$
$N^{-}(\bar{M}) \sim \int_{0}^{\infty}|<\bar{f}| H|\bar{M}(t)>|^{2} d t=\frac{\left|\bar{A}_{f}\right|^{2}}{2} \frac{\Gamma}{\Gamma_{H} \Gamma_{L}}\left(1+\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)$
$N^{-}(M) \sim \int_{0}^{\infty}|<\bar{f}| H\left|M(t)>\left.\right|^{2} d t=\frac{\left|\bar{A}_{F}\right|^{2}}{2} \frac{\Gamma}{\Gamma_{H} \Gamma_{L}}\left(1-\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)\right| q /\left.p\right|^{2}$

The event numbers N^{+-}, N^{++}and N^{--}for observing $f \bar{f}, f f$ and $\bar{f} \bar{f}$ are
$N^{+-}=N^{+}(M) N^{-}(\bar{M})+N^{+}(\bar{M}) N^{-}(M)$
$\sim\left(\frac{\Gamma}{2 \Gamma_{H} \Gamma_{L}}\right)^{2}\left|A_{f}\right|^{2}\left|\bar{A}_{\bar{f}}\right|^{2}\left(\left(1+\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)^{2}+\left(1-\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)^{2}\right)$
$N^{++}=N^{+}(M) N^{+}(\bar{M}) \sim\left(\frac{\Gamma}{2 \Gamma_{H} \Gamma_{L}}\right)^{2}\left|A_{f}\right|^{2}\left|A_{f}\right|^{2}\left(1-\left(\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)^{2}\right)|p / q|^{2}$
$N^{--}=N^{-}(M) N^{-}(\bar{M}) \sim\left(\frac{\Gamma}{2 \Gamma_{H} \Gamma_{L}}\right)^{2}\left|\bar{A}_{\bar{f}}\right|^{2}\left|\bar{A}_{\bar{f}}\right|^{2}\left(1-\left(\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}\right)^{2}\right)|p / q|^{2}$
Defining $\Delta=\frac{\Gamma_{H} \Gamma_{L}}{\Delta m^{2}+\Gamma^{2}}=\frac{\Gamma^{2}-\Delta \Gamma^{2} / 4}{\Delta m^{2}+\Gamma^{2}}$

$$
\begin{aligned}
& r=\frac{N^{++}+N^{--}}{N^{+-}}=\frac{|q / p|^{2}\left|\bar{A}_{f}\right|^{4}+|p / q|^{2}\left|A_{f}\right|^{4}}{2\left|A_{f}\right|^{2}\left|\bar{A}_{\bar{f}}\right|^{2}} \frac{1-\Delta^{2}}{1+\Delta^{2}}, \\
& a=\frac{N^{--}-N^{++}}{N^{--}+N^{++}}=\frac{|q / p|^{2}\left|\bar{A}_{f}\right|^{4}-|p / q|^{2}\left|A_{f}\right|^{4}}{|q / p|^{2}\left|\bar{A}_{\bar{f}}\right|^{4}+|p / q|^{2}\left|A_{f}\right|^{4}}
\end{aligned}
$$

In the limit $\left|A_{f}\right|=\bar{A}_{\bar{f}} \mid, \Delta \Gamma=0$ and $p / q \mid=1$
such as $B^{0} \rightarrow l^{+} X$ and $\bar{B}^{0} \rightarrow l^{-} \bar{X}$

$$
r=\frac{\left(1+\Delta m^{2} / \Gamma^{2}\right)^{2}-1}{\left(1+\Delta m^{2} / \Gamma^{2}\right)^{2}+1}, \Delta m_{B^{0}} / \Gamma_{B^{2}}=0.77 \pm 0.004
$$

Appendix C: The need of asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider for B factories

The need of asymmetric $e^{+} e^{-}$collider for B factories
Produce $B^{0} \bar{B}^{0}$ pair at $\Upsilon(4 S)$
B are almost at rest and decay at production point and $\Delta \Gamma=0$.
Aim to measure $\operatorname{Im}\left(\lambda_{f}\right)$
Coherent production $M \bar{M}$ at resonance in $e+e^{-}$collider at $t=0$, Wave function $\Psi\left(t_{1}, r_{1} ; t_{2}, r_{2}\right)$ system at for M or \bar{M} at t_{1}, r_{1} and t_{2}, r_{2} is

$$
\Psi\left(t_{1}, r_{1} ; t_{2}, r_{2}\right)=\frac{1}{\sqrt{2}}\left(\left|M\left(t_{1}, r_{1}\right) \bar{M}\left(t_{2}, r_{2}\right)>+(-1)^{l}\right| M\left(t_{2}, r_{2}\right) \bar{M}\left(t_{1}, r_{1}\right)>\right)
$$

For $M\left(t_{1}\right) \bar{M}\left(t_{2}\right)$ decay to $f_{C P} f$ and $f_{C P} \bar{f}$, the decay amplitudes are

$$
\begin{aligned}
& <f_{C P}\left(t_{1}\right) f\left(t_{2}\right) \left\lvert\, \Psi\left(t_{1} ; t_{2}>=\frac{\bar{A}_{C P} A_{f}}{4} e^{-i m_{H}\left(t_{1}+t_{2}\right)-\Gamma_{H}\left(t_{1}+t_{2}\right) / 2}\right.\right. \\
& \times\left\{\left[1-\bar{\lambda}_{f}-\left(1+\bar{\lambda}_{f}\right) e^{i \Delta m t_{1}+\Delta \Gamma t_{1} / 2}\right]\left(1-e^{i \Delta m t_{2}+\Delta \Gamma t_{2} / 2}\right)\right. \\
& \left.+(-1)^{l}\left[1-\bar{\lambda}_{f}+\left(1+\bar{\lambda}_{f}\right) e^{i \Delta m t_{1}+\Delta \Gamma t_{1} / 2}\right]\left(1+e^{i \Delta m t_{2}+\Delta \Gamma t_{2} / 2}\right)\right\} \\
& <f_{C P}\left(t_{1}\right) \bar{f}\left(t_{2}\right) \left\lvert\, \Psi\left(t_{1} ; t_{2}>=\frac{A_{C P} \bar{A}_{\bar{f}}}{4} e^{-i m_{H}\left(t_{1}+t_{2}\right)-\Gamma_{H}\left(t_{1}+t_{2}\right) / 2}\right.\right. \\
& \times(-1)^{l}\left\{(-1)^{l}\left[1-\lambda_{f}+\left(1+\lambda_{f}\right) e^{i \Delta m t_{1}+\Delta \Gamma t_{1} / 2}\right]\left(1+e^{i \Delta m t_{2}+\Delta \Gamma t_{2} / 2}\right)\right. \\
& \left.+\left[1-\lambda_{f}-\left(1+\lambda_{f}\right) e^{i \Delta m t_{1}+\Delta \Gamma t_{1} / 2}\right]\left(1+e^{i \Delta m t_{2}-\Delta \Gamma t_{2} / 2}\right)\right\}
\end{aligned}
$$

Consider $B^{0} \bar{B}^{0}$ system, $\Delta \Gamma=0$

$$
\begin{aligned}
& \bar{\Gamma}\left(t_{1}, t_{2}\right) \sim \bar{R}\left(t_{1}, t_{2}\right)=\left|<f_{C P}\left(t_{1}\right) \bar{f}\left(t_{2}\right)\right| \Psi\left(t_{1} ; t_{2}\right)>\left.\right|^{2} \frac{\left|A_{C P} \bar{A}_{\bar{f}}\right|^{2}}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)} \\
& \times\left\{1+\left|\lambda_{f}\right|^{2}+\left[\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m t_{1}\right)-2 \operatorname{Im} \lambda_{f} \sin \left(\Delta m t_{1}\right)\right] \cos \left(\Delta m t_{2}\right)\right. \\
& -(-1)^{l}\left[\left(1-\left|\lambda_{f}\right|^{2} \sin \left(\Delta m t_{1}\right)+2 \operatorname{Im} \lambda_{f} \cos \left(\Delta m t_{1}\right)\right] \sin \left(\Delta m t_{2}\right)\right\} \\
& \Gamma\left(t_{1}, t_{2}\right) \sim \bar{R}\left(t_{1}, t_{2}\right)=\left|<f_{C P}\left(t_{1}\right) f\left(t_{2}\right)\right| \Psi\left(t_{1} ; t_{2}\right)>\left.\right|^{2} \frac{\left|\bar{A}_{C P} A_{\bar{f}}\right|^{2}}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)} \\
& \times\left\{1+\left|\bar{\lambda}_{f}\right|^{2}+\left[\left(1-\left|\bar{\lambda}_{f}\right|^{2}\right) \cos \left(\Delta m t_{1}\right)-2 \operatorname{Im} \bar{\lambda}_{f} \sin \left(\Delta m t_{1}\right)\right] \cos \left(\Delta m t_{2}\right)\right. \\
& -(-1)^{l}\left[\left(1-\left|\bar{\lambda}_{f}\right|^{2} \sin \left(\Delta m t_{1}\right)+2 \operatorname{Im} \bar{\lambda}_{f} \cos \left(\Delta m t_{1}\right)\right] \sin \left(\Delta m t_{2}\right)\right\}
\end{aligned}
$$

If one does not need to know when f or \bar{f}, integrate t_{2},

$$
\begin{aligned}
& \bar{R}\left(t_{1}\right)=\int_{0}^{\infty} \bar{R}\left(t_{1}, t_{2}\right) d t_{2}=\frac{\left|A_{C P} \bar{A}_{\bar{f}}\right|^{2}}{2} e^{-\Gamma t_{1}} \\
& \times\left[\frac{1+\left|\bar{\lambda}_{f}\right|^{2}}{\Gamma}+\left(\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m t_{1}\right)-2 \operatorname{Im} \bar{\lambda}_{f} \sin \left(\Delta m t_{1}\right)\right) \frac{\Gamma}{\Delta m^{2}+\Gamma^{2}}\right. \\
& \left.-(-1)^{l}\left(\left(1-\left|\lambda_{f}\right|^{2}\right) \sin \left(\Delta m t_{1}\right)+2 \operatorname{Im} \bar{\lambda}_{f} \cos \left(\Delta m t_{1}\right)\right) \frac{\Delta m}{\Delta m^{2}+\Gamma^{2}}\right]
\end{aligned}
$$

Further if one does not needs to know where $f_{C P}$ was borne, integrate t_{1}
$\bar{R}=\int_{0}^{\infty} \bar{R}\left(t_{1}\right) d t_{1}=\frac{\mid A_{C P} \bar{A}_{\bar{f}}}{2}\left(\frac{1+\left|\lambda_{f}\right|^{2}}{\Gamma^{2}}+\left(1-\left|\lambda_{f}\right|^{2}\right) \frac{\Gamma^{2}-(-1)^{l} \Delta m^{2}}{\left(\Delta m^{2}+\Gamma^{2}\right)^{2}}-2 \operatorname{Im} \lambda_{f} \frac{\Delta m \Gamma}{\left(\Gamma^{2}+\Delta m^{2}\right)^{2}}\left(1+(-1)^{l}\right)\right)$
Similarly one obtains

$$
R=\int_{0}^{\infty} R\left(t_{1}\right) d t_{1}=\frac{\mid \bar{A}_{C P} A_{f}}{2}\left(\frac{1+\left|\bar{\lambda}_{f}\right|^{2}}{\Gamma^{2}}+\left(1-\left|\bar{\lambda}_{f}\right|^{2}\right) \frac{\Gamma^{2}-(-1)^{l} \Delta m^{2}}{\left(\Delta m^{2}+\Gamma^{2}\right)^{2}}-2 \operatorname{Im} \bar{\lambda}_{f} \frac{\Delta m \Gamma}{\left(\Gamma^{2}+\Delta m^{2}\right)^{2}}\left(1+(-1)^{l}\right)\right)
$$

For B factories, resonant production of $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}, l=1$

$$
\begin{aligned}
& \bar{R}=\frac{\left|A_{C P} \bar{A}_{\bar{f}}\right|}{2}\left(\frac{1+\left|\lambda_{f}\right|^{2}}{\Gamma^{2}}+\frac{1-\left|\lambda_{f}\right|^{2}}{\Delta m^{2}+\Gamma^{2}}\right) \\
& R=\frac{\left|\bar{A}_{C P} A_{f}\right|}{2}\left(\frac{1+\left|\bar{\lambda}_{f}\right|^{2}}{\Gamma^{2}}+\frac{1-\left|\bar{\lambda}_{f}\right|^{2}}{\Delta m^{2}+\Gamma^{2}}\right)
\end{aligned}
$$

Contains no information about $\operatorname{Im} \lambda_{f}$ and $\bar{\lambda}_{f}$ at all.
One should keep time dependent information without integrating
Not only that, one should boost B^{0} and \bar{B}^{0} to move after been produced
Asymmetric e^{+}energy E_{+}and e^{-}energy E_{-}are needed
For example, with $E_{+}>E_{-}, B^{0}$ and \bar{B}^{0} would be boosted in the e^{+}direction

With $l=1$

$$
\begin{aligned}
& \bar{R}\left(t_{1}, t_{2}\right)=\frac{\left|A_{C P} \bar{A}_{\bar{f}}\right|}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)} \\
& \times\left(2\left(1+\left|\lambda_{f}\right|^{2}\right)+\left(1-\left|\lambda_{f}\right|^{2}\right) \cos \left(\Delta m\left(t_{1}-t_{2}\right)+2 \operatorname{Im} \lambda_{f} \sin \left(\Delta\left(t_{1}-t_{2}\right)\right)\right),\right. \\
& R\left(t_{1}, t_{2}\right)=\frac{\left|\bar{A}_{C P} A_{f}\right|}{2} e^{-\Gamma\left(t_{1}+t_{2}\right)} \\
& \times\left(2\left(1+\left|\bar{\lambda}_{f}\right|^{2}\right)+\left(1-\left|\bar{\lambda}_{f}\right|^{2}\right) \cos \left(\Delta m\left(t_{1}-t_{2}\right)+2 \operatorname{Im} \bar{\lambda}_{f} \sin \left(\Delta\left(t_{1}-t_{2}\right)\right)\right) .\right.
\end{aligned}
$$

By measuring where $f_{C P}, f$ and \bar{f} are produced
Information on $\operatorname{Im} \lambda_{f}$ and $\bar{\lambda}_{f}$ can be extracted!
This is the principle for Belle and Babar to measure CP violation

$$
\operatorname{Im}\left(\lambda_{B^{0} \rightarrow J / \psi K}\right)=\sin (2 \beta)=0.699 \pm 0.017
$$

Appendix D: PQ symmetry and Axion
$U(1)_{A}$ chiral model of QP symmetry for strong CP problem
$L=L_{S M}+\delta L_{\theta}, \delta L_{\theta}=-\theta\left(g_{3}^{2} / 16 \pi^{2}\right) \operatorname{Tr}(\tilde{G} G)$
$u_{R} \rightarrow e^{i \alpha} u_{R}, d_{R} \rightarrow e^{i \alpha}, Q_{L} \rightarrow Q_{L}, L_{L} \rightarrow L_{l}$ and $e_{R} \rightarrow e^{i \alpha} e_{R}$
$\bar{\theta}=\theta \rightarrow \theta-2 \alpha$,
If $L_{S M}$ is symmetric under $U(1)_{A}, L \rightarrow L_{S M}+\delta L_{\bar{\theta}=\theta-2 \alpha}$
For $L_{S M}, \alpha$ is arbitrary, choose one such that $\bar{\theta}=\theta-2 \alpha=0$.
No strong CP term!
One then needs to show that the corresponding potentials are minimal to have a stable solution.

How to make $L_{S M}$ symmetric under $U(1)_{A}$?
With just one Higgs, $H, L_{Y}=-\bar{Q}_{L} Y_{u} \tilde{H} u_{R}-\bar{Q}_{L} Y_{d} H d_{R}$
If require the first term be PQ invariant, $\tilde{H} \rightarrow e^{-i \alpha} \tilde{H}$
Since $\tilde{H}=i \sigma_{2} H^{*}$, then $H \rightarrow e^{i \alpha} H$,
Second term not allowed, d-quarks do not get masses for vev of H
Not possible to make the second term PQ invariant.
Minimal SM does not work!

Extend the Higgs secotor to have two Higgs doublets H_{1} and H_{2}
$H_{1} \rightarrow e^{i \alpha} H_{1}$ and $H_{2} \rightarrow e^{-i \alpha} H_{2}$,
Then $L_{Y}=-\bar{Q}_{L} Y_{u} \tilde{H}_{1} u_{R}-\bar{Q}_{L} Y_{d} H_{2} d_{R}$
Should make the potential $V\left(H_{1}, H_{2}\right)$ invariant.
Both H_{1} and H_{2} should have non-zero vev, v_{1} and v_{2}
The PQ symmetry in $V\left(H_{1}, H_{2}\right)$ is spontaneously broken by v_{i},
There is a massless GOLDSTONE boson, Axion.
QCD global anomaly make Axion mass non-zero.

Finding the Goldstone boson
Two Higgs doublet model: $\left(v_{1}, v_{2}\right)$ breaks $U(1)_{Y}$ symmetry
The imaginary fields $\left(I_{1}, I_{2}\right)$ carries Y charges is proportional to $(1,1)$
The Z needs to "eats" a neutral pesudo-Goldstone boson to become massive
The one "eaten" is just proportional to $\sum_{i} v_{i} Y_{i} I_{i}$.
If there is another $U(1)_{A}$ is broken by the same vev,
If no Z to "eats" anything, the Goldstone boson is proportional to: $\sum_{i} v_{i} A_{i} I_{i}$.
If there is a combination Z_{I} "eaten" by a gauge boson Z , find it first
The one orthogonal to Z_{I} is the other Goldstone boson!

In PQ model, there are two neutral imaginary fields I_{1} and I_{2}
$Z_{I}=\frac{v_{1} I_{1}+v_{2} I_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}$ "eaten" by Z
The orthoganol combination is massless Axion: $a=\frac{-v_{2} I_{1}+v_{1} I_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}$.
The PQ symmetry is anomalous, there is a mass of order hundrads of KeV .
Couplings to quarks: $\sim i\left[-\bar{u} \frac{\hat{M}_{u}}{v} \frac{v_{2}}{v} u+\bar{d} \frac{\hat{M}}{v} \frac{v_{1}}{v} d\right] a$
Too large couplings. Ruled out!

Invisible Axion. Introduce an additional singlet $S:(1,1)(1)_{P Q}$ with vev v_{s}
Axion; $a=\frac{-2 v_{1} v_{2}^{2} I_{1}+2 v_{2} V_{1}^{2} I_{2}+v^{2} v_{s} I_{s}}{\sqrt{4 v_{1}^{2} v_{2}^{2}\left(v_{1}^{2}+v_{2}^{2}\right)+v^{4} v_{s}^{2}}}$
Couplings to quarks: $\sim i \frac{-\bar{u}\left(\hat{M}_{u} / v\right)\left(2 v_{1} v_{2}^{2}\right) u+\bar{d}(\hat{M} / v)\left(2 v_{1}^{2} v_{2}\right) d}{\sqrt{4 v_{1}^{2} v_{2}^{2}\left(v_{1}^{2}+v_{2}^{2}\right)+v^{4} v_{s}^{2}}} a$
If $v_{s} \gg v_{1}$, the couplings are: $\sim i\left[-\bar{u} \frac{\hat{M}_{u}}{v} \frac{2 v_{1} v_{2}^{2}}{v^{2} v_{s}} u+\bar{d} \frac{\hat{M}}{v} \frac{2 v_{1}^{2} v_{2}}{v^{2} v_{s}} d\right] a$
Axion mass of order $m_{\pi}^{2} \frac{v^{2}}{v_{s}^{2}}$.

Invisible Axion. Still alive!

A lot of interestgin physics related to Axion: find the Axion, applicatin to astrophysics, cosmology and etc.!!!

Thank you all for listen to my lectures

