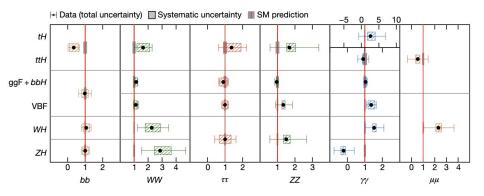

First evidence for off-shell Higgs boson production and width measurement at CMS

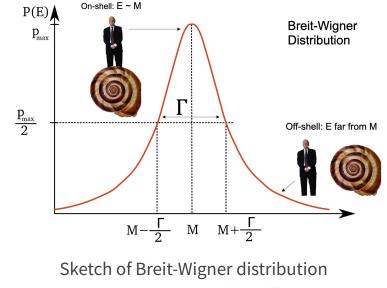
GROUPA Collaboration: <u>Aashwin Basnet</u>, Nour Abdulameer, Fionn Bishop, Guangyong Fu, Mourad Hidaoui, Dominic Jones, Honey Khindri, Yongkyu Kim, Byeonghak Ko, Joon-Bin Lee, Kalpanie Liyanage, Daniel Martin, Alessandra Palazzo, Elizaveta Sitnikova, Cheng-Han Wu, Sze Chun Yiu

October 16, 2022 AEPSHEP 2022, Pyeongchang, South Korea


Theoretical motivation

- 10 years since the discovery of Higgs boson
- ATLAS and CMS have measured several parameters such as couplings, cross-sections, etc. (all consistent with SM)

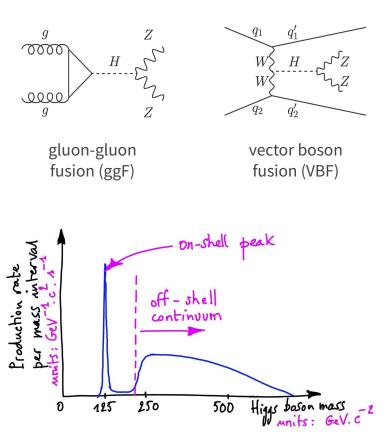
- So far not been $able^{.2}$ to confirm off-shell behaviour of the Higgs and large uncertainties on decay width $\Gamma_{\rm H} = 3.4^{+2.8}$ MeV
- Important processes/quantities as can be sensitive to BSM



Summary of Higgs boson rate measurements compared to SM predictions (taken from <u>here</u>)

Decay width and Off-shell vs. On-shell Higgs

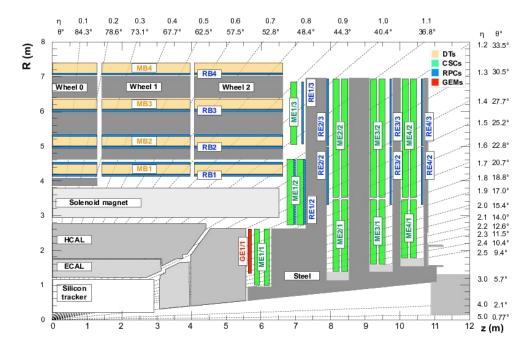
- Predicted Higgs width (Γ_H) too narrow compared to the experimental resolution to be measured just from invariant mass distribution (predicted Γ_H= 4.1 MeV, exp. resolution ~ 1 GeV)
- Why not try to measure the Higgs lifetime (r_H) directly?
- Off-shell Higgs to the rescue!
- The ratio of the rates of off-shell production to on-shell Higgs production is sensitive to $\Gamma_{\rm H}$.



$$\frac{\mathrm{d}\sigma_{pp\to H\to ZZ}}{\mathrm{d}M_{4l}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}.$$

Theory Paper

Analysis overview


- Rate of **off-shell Higgs production** is enhanced in *ZZ* final state when the *Z*s are produced on-shell, improving statistics. Two signal strength parameters defined to differentiate ggF and VBF processes:
 - $\circ \mu_{F}^{\text{ off-shell}}$ (ggF) and $\mu_{V}^{\text{ off-shell}}$ (VBF)
 - μ^{off-shell} (overall signal strength)
 - $\circ \ \ R_{V,F}^{off-shell} = \mu_V^{off-shell} / \mu_F^{off-shell}$
- Combination of previous <u>on-shell</u> and <u>off-shell</u> production in H → ZZ → 4ℓ with new off-shell measurement of H → ZZ → 2ℓ2 ν
- Interference effects with *ZZ* continuum background important. More on this later.
- Aiming to improve upon the <u>previous best results</u> that used only 4ℓ channel

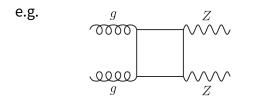
Dummy reconstructed mass distribution from $H \rightarrow ZZ$ decay (taken from <u>here</u>)

The CMS experiment

- One of the two **general purpose detectors** alongside ATLAS
- Consists of a 3.8 T superconducting solenoid to curve the trajectories of charged particles
- Four major components:
 - Inner Tracker
 - Electromagnetic Calorimeter (ECAL)
 - Hadronic Calorimeter (HCAL)
 - Muon System (MS)

A schematic diagram showing different sub-detector components in the CMS detector along with their (z,R,η) coordinates (taken from <u>here</u>)

Datasets

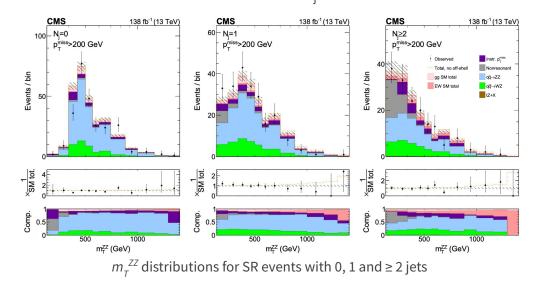

• Data: Run I and Run-II for 4 ℓ , full Run-II for $2\ell 2\nu$ (L = 140 fb⁻¹) collected by single & double muon triggers

• MC: [1] Signal

- ggH, VBF, ZH, and WH
- Negative interferences reweighted by *MELAANALYTICS*

[2] Background

 di-boson: POWHEG2 + NNLO QCD, NLO EWK corrections


 others: MG5 & aMC@NLO + MLM/FXFX merging

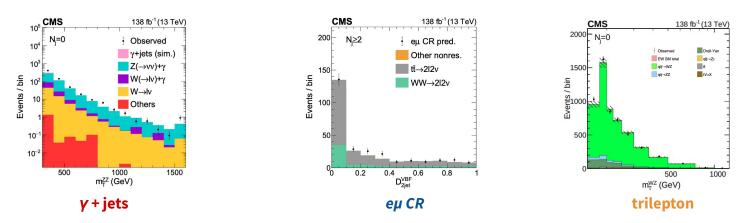
- All MC samples are *showered by PYTHIA8*
- $\circ~$ Also use CMS central underlying event tunes, PDF sets, and detector simulations

Kinematic observables and signal region selection

Kinematic observables:

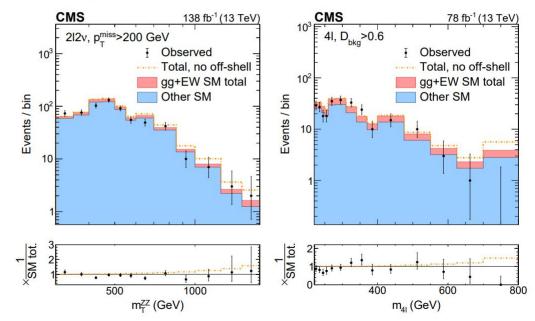
- p_{τ}^{miss} (provides a good signal/background discrimination)
- m_{τ}^{ZZ} computed using p_{τ}^{miss} (m^{ZZ} for the 4 ℓ channel)
- matrix element (<u>MELA</u>) kinematic discriminant to identify VBF processes for events with N_i ≥ 2

Signal region:


- **Di-Lepton** selection
 - $\circ e^+e^-$ or $\mu^+\mu^-$
 - $\circ |m_{\ell\ell} m_{Z}| < 15 \text{ GeV}$
 - $\circ p_T^{\ell\ell} > 55 \text{ GeV}$

• MET requirements:

- $p_T^{miss} > 125 \text{ GeV} (> 140 \text{ GeV}) \text{ for } N_i < 2 (\ge 2)$
- $\Delta \varphi(p_T^{miss}, any obj)$ cuts are set to reduce mis-reconstructed METs
- Veto events with:
 - *b*-tagged jets
 - \circ additional loosely identified ℓ or γ
 - isolated tracks


Background estimation and Control Region (CR)

- Interfering processes with signal (Monte Carlo simulated)
 - ZZ, WZ, WW
- Non-interfering processes (data-driven estimated)
 - **Drell-Yan** (DY) process estimated from **y** + jets CR
 - *tt, WW* estimated from *eµ CR*
 - WZ, WW estimated from trilepton CR

Fit to data

- Signal strengths (μ's) and Γ_H extracted using fits to SR and CRs
 - Binned extended maximum likelihood fit over various kinematic distributions
 - Fit variables: m^{4ℓ} and MELA discriminants (4ℓ); m_T^{ZZ} and p_T^{miss} (2ℓ2ν)
 - Data split into categories:
 - On-/off-shell
 - Lepton flavour
 - Jet multiplicity

Distributions of off-shell data, fitted to model assuming SM couplings (stacked histogram), and fitted to model assuming no off-shell production (gold) in m_{τ}^{ZZ} (2 ℓ 2 ν , left) and m^{4l} (4 ℓ , right). Summed over jet multiplicity.

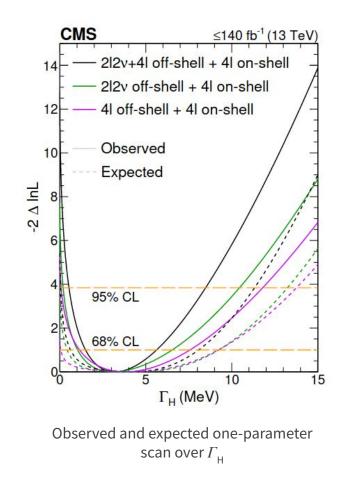
Systematic uncertainties

• Theoretical uncertainties

- Simulation of extra jet in gg samples depending on jet multiplicity (up to 20%)
- α_{s} (up to 30%)
- PDF uncertainties in the cross section calculation (up to 20%)
 - Depends on processes and m_{T}^{ZZ} or $m_{4\ell}$
- NLO EW corrections to the $qq(bar) \rightarrow Z(W)Z$ process (up to 20%)

• Experimental uncertainties

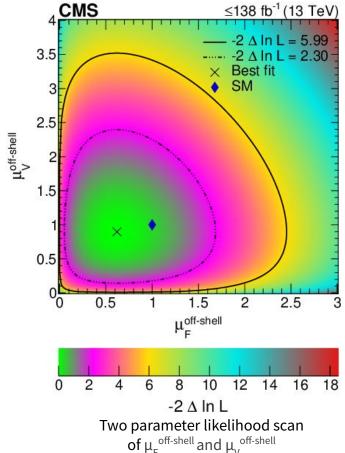
- Lepton reconstruction and trigger efficiency (typically 1% per lepton)
- Integrated luminosity (1.2% 2.5% depending on data-taking period)
- Pile-up, jet energy scale, and jet energy resolution


Most of the systematics have sizeable effects on both shape and normalization

Results on Higgs decay width

Param.	Cond.	Observed 68% 95% CL	Expected 68% 95% CL
$\Gamma_{\rm H}$	$2\ell 2 u + 4\ell$	$3.2^{+2.4}_{-1.7}\mid^{+5.3}_{-2.7}$	$^{+4.0}_{-3.48} \mid^{+7.2}_{-4.065}$
$\Gamma_{\rm H}$	$2\ell 2\nu$	$3.1^{+3.4}_{-2.1}\mid^{+7.3}_{-2.91}$	$^{+5.1}_{-3.67}\mid^{+9.1}_{-4.099}$
$\Gamma_{\rm H}$	4ℓ	$3.8^{+3.8}_{-2.7}\mid^{+8.0}_{-3.727}$	$^{+5.1}_{-4.047} \mid < 13.8$

• $\Gamma_{\rm H}$ measurements extracted from profiled likelihood scan


- No off-shell hypothesis (Γ_H=0) can be excluded at 99.97% CL (3.6 standard deviations)
- Constraints stable within 1 MeV (0.1 MeV) for upper (lower) limits when allowing BSM anomalous *HVV* couplings to vary from zero

Results on signal strength parameters

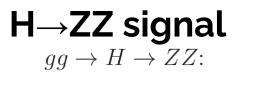
Param.	Cond.	Observed	Expected
		68% 95% CL	68% 95% CL
$\mu_{\rm F}^{\rm off.}$	$\mu_{\rm V}^{\rm off.}$ (u)	$0.62^{+0.68}_{-0.45}\mid^{+1.38}_{-0.614}$	$^{+1.1}_{-0.99998} \mid < 3.0$
$\mu_{\rm V}^{\rm off.}$	$\mu_{\mathrm{F}}^{\mathrm{off.}}$ (u)	$0.90^{+0.9}_{-0.59}\mid^{+2.0}_{-0.849}$	$^{+2.0}_{-0.89}\mid<4.5$
u ^{off.}	$R_{\rm V,F}^{\rm off.}=1$	$0.74^{+0.56}_{-0.38}\mid^{+1.06}_{-0.61}$	$^{+1.0}_{-0.84}\mid^{+1.7}_{-0.9914}$
μ	$R_{V,F}^{\text{off.}}(u)$	$0.62^{+0.68}_{-0.45}\mid^{+1.38}_{-0.6139}$	$^{+1.1}_{-0.99996}\mid^{+2.0}_{-0.99999}$

- 2D constraints on ($\mu_F^{off-shell}$, $\mu_V^{off-shell}$) also extracted from profile likelihood scans
- The total rate of off-shell Higgs boson production is constrained with different assumptions on R_{V.F} ^{off-shell}
 - No assumptions: constrained in interval
 [0.0061, 2.0] at 95% confidence level
- Signal strengths consistent with SM (µ = 1)

Summary

• By combining 2*l*2*v* with previous 4*l* channel results, obtained first evidence for off-shell Higgs boson production (99.97% CL) and most precise measurement of total Higgs decay width and lifetime:

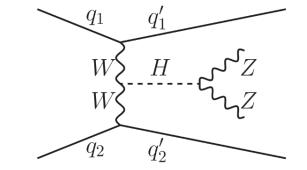
•
$$\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7}$$
 MeV at 68% CL
• 7.7 × 10⁻²³ s < $\tau_{\rm H}$ < 1.3 × 10⁻²¹ s at 95% CL


• Measurements consistent with SM expectation and **no hint of BSM physics**

Thank you for your attention!

GROUPA Collaboration, 2022

H

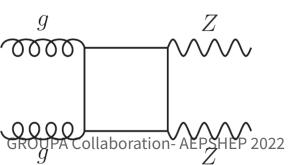

g

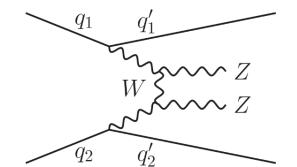
0000

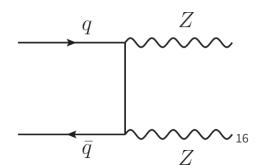
 $\mathbf{0}$

q

 $q_1q_2 \rightarrow q'_1q'_2H \rightarrow q'_1q'_2ZZ$:

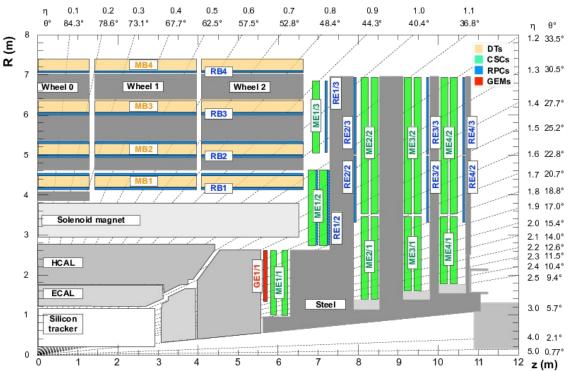

 $q\bar{q} \rightarrow ZH \rightarrow ZZZ$:

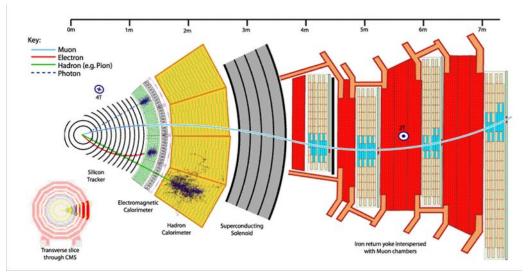

ZZ continuum background


 $gg \to ZZ$:

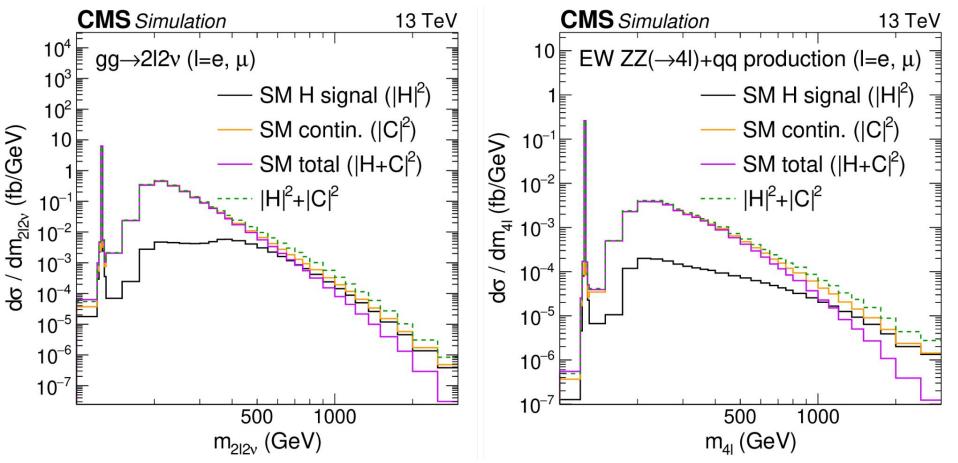
 $q_1q_2 \rightarrow q_1'q_2'ZZ$:

 $q\bar{q} \rightarrow ZZ$:



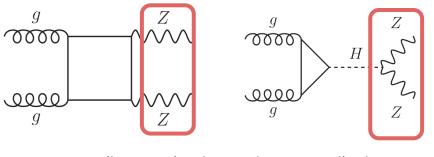

Compact Muon Solenoid (CMS) Experiment

- The principal feature of the CMS detector is a superconducting solenoid providing an axial magnetic field of 3.8 T inside which an inner tracker, an electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL) reside.
- The inner tracker is composed of a silicon pixel detector and a silicon strip tracker, and measures trajectories of charged particles in the pseudorapidity range $|\eta| < 2.5$.
- With up to four layers of gas-ionization detectors of four technologies (DT, CSC, RPC, and the recently added GEMs) positioned outside the solenoid and sandwiched between the layers of the steel flux-return yoke, the muon detection system covers $|\eta| < 2.4$.

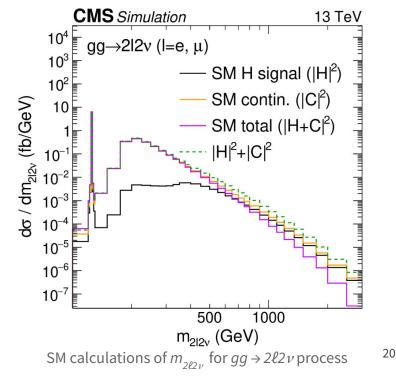


Particle trajectories in the CMS detector

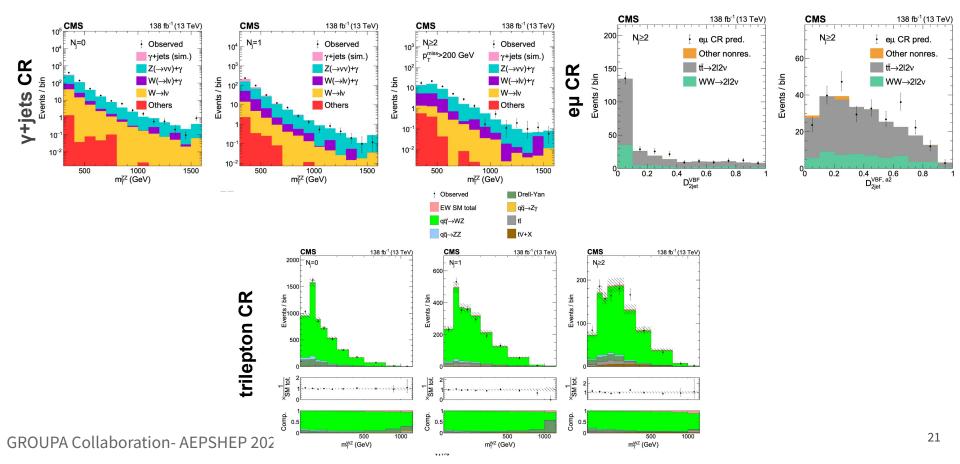
- Electrons and Photons are captured by the ECAL
- Hadrons primarily deposit their energies in the HCAL
- Muons are detected by the Muon System
- Neutrinos do not interact with any tracking components



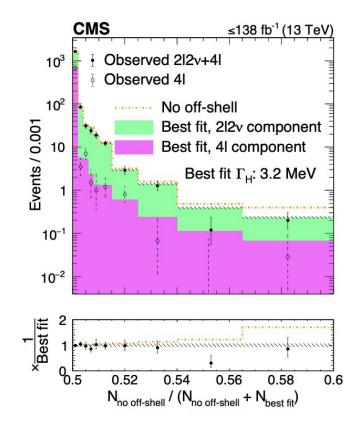
Event simulation



Negative interference


- **ZZ continuum production** is larger than $H \rightarrow ZZ$ and introduces complications
- Interference between modes sharing the same final states is important at higher off-shell masses
- Destructive interference expected $|H|^2 + |C|^2 > |H+C|^2$

Feynman diagrams showing continuum contribution coming from $gg \rightarrow ZZ$ (left) vs. $H \rightarrow ZZ$ (right)

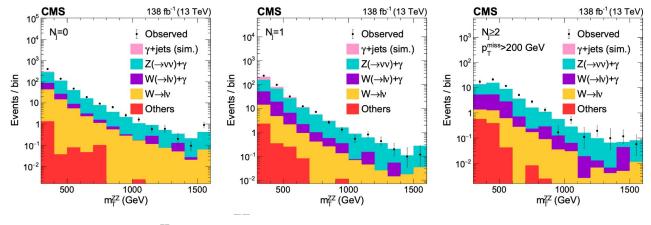


Control region plots

Exclusion of no off-shell hypothesis

- The ratios are taken after separate fits to the no off-shell hypothesis (N_{no off-shell}) and the best overall fit (N_{best fit}).
- From the last two bins, the exclusion is noted to be most apparent.

Matrix element kinematic discriminant (using MELA)


- MELA -Matrix Element Likelihood Approach
- Complete set of mass and angular input observables Ω to describe kinematics at LO in QCD. $\mathcal{D}_{\mathrm{alt}}(\mathbf{\Omega}) = rac{\mathcal{P}_{\mathrm{sig}}(\mathbf{\Omega})}{\mathcal{P}_{\mathrm{sig}}(\mathbf{\Omega}) + \mathcal{P}_{\mathrm{alt}}(\mathbf{\Omega})}$
- The probability of a certain process P is calculated usi characterized by Ω
 - "sig" signal model
 - "alt" alternative model (can also be background)
 - "int" interference between the two models
- The probabilities P are calculated from the matrix elements provided by the MELA package and are normalized
- Discriminants are constructed to discriminate different hypothesis

$$\mathcal{D}_{ ext{int}}(oldsymbol{\Omega}) = rac{\mathcal{P}_{ ext{int}}(oldsymbol{\Omega})}{2\sqrt{\mathcal{P}_{ ext{sig}}(oldsymbol{\Omega})\mathcal{P}_{ ext{alt}}(oldsymbol{\Omega})}},$$

Control region selection

Three different control regions are defined:

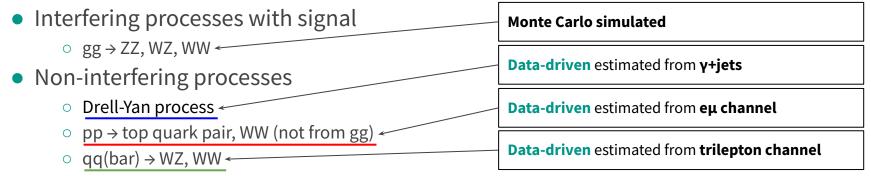
- **1.** γ + jets (for background from Z + jets with same properties)
- **2.** $e\mu$ (for background from $pp \rightarrow tt$ and $pp \rightarrow WW$)
- **3.** trilepton $qq(bar) \rightarrow WZ$ (for background from $qq(bar) \rightarrow ZW$ and $qq(bar) \rightarrow ZZ$)

 m_{τ}^{ZZ} distributions for events in the γ + jets CR with 0, 1 and \geq 2 jets

Trigger & Object selection

Event trigger	
2 1 2v SR	Single & di-lepton trigger
eμ CR	
3I WZ CR	
γ+jets	Photon trigger
efficiency	78~100%

Jets		
anti-k _r	dist. param. of 0.4	
Suppress jet from pileup interaction	p _T >30 GeV. η <4.7, Δ R >0.4	
b jet ID,	$ \eta $ <2.5 (2.4 for 2016) using DEEPJET /w loose working point	
Efficiency	75~95%	


Photons	
ECAL /wo track	
p _T >20 GeV	
η <2.5	
Shower shape & isolation	

Muon(electron using BDT)		
PF algorithm	Δ R <0.3	
Loose isolation	p _T >5 GeV,	
Tight Isolation	η <2.4 (η <2.5)	

Signal region selection		
2l2nu	vetoes	
Opposite sign, same flavor leptons	b-tagged jet	
p _T >25 GeV	Loosely isolated lepton /w p _T >5 GeV	
m _{II-} -m _Z <15 GeV	Loosely identified photons /w p _T >20 GeV	
p _T [∥] >55 GeV	Event with isolated reconstructed tracks /w $p_T^{>10}$ GeV	
p_T^{miss} >125 GeV for N _j <2, p_T^{miss} >140 GeV for else		
$ \begin{array}{ c c c c } \Delta \phi^{\rm II}_{\rm miss} > 1.0 \mbox{ between } {\bf p}_{\rm T}^{\rm miss} \mbox{ and } {\bf p}_{\rm T}^{\rm II}, \\ \Delta \phi^{\rm II+jets}_{\rm miss} > 2.5 \mbox{ between } {\bf p}_{\rm T}^{\rm miss} \mbox{ and } {\bf p}_{\rm T}^{\rm II} + {\bf \Sigma} {\bf p}_{\rm T}^{\rm I}, \\ \Delta \phi^{\rm j}_{\rm miss} > 0.25 \mbox{ (0.50) between } {\bf p}_{\rm T}^{\rm miss} \mbox{ and } {\bf p}_{\rm T}^{\rm J} \mbox{ for } {\bf N}_{\rm j} \end{array} $		

Background Estimation and Control Region

• Two types of backgrounds coming from Interfering and Non-interfering processes

Data driven method: Mimics the shapes of background from the data in a certain control region (with subtraction of other process shapes in the control region)

Drell-Yan process: The kinematics of γ +jets process are similar to it if the γ is replaced with Z/γ^*

pp \rightarrow **top quark pair, WW** : Events of these processes with eµ is similar to ee and µµ events

qq(bar) \rightarrow WZ, ZZ : Two lepton pairs having closed to m₇ is chosen and the other one is regarded as v

Event selection

• 2**1**2v

- Opposite sign, same flavor required (e^+e^- or $\mu^+\mu^-$)
- Di-lepton selection: $|m_{\parallel} m_z| < 15 \text{ GeV}, p_T^{\parallel} > 55 \text{ GeV}$
- MET selection: $p_T^{miss} > 125(140)$ GeV for $N_i < 2(N_i \ge 2)$
- Background veto: Events with a b-tagged jet, loosely identified photon or lepton, or additional isolated track

• 4*l*

- Di-lepton selection: m_{\parallel} > 4 GeV
- Z candidate selection: $40(12) < m_{\parallel} < 120$ GeV for first(second) Z candidate
- On-shell(Off-shell) h candidate selection: $105 < m_h < 140 \text{ GeV}(m_h > 220 \text{ GeV})$

Kinematic observables and signal region selection

Kinematic observables:

- p_{τ}^{miss} (provides signal/background discrimination)
- m_{τ}^{ZZ} computed using p_{τ}^{miss} (m^{ZZ} for the 4 leptons channel)
- matrix element (<u>MELA</u>) kinematic discriminant to identify VBF processes for events with N_i ≥ 2

Mathematical definition of m_{τ}^{ZZ}

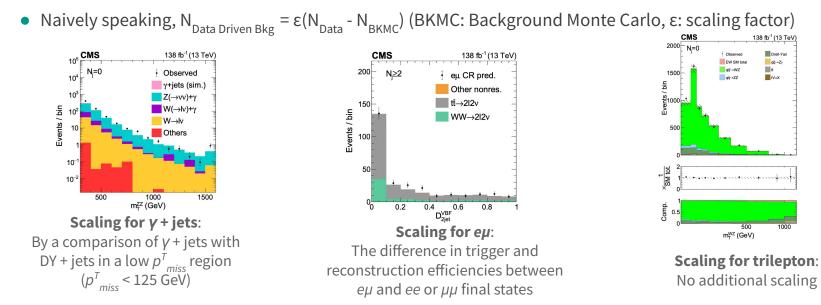
$$\left(m_{\rm T}^{\rm ZZ}\right)^2 = \left[\sqrt{p_{\rm T}^{\ell\ell^2} + m_{\ell\ell}^2} + \sqrt{p_{\rm T}^{\rm miss^2} + m_Z^2}\right]^2 - \left|\vec{p}_{\rm T}^{\,\ell\ell} + \vec{p}_{\rm T}^{\,\rm miss}\right|^2,$$

where $\vec{p}_{T}^{\ell\ell}$ and $m_{\ell\ell}$ are the dilepton transverse momentum vector and invariant mass, respectively, and m_Z , the Z boson pole mass, is taken to be 91.2 GeV [27].

Signal region:

- Lepton selection
 - $\circ~$ 2 opposite sign, tightly isolated, same-flavor leptons with $p_{\tau}>$ 25 GeV
 - $m_{_{II}}$ within 15 GeV of $m_{_{Z}}$
 - $\circ p_T^{ll} > 55 \text{ GeV}$

• Veto events with:

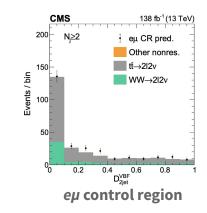

- *b*-tagged jets
- additional loosely isolated leptons or photons with $p_{\tau} > 20$ GeV
- isolated reconstructed tracks of p_{τ} > 10 GeV

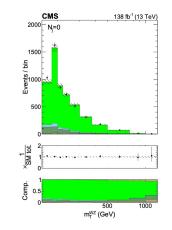
• **Other** criteria:

- $\circ~$ lower bound on the unsigned azimuthal opening angle between $p_{T}^{\ miss}$ and other objects in the event
- $p_T^{miss} > 125 \text{ GeV}$ (> 140 GeV) for N_j < 2 (≥ 2)

Background estimation and Control Region


- Three different control regions are defined:
 - **y** + jets (for background from *Z* + jets with same properties)
 - *e* μ (for background from $pp \rightarrow tt$ and $pp \rightarrow WW$)
 - trilepton $qq(bar) \rightarrow WZ$ (for background from $qq(bar) \rightarrow ZW$ and $qq(bar) \rightarrow ZZ$)




Background estimation and Control Region

- Two types of backgrounds coming from interfering and non-interfering processes
- **Interfering** processes with signal (Monte Carlo simulated)
 - $\circ qq \rightarrow ZZ, WZ, WW$
- Non-interfering processes (data-driven estimated)
 - Drell-Yan (DY) process
 - \circ pp \rightarrow tt, pp \rightarrow WW (not from qq) \leftarrow eµ control region
 - \circ $qq(bar) \rightarrow WZ, qq(bar) \rightarrow WW \leftarrow$ **Trilepton** control region

