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Glashow Resonance

ഥ𝝂𝒆 + 𝒆− → 𝑾− → 𝒂𝒏𝒚𝒕𝒉𝒊𝒏𝒈

• The threshold 𝑬ത𝝂𝒆 for this process :

• This process is considered for detection of high E cosmic neutrinos 

at IceCube

𝐸ഥ𝜈𝑒=
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2 −(𝑚𝑒
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2𝑚𝑒
~6.3 PeV

on-shell

Halzen



Sun burns!!!

Production of 𝝂𝒆

Standard Solar Model (Bahcall)

Nuclear Fusion

J. N. Bahcall, S. Basu and M. Pinsonneault (1998)
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Production of solar neutrinos
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First experiment by Davis et al. in 1960’s

Radiochemical Method (Chlorine):

found ~ 1/3 of expected rate ! (1968)

Won Nobel Prize 2002!

𝝂𝒆 +
𝟑𝟕 𝑪𝒍 → 𝟑𝟕 𝑨𝒓 + 𝒆−

Solar Neutrino Experiment

Homestake
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Solar Neutrino Experiment
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Using neutrinos from 8B

Supporting neutrino transition as well as verifying SSM

𝑆𝑆𝑀(2004):Φ(8𝐵) = 5.26(1 ± 0.23) × 106𝑐𝑚−2𝑠−1 Bahcall & Pinsonneault

Nucl-ex/0610020
Heavy 
water

Solar Neutrino Experiment
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Reactor long baseline experiment
~180 km ( Epr >  2.6 MeV )

- in consistent with the results of solar neutrino oscillation 
8



[K. Eguchi et al., Phys. Rev. Lett., 90, 021802 (2003)]

Testing solar neutrino osc. with 

reactor experiment

Nobs/Nexp =  0.611 + 0.094

L/E  analysis(2008)

A period oscillation

∆𝒎𝟐~𝟕. 𝟓 × 𝟏𝟎−𝟓 𝐞𝐕𝟐 , 𝐬𝐢𝐧𝟐𝜽~𝟎. 𝟑𝟐 9



With ∆𝒎𝟐~𝟕. 𝟓 × 𝟏𝟎−𝟓 𝐞𝐕𝟐 , 𝐬𝐢𝐧𝟐𝜽~𝟎. 𝟑𝟐

For solar neutrinos, 

𝟏. 𝟐𝟕
∆𝒎𝟐𝑳

𝑬
~𝟏. 𝟐𝟕

(𝟕. 𝟓 × 𝟏𝟎−𝟓 𝐞𝐕𝟐)(𝟏. 𝟓 × 𝟏𝟎𝟏𝟏𝒎)

𝟎. 𝟏 − 𝟏𝟎𝑴𝒆𝑩
~𝟏𝟎𝟕±𝟏

< 𝐬𝐢𝐧𝟐 𝟏. 𝟐𝟕
∆𝒎𝟐𝑳

𝑬
> ~

𝟏

𝟐

< 𝑷𝝂𝒆→𝝂𝒆 >=𝟏 − 𝐬𝐢𝐧𝟐𝟐𝜽 < 𝐬𝐢𝐧𝟐 𝟏. 𝟐𝟕
∆𝒎𝟐𝟏

𝟐 𝑳

𝑬
>

≈ 𝟏 −
𝟏

𝟐
𝐬𝐢𝐧𝟐𝟐𝜽 = 𝐜𝐨𝐬𝟐𝜽co𝐬𝟐𝜽 + 𝐬𝐢𝐧𝟐𝜽𝐬𝐢𝐧𝟐𝜽

Solar Neutrino Experiment
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Tension : for 𝟖𝑩, < 𝑷𝝂𝒆→𝝂𝒆 >≈ 𝟎. 𝟑𝟐,   for 𝒑𝒑, 𝟕𝑩𝒆:< 𝑷𝝂𝒆→𝝂𝒆 >≈ 𝟎. 𝟔



Matter Effect       (Wolfestein ‘79)

• When neutrinos travel through  a medium, they 

interact with the background of electron, proton 

and neutron, and then acquire effective mass.

Elastic forward 
scattering

ne e

W

e

ne

Matter Effect
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• This modifies mixing between flavor states and mass

states, and eigenvalues of Hamiltonian, leading to

different oscillation probability

• 𝝂𝒆 has C.C. and N.C. while 𝝂𝝁, 𝝂𝝉 have only N.C.

Matter Effect
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• The Hamiltonian in matter can be obtained by 

adding the potential terms

• Difference of V plays a crucial role

irrelevant for flavor evolution

Matter Effect
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• In vacuum, time evolution of neutrino states

• In matter, 

• For antineutrinos, new term has opposite sign

Matter Effect
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n1m

qm

q
n1 ne n2m

n2

nm 

𝐭𝐚𝐧𝟐𝜽𝑴 =
tan 𝟐𝜽

𝟏 −
𝑨𝑪𝑪

𝚫𝒎𝟐 cos 𝟐𝜽
,
, 𝑨𝑪𝑪 = 𝟐 𝟐𝑮𝑭𝑵𝒆𝑬

𝝂𝒆 = 𝐜𝐨𝐬𝜽𝑴𝝂𝟏𝒎 + 𝐬𝐢𝐧𝜽𝑴 𝝂𝟐𝒎
𝝂𝝁 = −𝐬𝐢𝐧𝜽𝑴𝝂𝟏𝒎 + 𝐜𝐨𝐬𝜽𝑴 𝝂𝟐𝒎

• If 𝑵𝒆 is constant, diagonalizing the Hamiltonian

Matter Effect
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Level Crossing

𝝂𝒆 = 𝐜𝐨𝐬𝜽𝑴𝝂𝟏𝒎 + 𝐬𝐢𝐧𝜽𝑴 𝝂𝟐𝒎
𝝂𝝁 = −𝐬𝐢𝐧𝜽𝑴𝝂𝟏𝒎 + 𝐜𝐨𝐬𝜽𝑴 𝝂𝟐𝒎

Matter Effect
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(Mikheyev, Smirnov ‘85)

• In medium with constant density

• If 𝑨𝑪𝑪 = 𝚫𝒎𝟐 cos 𝟐𝜽 , resonance occurs and mixing

becomes maximal 𝜽𝑴 = 𝝅/𝟒

- There is no 𝝂𝟏𝒎 ↔ 𝝂𝟐𝒎 transitions, 𝝂𝟏𝒎, 𝝂𝟐𝒎 are

the eigenstates of propagation

- Oscillation probability in matter looks similar to in vacuum 

ഥ𝑷𝝂𝒆→𝝂𝝁 = 𝐬𝐢𝐧𝟐(𝟐𝜽𝑴)𝐬𝐢𝐧
𝟐
𝑬𝑨 − 𝑬𝑩 𝑳

𝟐

Matter Effect
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• In case that matter density varies with time, 

it is hard to solve analytically.

• 𝝂𝟏𝒎, 𝝂𝟐𝒎 are not propagation eigenstates and

transition between them occurs.

• Adiabatic limit : evolution is sufficiently slow.
→ each component evolves independently

→ 𝝂𝟏𝒎 ↔ 𝝂𝟐𝒎 transitions are neglected

Matter Effect
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Neglecting interference term (averaged over E spectrum)

(S. Parke, PRL57, ‘86)

for non-adiabatic case

𝝂𝒆 = cos 𝜃𝑀𝜈1𝑚 + sin 𝜃𝑀 𝜈2𝑚 : production
𝝂𝒆(𝒙) = cos 𝜃 𝜈1 𝑥 + sin 𝜃 𝜈2(𝑥) : detection

In-Matter Survival Probability
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Assuming adiabatic limit

• two interesting limits

❖ Matter dominates : 

❖ Vacuum dominates : 

ഥ𝑷𝝂𝒆→𝝂𝒆 = 𝐜𝐨𝐬𝟐𝜽𝐜𝐨𝐬𝟐𝜽𝑴 + 𝐬𝐢𝐧𝟐𝜽𝐬𝐢𝐧𝟐𝜽𝑴

𝚫𝒎𝟐

𝟐𝑬
≪ 𝟐𝑮𝑭𝑵𝒆 ⟹ 𝜽𝑴~𝝅/𝟐

ഥ𝑷𝝂𝒆→𝝂𝒆 ≈ 𝐬𝐢𝐧𝟐𝜽 𝟖𝑩 ∶ ഥ𝑷𝝂𝒆→𝝂𝒆 ≈ 𝟎. 𝟑𝟐

(8B solar neutrino is pure 𝝂𝟐 due to matter effect)

𝚫𝒎𝟐

𝟐𝑬
≫ 𝑮𝑭𝑵𝒆 ⟹ 𝜽𝑴~𝜽

ഥ𝑷𝝂𝒆→𝝂𝒆 ≈ 𝟏 −
𝟏

𝟐
𝐬𝐢𝐧𝟐𝟐𝜽 𝒑𝒑, 𝟕𝑩𝒆: ഥ𝑷𝝂𝒆→𝝂𝒆 ≈ 𝟎. 𝟔

In-Matter Survival Probability
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Borexino(2011)

Confirming Matter Effect
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Nature has chosen this 

22



• Solar neutrino experiments and KamLAND

P. Salas, D. Forero, S. Gariazzo,
O. Martinez, O. Mena, C. Ternes, 
M. Tortola, J. Valle, JHEP (2021)

Experimental Results
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Daya Bay

RENO

Double Chooz

𝜽𝟏𝟑

• Measuring 𝜽𝟏𝟑 : important role in determining CPV

&  mass ordering

𝑷𝝂𝒆→𝝂𝒆 ≈ 𝟏 − 𝐬𝐢𝐧𝟐𝟐𝜽𝟏𝟑𝐬𝐢𝐧
𝟐
𝚫𝒎𝟑𝟏

𝟐 𝑳

𝟒𝑬
− 𝐜𝐨𝐬𝟒𝜽𝟏𝟑𝐬𝐢𝐧

𝟐𝟐𝜽𝟏𝟐𝐬𝐢𝐧
𝟐
𝚫𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬

• Measured from SBL reactor experiments

24



𝜽𝟏𝟑
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Experimental Results 

𝜽𝟏𝟑
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NOvA

from accelerator experiment

𝜽𝟏𝟑
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Recent 3-neutrino global analysis

• Hints for deviation of 𝜽𝟐𝟑 from 𝝅/𝟒
● Mild hints for a Dirac CP phase 𝝳
● Mild hint in favor of Normal Ordering 

NuFIT5.1

Global Fit
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NO is preferred at 2.5𝝈

Global Fit
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Towards precision physics

Parameter Precision Evolution

30



(2111.03086)

• 4 well-measured parameters : 𝜽𝟏𝟑, 𝜽𝟏𝟐 , 𝚫𝒎𝟐𝟏
𝟐 , |𝚫𝒎𝟑𝟏

𝟐 |

Parameter Precision Evolution

• Future exps. such as JUNO,DUNE,Hyper-K will achieve

a few percent precision. 
31



- Neutrino mass ordering :   

(red vs. blue)

- Octant of - Leptonic CP violation

NO is preferred at 2.5𝜎

The Unknowns

32



• From fit to neutrino data in 3-neutrino paradigm

Looks different from quark mixing matrix !!

Image from Mark Messier

PMNS vs. CKM

33



Neutrino Masses

34



•Assuming hierarchical mass spectrum, 𝒎𝝂𝒊 ≤ ∆𝒎𝒂𝒕𝒎
𝟐 ~𝟎. 𝟎𝟓 eV

•Atmospheric neutrino;

•Solar neutrino;

•Sum of 3 Δm2 should be 0;

While we could determine the mass squared difference, 

each mass has not been measured .

∆𝒎𝒂𝒕𝒎
𝟐 ≈ |∆𝒎𝟑𝟏

𝟐 | ≈ |∆𝒎𝟑𝟐
𝟐 |~𝟐. 𝟓 × 𝟏𝟎−𝟑𝐞𝐕𝟐

∆𝒎𝒔𝒐𝒍
𝟐 ≈ ∆𝒎𝟐𝟏

𝟐 ~𝟕. 𝟓 × 𝟏𝟎−𝟓𝐞𝐕𝟐

∆𝒎𝟏𝟐
𝟐 + ∆𝒎𝟐𝟑

𝟐 + ∆𝒎𝟑𝟏
𝟐 = 𝟎

Neutrino Mass Scale

35



• Cosmological mass limit :
-Under the assumption of ΛCDM

- from Planck CMB + BAO +Planck high-𝒍 polar. 

+ optical depth to reion.

𝒎𝝂 ≤ 𝟎. 𝟏𝟐 (𝐞𝐕)

How small are neutrino masses?

(Sunny Vagnozzi, et al. arXiv:1701.08172)

2003 snowmass report
36



• Oscillation probability in vacuum is invariant under ∆𝒎𝟐 → −∆𝒎𝟐

• Matter effect depends on sign of ∆𝒎𝟐

• Solar neutrino experiments fix ∆𝑚21
2 > 0

• But, we do not determine the sign of ∆𝑚31(2)
2

→ we have 2 options for mass ordering

Mass Ordering
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Mass Ordering

(NuFIT group)Normal Ordering Inverted Ordering

38



How to discriminate between two ?

→ accelerator-based LBL experiments.

Son Cao et al., symmetry2022

Mass Ordering

Disappearance Appearance
39



• Senstivity to MO is marginal in the 𝝂𝝁 → 𝝂𝝁 (or ഥ𝝂𝝁 → ഥ𝝂𝝁) modes

• The effect of  MO is much stronger in the 𝝂𝝁 → 𝝂𝒆 (or ഥ𝝂𝝁 → ഥ𝝂𝒆)  modes

• The relatively large modification of the oscillation probabilities in the 

appearance is due to the coherent scattering of 𝝂𝒆 (ഥ𝝂𝒆) on the electron 

present in the matter.

• But, appearance probability is just a few %, limiting the statistics of the

collected data sample.

• Moreover, extracting MO effect from the appearance probabilities is   

non-trivial since the sign of ∆𝒎𝟑𝟏
𝟐 is tangled severely with 𝜹𝑪𝑷 & 𝜽𝟐𝟑

which have been measured with relatively large uncertainty.

Mass Ordering

40



Mass Ordering

Short & medium base line experiments

Son Cao etal, symmetry2022
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• For SBL reactor exp., the sensitivity to MO is marginal .

• But, for JUNO with a medium-baseline of 50 km, can improve 

the sensitivity to MO thanks to the interference between two 

oscillation terms driven by ∆𝒎𝟐𝟏
𝟐 & ∆𝒎𝟑𝟏

𝟐 , respectively.

• The most challenging thing is to achieve an excellent resolution 

of reconstructed neutrino energy for unravelling MO from  the

detector response effect (more detail : Abusleme, eta., JHEP2021.2)

Mass Ordering
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Future Experiments for MO

43

Albert De Roeck (corfu2022)



In SM, neutrinos are massless
All neutrinos left-handed

 massless

Right-handed Neutrinos ?  

No observation

Massive neutrinos imply the standard model is incomplete !

• SM particle table 

Neutrino Mass

44



(1) Dirac Mass

Neutrino Mass

• Some basics for understanding neutrino masses

𝛾0 =
0 𝐼2
𝐼2 0

, 𝛾𝑖 =
0 𝜎𝑖
−𝜎𝑖 0

𝛾𝛼𝛾𝛽 + 𝛾𝛽𝛾𝛼 = 2𝑔𝛼𝛽

𝑔𝛼𝛽=diag(1,−1,−1,−1)

𝛾5 = −𝑖𝛾0𝛾1𝛾2𝛾3

𝛾5 =
−𝐼2 0
0 𝐼2

𝑃𝐿 =
1

2
𝐼 − 𝛾5 =

𝐼2 0
0 0

𝑃𝑅 =
1

2
𝐼 + 𝛾5 =

0 0
0 𝐼2

𝛾0(5)+ = 𝛾0(5), 𝛾𝑖+ = −𝛾𝑖

chiral projection operators

𝑃𝐿(𝑅)
2 = 𝑃𝐿(𝑅) , 𝑃𝐿𝑃𝑅 = 0

45



(1) Dirac Mass

Neutrino Mass

𝜓=𝜓𝐿+𝜓𝑅

For a Dirac Field 𝝍 =
𝝋
𝝌

𝜓𝐿 = 𝑃𝐿𝜓 =
1

2
1 − 𝛾5 𝜓 =

𝜑
0

, 𝜓𝑅= 𝑃𝑅𝜓 =
1

2
1 + 𝛾5 =

0
𝜒

ത𝜓𝐿 = 𝜓𝐿
+𝛾0= 𝑃𝐿𝜓

+𝛾0

= 𝜓+𝑃𝐿𝛾
0 = 𝜓+𝛾0𝑃𝑅

= ത𝜓𝑃𝑅

ത𝜓𝑅 = ത𝜓𝑃𝐿
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We can write down Dirac mass term :

(1) Dirac Mass

Neutrino Mass

47



• A fermion mass can be thought of as a 𝑳 ↔ 𝑹 transition

• For electron & positron 𝐼3 = ±
1

2
∶ 𝑒𝐿 | ҧ𝑒𝑅

𝐼3 = 0 ∶ 𝑒𝑅 | ҧ𝑒𝐿

• Mass terms (Dirac mass) :

• Mass terms  :                                     not allowed due to 

violation of conservation of electric charge

• For neutrino Dirac mass, we need RH neutrino (𝑰𝟑 = 𝟎 )

𝑒𝐿 ↔ 𝑒𝑅 , ҧ𝑒𝑅 ↔ ҧ𝑒𝐿

𝑒𝐿 ↔ ҧ𝑒𝑅 , 𝑒𝑅 ↔ ҧ𝑒𝐿

Dirac mass

(1) Dirac Mass

Neutrino Mass

48



• Dirac type mass matrix M is in general N × N complex matrix

• M is diagonalized by bi-unitary matrices

(1) Dirac Mass

Neutrino Mass

49



This shows that weak eigenstates are different from                   

mass eigenstates.

Origin : Yukawa interactions

(1) Dirac Mass

Neutrino Mass

50



• Dirac type mass matrix 𝑴 is invariant under

which implies lepton number 𝑳 (= 𝑳𝒆 + 𝑳𝝁 + 𝑳𝝉)

conservation.

(1) Dirac Mass

Neutrino Mass

51



(2) Majorana Mass

Neutrino Mass

• Some basics for understanding Majorana mass

Charge conjugate :

𝐶 = 𝑖𝛾2𝛾0 =
𝑖𝜎2 0
0 −𝑖𝜎2

(𝐶+𝐶 = 1, 𝐶𝑇 = −𝐶)

𝐶 𝛾𝜇 𝑇𝐶−1 = −𝛾𝜇, 𝐶 𝛾5 𝑇𝐶−1 = 𝛾5
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• Some basics for understanding Majorana mass

• Exercise : Prove that

(2) Majorana Mass

Neutrino Mass

53



• Condition for Majorana neutrino : 𝝍 = 𝝍𝒄

• Let   𝜓𝐿 =
𝜑
0

• We need only 𝝋 to describe a Majorana neutrino.

(2) Majorana Mass

Neutrino Mass

𝜓𝐿
𝐶=𝐶𝛾0 𝜓𝐿

∗ = 𝑖𝛾2𝜓𝐿
∗ =

0
−𝑖𝜎2𝜑∗

𝜓𝑀= 𝜓𝐿 + 𝜓𝐿
𝐶 =

𝜑

−𝑖𝜎2𝜑∗ =𝜓𝑀
𝐶

54



• Note that in the same representation, a Dirac fermion

can be written as 

• If 𝝋 = 𝝌,  it is a Majorana fermion

• For spinors 𝝋,𝝌

• For Majorana spinors

(2) Majorana Mass

Neutrino Mass

55



• Using

• Then, a Majorana fermion can be written

(2) Majorana Mass

Neutrino Mass

56



• Majorana mass term :

• Prove :

(2) Majorana Mass

Neutrino Mass

𝑀 = 𝑀𝑇
57



• Majorana mass term is not invariant under

• So,  lepton number is not conserved.

(2) Majorana Mass

Neutrino Mass

58



• Diagonalization of Majorana mass matrix :

• In general,

• Since 𝑴 = 𝑴𝑻

• Therefore

(2) Majorana Mass

Neutrino Mass

• Then, 𝒀𝑻𝑿 must be digonal

• Define 𝒀𝑻𝑿 ≡ 𝑷𝟐 being diagonal, and 𝑿𝑷∗ ≡ 𝑼

𝑈+𝑀𝑈∗ = 𝑀𝐷
59



• For 𝝂 & ത𝝂

𝐼3 = ±
1

2
∶ 𝜈𝐿 | ҧ𝜈𝑅

𝐼3 = 0 ∶ 𝜈𝑅 | ҧ𝜈𝐿

• Mass term  : 𝝂𝑳 ↔ ത𝝂𝑹 implies 𝑰𝟑 = 𝟏, 𝒀 = −𝟐 ,                           

so we need  a new scalar  with  𝑰𝟑 = 𝟏, 𝒀 = 𝟐
→ SU(2) triplet scalar

Dirac mass

forbidden by weak isospin

allowed but unprotected : Majorana mass

(i.e. can be large : L violation)

Adding Right-Handed Neutrino

60



• Putting possible mass terms together

• Assuming 𝑴 ≫ 𝒎𝑫,  diagonalization of the mass matrix →

tiny neutrino mass :  -𝒎𝑫𝑴
−𝟏𝒎𝑫

𝑻

• Type-I Seesaw Mechanism
−
𝒎𝑫

𝟐

𝑴 𝑴

Adding Right-Handed Neutrino

(𝜈𝐿, ҧ𝜈𝑅)
0 𝑚𝐷

𝑚𝐷
𝑇 𝑀

𝜈𝑅
ҧ𝜈𝐿
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• To obtain  𝒎𝝂~ ∆𝒎𝒂𝒕𝒎
𝟐 , 𝒎𝑫~𝟏𝟎𝟎 𝐆𝐞𝐕,  we need 

𝑴~1015 GeV  → GUT scale !

• Scales : no guide, but

- 𝑚𝐷 : electroweak scale

- 𝑀 : L violation scale  ↔ embedding into GUT 

• This seesaw idea was originally mentioned in a

paper’s footnote : PLB59 (1975) 256 by Fritzsch,

Gell-Mann & Minkowski

Type –I Seesaw Mechanism
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• This idea was clearly elaborated by Minkowski in his paper,

PLB67 (1977) 421

• But, today, the following papers are mostly cited :

Minkowski (1977), Yanagida (1979),

Gell-Mann, Ramond & Slanski (1979)

Glashow (1979), Mohapatra & Senjanovic (1980), ….

Type –I Seesaw Mechanism
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(Higgs Triplet Mechanism)

No RH neutrinos

Higgs triplet: ),,( 0 +++

EW precision measurements:
Y

< 0 > / < H > < 0.03

Konetschny, Kummer PLB70(1977), Magg PLB94(1980), 

Schechter, Valle PRD22(1980), Mohapatra, Senjanovic

PRL44(1981), Lazzarides,Shafi, Wetterich NPB181(1981) 

𝜇∆

Type –II Seesaw Mechanism

𝒎𝝂 = 𝒀𝜟 < 𝜟 >

𝜟 = 𝝁𝜟
𝒗𝑯𝒖

𝟐

𝑴∆
𝟐

Breaking of B-L
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(Fermion Triplet Mechanism)

SU(2) fermion triplet with Y=0

LR. Foot, H. Lew, X.-G. He and G.C. 

Joshi, Z. Phys. C44 (1989) 

Type –III Seesaw Mechanism

𝒎𝝂 = −𝒀𝝂
𝟐
𝒗𝑯𝒖

𝟐

𝑴

𝑳 = 𝒀𝝂ഥ𝑳𝝈𝑯𝒖𝑻 +𝑴𝑻 ∙ 𝑻 + 𝒉. 𝒄.

same formular as in type-I seesaw
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▪ 1-loop generation of light neutrino masses (Zee, 1980)

▪2-loop generation of light neutrino masses (Zee, 1986; Babu, 1988)

- SM be extended to include 

𝒉−(SU(2) singlet) & 2nd scalar

doublet (𝝓𝟎, 𝝓−)

Radiative Generation

- SM be extended to include 

𝒉+ (SU(2) singlet)&𝒌++ (SU(2) singlet)
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▪ 1-loop generation of light neutrino masses (“scotogenic model”)

▪ In the flavor basis where the charged lepton mass matrix

is real and diagonal, neutrino mass matrix becomes

- SM be extended to include  3nR

& 2nd scalar doublet (h+, h0) : 
→ odd under Z2 (E.Ma,2006) 

Radiative Generation

67



• Using 𝒎𝝂
𝟐= 𝒎𝝅

𝟐 +𝒎𝝁
𝟐 − 𝟒𝒎𝝅

𝟐( 𝒑𝝁
𝟐
+𝒎𝝁

𝟐),  we can obtain 𝒎𝝂

• But, it would hard to extract it from  this method due to

uncertainties in measuring 𝒎𝝅, 𝒎𝝁 and measurement of 𝒑𝝁 .

• Neutrino mass can be measured from decay kinematics.

• The simplest case is 2-body at-rest-decay kinematics of  

𝝅 → 𝝁𝝂𝝁

Determination of neutrino mass
Determination of Neutrino Mass

Direct measurement
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Using 𝑬𝟐=𝒑𝟐𝒄𝟐 +𝒎𝟐𝒄𝟒 ,  𝒎𝟐(𝝂) can be extracted by endpoint spectrum of   

β-decay
𝑚2 𝜈𝑒 = 𝑈𝑒𝑖

2 𝑚2(𝜈𝑖)

Tritium β-decay : 3𝐻 → 𝟑𝐻𝑒+ + 𝑒− + ҧ𝜈𝑒 (𝐸0=18.6 keV)

To observe modification

of endpoint spectrum,

we need 

- very high E resolution 
- very high luminosity

- Very low background

Direct measurement

Determination of neutrino mass
Determination of Neutrino Mass

(KATRIN Design Report 2004)
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KATRIN experiment

Aim : achieving 𝒎 𝝂𝒆 sensitivity of 0.2 eV 
(current upper limit : 0.7 eV (2021) )

Determination of neutrino mass
Determination of Neutrino Mass
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Mainz Neutrino Mass Experiment

Determination of neutrino mass
Determination of Neutrino Mass

71

Final Results from phase II



Troitsk Neutrino Mass Experiment

Determination of neutrino mass
Determination of Neutrino Mass
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Project -8 experiment :

Sensitivity of 0.04 eV

Determination of neutrino mass
Determination of Neutrino Mass
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CP violationCP Violation

Donna Padian
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• C : charge conjugate

• P: parity

CP violation in neutrino Oscillation
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• Under CP transformation

𝑈 → 𝑈∗

𝐽 → −𝐽

Leptonic Jarskog invariant:

Under CP transformation :

CP violation in neutrino Oscillation
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• Oscillation probability

𝑃𝜈𝛼→𝜈𝛽 =

𝑖=1

3

𝑈𝛼𝑖
∗ 𝑈𝛽𝑖

2
+ 2

𝑖<𝑗

3

𝑅𝑒 𝑈𝛼𝑖
∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗

∗ cos
Δ𝑚𝑗𝑖

2𝐿

2𝐸
− 2

𝑖<𝑗

3

𝐼𝑚 𝑈𝛼𝑖
∗ 𝑈𝛽𝑖𝑈𝛼𝑗𝑈𝛽𝑗

∗ sin
Δ𝑚𝑗𝑖

2𝐿

2𝐸

𝑃𝜈𝛼→𝜈𝛽 = 

𝑖=1

3

𝑈𝛼𝑖
∗ 𝑈𝛽𝑖

2

− 4

𝑖<𝑗

3

𝑅𝑒 𝑈𝛼𝑖𝑈𝛽𝑖𝑈𝛼𝑗
∗ 𝑈𝛽𝑗

∗ sin2
Δ𝑚𝑗𝑖

2𝐿

2𝐸
+ 2

𝑖<𝑗

3

𝐼𝑚 𝑈𝛼𝑖𝑈𝛽𝑖𝑈𝛼𝑗
∗ 𝑈𝛽𝑗

∗ sin
Δ𝑚𝑗𝑖

2𝐿

2𝐸

𝛿𝛼𝛽 = 𝐽σ𝛾,𝑘 휀𝛼𝛽𝛾휀𝑖𝑗𝑘: 

CP conserving part :𝑷𝝂𝜶→𝝂𝜷
𝑪𝑷𝑪 : 

𝑃𝜈𝛼→𝜈𝛽 = 𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝐶 +𝑃𝜈𝛼→𝜈𝛽

𝐶𝑃𝑉

→ vanishing for α=β

CP violation in neutrino Oscillation

𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝑉 = 8𝐽

𝛾

휀𝛼𝛽𝛾 sin
Δ𝑚21

2 𝐿

4𝐸
sin

Δ𝑚31
2 𝐿

4𝐸
sin

Δ𝑚32
2 𝐿

4𝐸
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• CP transformation of oscillation probability:

𝑃𝜈𝛼→𝜈𝛽 → 𝑃ഥ𝜈𝛼→ഥ𝜈𝛽 𝑃ഥ𝜈𝛼→ഥ𝜈𝛽=𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝐶 − 𝑃𝜈𝛼→𝜈𝛽

𝐶𝑃𝑉

• CPT invariance : 𝑃𝜈𝛼→𝜈𝛽 = 𝑃ഥ𝜈𝛽→ഥ𝜈𝛼

• CP violation shows up a difference between 𝑷𝝂𝜶→𝝂𝜷 and 𝑷ഥ𝝂𝜶→ഥ𝝂𝜷

(𝛼 ≠ 𝛽)𝐴𝛼𝛽
𝐶𝑃 =

𝑃𝜈𝛼→𝜈𝛽 − 𝑃ഥ𝜈𝛼→ഥ𝜈𝛽
𝑃𝜈𝛼→𝜈𝛽 + 𝑃ഥ𝜈𝛼→ഥ𝜈𝛽

=
𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝑉

𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝐶

CP violation in neutrino Oscillation
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• CP asymmetry

𝐴𝛼𝛽
𝐶𝑃 =

2 sin 2𝜃12 sin
Δ𝑚21

2 𝐿
4𝐸 sin 2𝜃23 sin𝟐

Δ𝑚31
2 𝐿

4𝐸 sin 2𝜃13𝑐13 sin 𝛿

𝑃𝜈𝛼→𝜈𝛽
𝐶𝑃𝐶

𝑨𝝁𝝉
𝑪𝑷~ 𝐬𝐢𝐧 𝟐𝜽𝟏𝟑

𝜟𝒎𝟐𝟏
𝟐 𝑳

𝑬
: suppessed ( 𝑷𝝂𝝁→𝝂𝝉

𝑪𝑷𝑪 ~𝒄𝟏𝟑
𝟒 𝐬𝐢𝐧𝟐 𝟐𝜽𝟐𝟑 𝐬𝐢𝐧

𝟐 𝜟𝒎𝟑𝟏
𝟐 𝑳

𝟒𝑬
)

CP violation in neutrino Oscillation

- Detections of 𝝂𝒆 and 𝝂𝝁 are far easier than 𝝂𝝉, so the 

golden channel  for CP asymmetry is 𝑨𝝁𝒆
𝑪𝑷
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• Golden Channel for CP asymmetry

CP violation in neutrino Oscillation

𝑷𝝂𝝁→𝝂𝒆 = 𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐬𝐢𝐧
𝟐𝟐𝜽𝟏𝟑𝐬𝐢𝐧

𝟐 ∆𝟑𝟏

𝟐

+𝒄𝟏𝟑
𝟐 𝒄𝟐𝟑

𝟐 𝐬𝐢𝐧𝟐𝟐𝜽𝟏𝟐 + 𝟒𝒔𝟏𝟑
𝟐 𝒔𝟐𝟑

𝟐 𝒔𝟏𝟐
𝟒 − 𝟐𝒔𝟏𝟑𝒔𝟏𝟐

𝟐 𝐬𝐢𝐧𝟐𝜽𝟏𝟐𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐜𝐨𝐬 𝜹 𝐬𝐢𝐧𝟐
∆𝟐𝟏
𝟐

+𝒄𝟏𝟑
𝟐 𝒔𝟏𝟑𝐬𝐢𝐧𝟐𝜽𝟏𝟐𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐜𝐨𝐬 𝜹 − 𝟒𝒔𝟏𝟑

𝟐 𝒔𝟏𝟐
𝟐 𝒔𝟐𝟑

𝟐 𝐬𝐢𝐧𝟐
∆𝟑𝟏

𝟐
𝐬𝐢𝐧

∆𝟐𝟏

𝟐

+8 𝑱 𝐬𝐢𝐧
∆𝟑𝟏

𝟐
𝐬𝐢𝐧

∆𝟐𝟏

𝟐
𝐬𝐢𝐧

∆𝟑𝟐

𝟐
𝐬𝐢𝐧 𝜹

(𝑱=𝐜𝐨𝐬𝜽𝟏𝟑 𝐬𝐢𝐧𝟐𝜽𝟏𝟑 𝐬𝐢𝐧 𝟐𝜽𝟐𝟑 𝐬𝐢𝐧 𝟐𝜽𝟏𝟐~𝟎. 𝟎𝟑𝟗,  ∆𝒊𝒋≡ ∆𝒎𝒊𝒋
𝟐𝑳/𝟐𝑬 , 𝒄𝒊𝒋 = cos 𝜃𝑖𝑗)
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• Golden Channel for CP asymmetry

CP violation in neutrino Oscillation

𝑨𝝁𝒆
𝑪𝑷~

𝟒𝑱𝐬𝐢𝐧∆𝟐𝟏 𝐬𝐢𝐧 𝜹

𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐬𝐢𝐧
𝟐𝟐𝜽𝟏𝟑

≅
𝒄𝟐𝟑𝐬𝐢𝐧𝟐𝜽𝟏𝟐

𝒔𝟏𝟐𝒔𝟏𝟑

∆𝒎𝟐𝟏
𝟐

∆𝒎𝟑𝟏
𝟐

∆𝒎𝟑𝟏
𝟐 𝑳

𝟒𝑬
+𝑶 ∆𝟐𝟏

𝟐 ~ 0.26
∆𝒎𝟑𝟏

𝟐 𝑳

𝟒𝑬

- To leading order in ∆𝟐𝟏

- The asymmetry grows linearly with L, but for fixed detector size 
and neutrino energy, the flux of neutrinos decreases as ∼ 1/L2 .

- First oscillation maximum : 

𝑳𝟎 =
𝟐𝝅𝑬

∆𝒎𝟑𝟏
𝟐 ≈ 𝟒𝟗𝟓

𝑬

𝐆𝐞𝐕

𝟐.𝟓×𝟏𝟎−𝟑

∆𝒎𝟑𝟏
𝟐 km

e.g.) T2K: 295 km → 0.6 GeV,
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𝐅𝐨𝐫 𝑬 = 𝟓𝟎𝟎 𝐌𝐞𝐕, 𝜽𝟑 = 𝟖𝒐 , 𝜹 = 𝟗𝟎𝒐

𝑷𝝂𝝁→𝝂𝝉 𝒗𝒔. 𝑷ഥ𝝂𝝁→ഥ𝝂𝝉 𝑷𝝂𝝁→𝝂𝒆 𝒗𝒔. 𝑷ഥ𝝂𝝁→ഥ𝝂𝒆

• Golden Channel for CP asymmetry

CP violation in neutrino Oscillation
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• Matter Effects

𝑷ഥ𝝂𝝁→ഥ𝝂𝒆 ➔ 𝒂→ −𝒂 𝐟𝐚𝐤𝐞 𝐂𝐏𝐕 , 𝜹 → −𝜹

CP violation in neutrino Oscillation

𝑷𝝂𝝁→𝝂𝒆~ 𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐬𝐢𝐧
𝟐𝟐𝜽𝟏𝟑𝐬𝐢𝐧

𝟐 ∆𝟑𝟏

𝟐
𝟏 −

𝟖𝒂

∆𝒎𝟑𝟏
𝟐 cos 𝟐𝜽𝟏𝟑

+𝒄𝟏𝟑
𝟐 𝒄𝟐𝟑

𝟐 𝐬𝐢𝐧𝟐𝟐𝜽𝟏𝟐 + 𝟒𝒔𝟏𝟑
𝟐 𝒔𝟐𝟑

𝟐 𝒔𝟏𝟐
𝟒 − 𝟐𝒔𝟏𝟑𝒔𝟏𝟐

𝟐 𝐬𝐢𝐧𝟐𝜽𝟏𝟐𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐜𝐨𝐬𝜹 𝐬𝐢𝐧𝟐
∆𝟐𝟏
𝟐

+𝒄𝟏𝟑
𝟐 𝒔𝟏𝟑𝐬𝐢𝐧𝟐𝜽𝟏𝟐𝐬𝐢𝐧𝟐𝜽𝟐𝟑 𝐜𝐨𝐬 𝜹 − 𝟒𝒔𝟏𝟑

𝟐 𝒔𝟏𝟐
𝟐 𝒔𝟐𝟑

𝟐 𝐬𝐢𝐧𝟐
∆𝟑𝟏

𝟐
𝐬𝐢𝐧

∆𝟐𝟏

𝟐

+8 𝑱 𝐬𝐢𝐧
∆𝟑𝟏

𝟐
𝐬𝐢𝐧

∆𝟐𝟏

𝟐
𝐬𝐢𝐧

∆𝟑𝟐

𝟐
𝐬𝐢𝐧 𝜹

+𝟐 cos 𝟐𝜽𝟏𝟑 sin
𝟐𝟐𝜽𝟏𝟑 𝒔𝟐𝟑

𝟐 𝒂𝑳

𝟒𝑬
𝐬𝐢𝐧

∆𝟑𝟏

𝟐
𝐜𝐨𝐬

∆𝟑𝟐

𝟐

(𝒂 𝐞𝐕𝟐 = 𝟐 𝟐𝑮𝑭𝒏𝒆𝑬 = 𝟕. 𝟔 × 𝟏𝟎−𝟑𝝆 𝐠/𝐜𝐦𝟑 𝑬[𝐆𝐞𝐕] (earth crust: 𝝆=2.76)
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CP violation in neutrino Oscillation

T2K NOvA 84



• CPV can be observed by measuring  𝑷𝝂𝝁→𝝂𝒆 & 𝑷ത𝝂𝝁→ത𝝂𝒆

P(nm → ne) for sin22q13=0.1

Wide Beam

85

at 1st and 2nd oscillation maxima, which are covered by 

wide 𝝂 (ഥ𝝂) beam



T2K

𝝂 and ഥ𝝂 narrow beams tuned to 

2nd oscillation max.

• significantly less 

affected by syst. 

Uncertainties

compared to the 

1st osc. max.

• For this observation 

next generation very 

high intensive 𝝂
beams are needed.  

(ESSnuSB)

Narrow Beam
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Separating fake matter effects

• Genuine CPV &  the matter effect both lead to a 
difference between n and ഥ𝝂 oscillation.

(Minakata & Nunokawa 2001)

• To disentangle them, one may make 

oscillation measurements at different  
L and/or E.   

• trajectory in matter is shifted to 2 different 

directions, according to sign(∆𝑚31
2 )

• Octan of  𝜃23 can be distinguishable

CP violation in neutrino Oscillation
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CP violation in neutrino Oscillation

88Jeff Hartnell, SSP 2018



CP Violation: T2K Result 

- The gray region is disfavored by 99.7% (3𝝈) CL
- The values 0 and 180 degrees are disfavoured at 95% CL

Determination of 𝞭CP from 

appearance of 𝝼e events

Nature : April 16/4/2020
and arXiv:: 1910.03887

CP Violation : T2K result
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Most Probable

Excluded

Determination of 𝞭CP from 

appearance of 𝝼e events

CP Violation: T2K Result CP Violation : NOvA result
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91

NOvA/T2K will continue to take data till 2026/2027
-> double the statistics of present analyses, reduce systematics

CP Violation : NOvA result



CP Violation :Future Experiments
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DUNE Sensitivity

Anatael Cabrera, IMFP-2021 
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DESY, Science Communication Lab

Majorana vs. Dirac
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Dirac vs. Majorana

❖ If massive neutrinos are Majorana, it implies L number is not conserved.

- L number violating phenomena :

Neutrinoless 𝜷𝜷 decay : 𝒁, 𝑨 → 𝒁 ± 𝟐, 𝑨 + 𝟐𝒆± 𝑻𝟏/𝟐
𝟏𝟑𝟔𝐗𝒆/𝑻𝟏/𝟐

𝒕𝒐𝒕𝒂𝒍𝟏𝟑𝟔𝐗𝒆~𝟏𝟎−𝟓

Muon conversion   : 𝝁− + 𝒁,𝑨 → 𝒆+ + 𝒁 − 𝟐, 𝑨 ∶ (𝐁𝐫~𝟏𝟎−𝟏𝟐)

Rare Kaon decays : 𝑲+ → 𝝅−𝝁+𝝁+ ∶ (𝐁𝐫~𝟏𝟎−𝟗)

0𝝂𝜷𝜷 decay dominates by a huge margin. That is so because 

many mols of the target can be studied for a long time, and 

the Avogadro number is much larger than typical beam flux.

(Vogel, 2017)
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Dirac vs. Majorana

❖ How difficult to test Majorana property  

If massive neutrinos are Majorana, the following process is allowed

But, even rate ∝
𝒎 𝝂

𝑬

𝟐
~𝟏𝟎−𝟐𝟎 suppressed.

𝒎𝝂ഥ𝝂𝑳 𝝂𝒄 𝑹
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• Neutrinoless double beta decay (0νββ)

• If neutrinos are Majorana, two outgoing neutrino lines in the double β-

decay diagram can be connected.

Amplitude of 0νββ ∝ 𝒎𝜷𝜷 ≡ σ𝒎𝝂𝒊𝑼𝒆𝒊
𝟐

= 𝒎𝝂𝟏𝒄𝟏𝟐
𝟐 𝒄𝟏𝟑

𝟐 +𝒎𝝂𝟐𝒔𝟏𝟐
𝟐 𝒄𝟏𝟑

𝟐 𝒆𝟐𝒊𝜶 +𝒎𝝂𝟑𝒔𝟏𝟑
𝟐 𝒆𝟐𝒊(𝜷−𝜹)

Dirac vs. Majorana

97
Phase space factor

Nuclear Matrix Elements



• There is large uncertainty in the calculation of nuclear matrix elements

Dirac vs. Majorana
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• Why observation of  0νββ may indicate that neutrinos are Majorana ?

0νββ is the process 𝒅𝒅 → 𝒖𝒖 + 𝒆−𝒆−

Implies  the amplitude for 𝒆+ഥ𝒖𝒅 → 𝒆−𝒖ഥ𝒅 is not vanishing

• Amplitude for the chain ഥ𝝂𝑹 → 𝒆+𝑾− → 𝒆+ഥ𝒖𝒅 → 𝒆−𝒖ഥ𝒅 → 𝒆−𝑾+ → 𝝂𝑳
is not vanishing

• This chain results in ഥ𝝂𝑹 → 𝝂𝑳 which is the effect of Majorana mass

• Neutrinoless double beta decay (0νββ)

Dirac vs. Majorana
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What is Observable signature of  0 𝝂𝜷𝜷 ?

Observable is the 0𝝂𝜷𝜷 event rate (equivalently a half lifetime 𝑻𝟏/𝟐) 

Dirac vs. Majorana
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Experiments

• Several candidates of nuclei are being considered in experiments 

101Jonathan Link, (TAU2016)



• Heidelberg-Moscow collab. (76 Ge in Gran Sasso)

- 2001, they claimed to have found  an evidence for 0νββ

(Klapdor-Kleingrothaus et al, MPLA16 ) .

Experiments

- This was ruled out by the results 
from  GERDA exp. (arXiv:1411.4791)
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AMORE (100 Mo).

Experiments

CUORE (130 Te).
KamLAND-Zen 

(136 Xe).
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m𝝱𝝱 <

KamLAND-Zen • 136 Xe(91% enriched) loaded LS

• Reached  IO region for the first time.

• Improvement of KamLAND-Zen800 over 

KamLAND-Zen400

Experiments
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AMORE 

sensitivity
AMORE sensitivity

Neutrinoless double beta decay (0νββ)

Sensitivity
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The question is still unanswered:

Many experiments operating, planned or in R&D: 

LEGEND, SNO+, NEXT, CUPID, THEIA…GERDAPhaseII, Majorana, SuperNEMO, CUORE, and nEXO

Dirac vs. Majorana
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• Firmly established that neutrinos are massive particles and leptons mix.

• Determined three mixing angles  and two mass-squared differences      

from various experiments.

• Made great effort on understanding neutrino properties.

• What we don’t know yet

- Leptonic CP Violation

- Origin of Neutrino Mass (ordering)

- Octant of 𝜽𝟐𝟑
- Majorana vs. Dirac
- Sterile Neutrinos ?

- Non-unitarity of 𝑼 ?

• New opportunity through neutrinos.

Conclusion & Outlook
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