

05-18 OCTOBER 2022, Pyeongchang, SOUTH KOREA

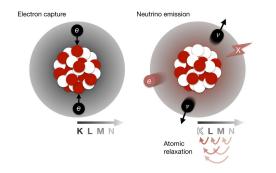
Group C

Double-weak decays of ¹²⁴Xe and ¹³⁶Xe in the XENON1T and XENONnT experiments _{Group C (Neutrino Physics)}

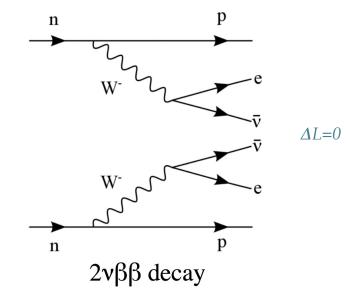
Featuring results from Phys. Rev. C 106, 024328

Group Members:

Amandeep Kaur, Atakan Tugberk Akmete, Bongho Tae, Giorgi Kistauri, Harjot Kaur, HyonSan Seo, Jing Zhao, <u>José Pretel</u>, Juhee Song, Marcos Miralles, Mehdi Hajimaghsoud, Simran Gurdasani, Tong Pan, Vilius Čepaitis, Younghoon Lee, Wai Yuen Chan



Introduction: Double-weak decays

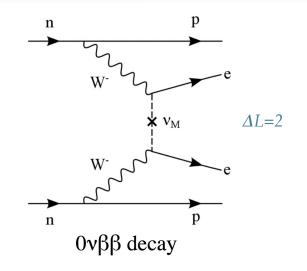

AEPSHEP Group C

<u>Two-neutrino double electron capture</u> (2*v*ECEC)

- Important for nuclear structure models
- Second-order weak-interaction process.

• Nuclear binding energy released via the 2*v*, which cannot be detected.

Introduction: Double-weak decays


AEPSHEP Group C

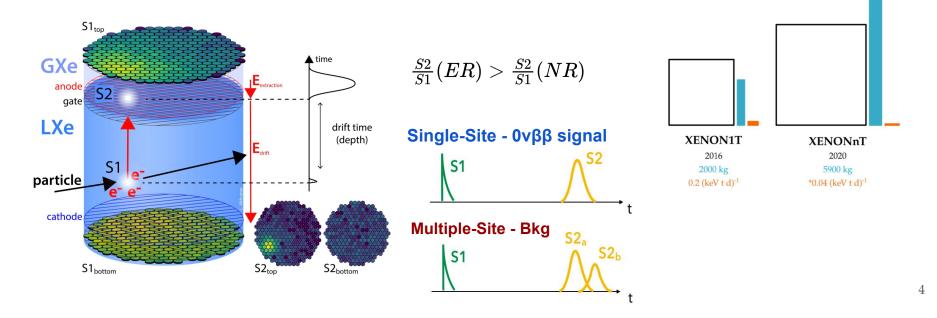
<u>Neutrinoless double-β decay (0νββ)</u>

- Possible if neutrino is Majorana
- Sensitive to
 - Neutrino mass
 - Lepton number violation
- Best lower limit on the ¹³⁶Xe half-life up-to-date from KamLAND-Zen

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr at } 90\% \text{ C.L.}$

- Requirements for a $0\nu\beta\beta$ decay of ¹³⁶Xe
 - Low background rate
 - Good energy reconstruction and resolution

• Signature in Xenon1T: energy deposits on atomic electrons in xenon: electronic recoil (ER)


XENON1T Detector

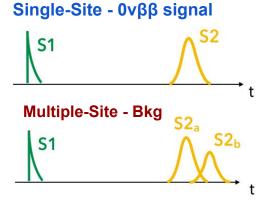
- <u>Main goal</u>: Direct detection of WIMPs (DM candidates)
- Location: Laboratori Nazionali del Gran Sasso (LNGS), Italy,
 - ~1300m rock-equivalent wall
- 3.2 t detector \Rightarrow Target mass of 2.0 t
- (Dual-phase) Time Projection Chamber (TPC) [1]

AEPSHEP Group C

Upgrades for XENONnT:

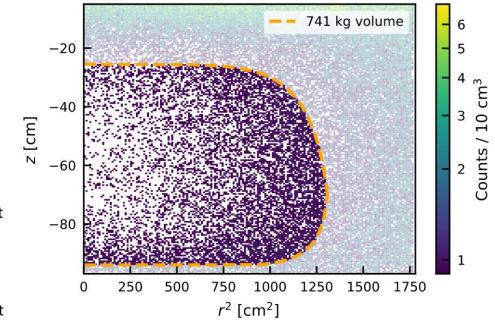
- **More Xe**: 5.9 t LXe with a 8.4 t capacity
- Less background: Radon removal, LXe purification, neutron veto, ...

Event Selection


AEPSHEP Group C

Dataset:

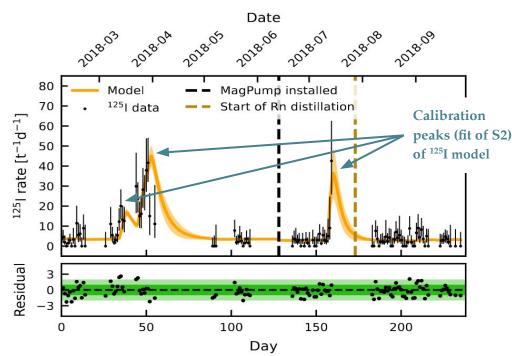
- Scan energies between 1600 and 3200 keV
 - \circ 0νββ peak at Q_{ββ} = (2457.83 ± 0.37) keV
- Isotope exposure of 36.16 kg yr


Analysis Strategy:

• Select events that have one S1 signal and one S2 signal with the correct shape pattern of the S2 signal

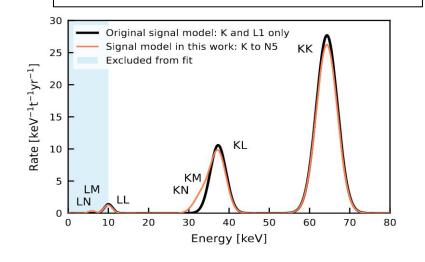
Signal Acceptance Optimization

• An FV (Fiducial Volume) in the detector is chosen that maximises signal-to-noise ratio:


Ref: Xenon1T Public Talk

Search for ¹²⁴Xe Two-Neutrino double electron capture

AEPSHEP Group C


Background(s):

- Key background: ¹²⁵I coming from neutron activation of ¹²⁴Xe \Rightarrow Peak at 67.3 keV. $^{125}I + e^- \rightarrow ^{125}Te^* + \nu_e$.
- Other backgrounds com from ²¹⁴Pb , ⁸⁵Kr and Elastic scattering of solar neutrinos off atomic electrons.

Signal model:

Account for additional shells (not only K+L) \Rightarrow Relative fraction of KK, KL, and LL captures slightly decreased.

Search for ¹²⁴Xe Two-Neutrino double electron capture (2/2) **AEPSHEP**[§] Group C

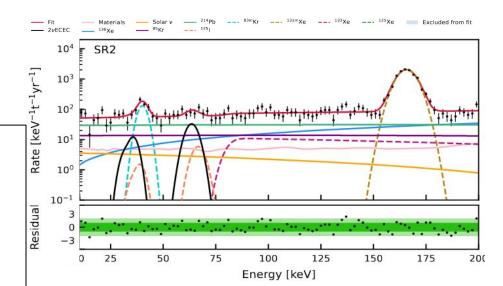
<u>Fitting strategy</u> \Rightarrow Binned log-likelihood:

$$\mathcal{L}\left(\mu_{s}, \vec{\theta}\right) = \prod_{i}^{\text{bins}} \text{Poisson}\left(N_{\text{i}}, \lambda_{\text{i}}(\vec{\theta}) + n_{\text{i}}^{s}(\mu_{s}, \vec{\theta})\right) imes$$

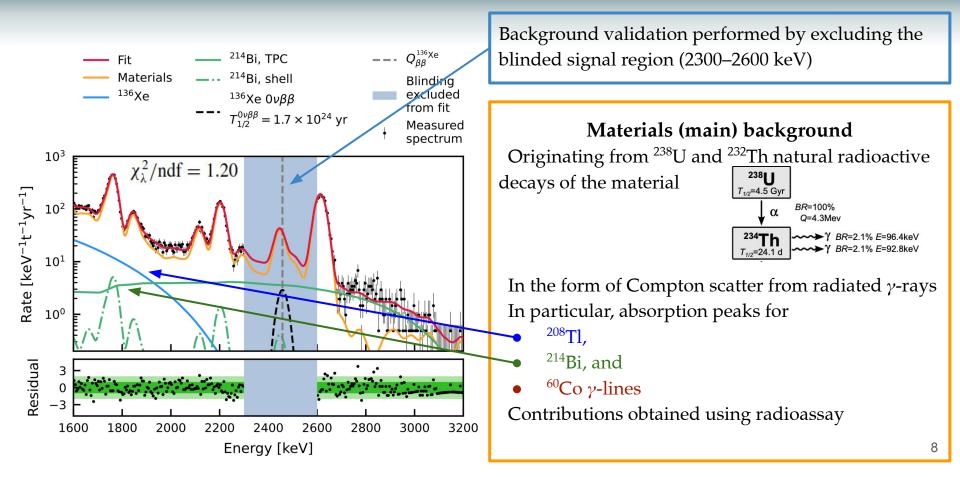
Parameter of interest: 2vECEC event rate $A_{\beta\beta}$

$$T_{1/2}^{\beta\beta} = \ln 2 \times \frac{N_A \times \eta_{\rm Xe} \times \epsilon_{\rm SS}}{A_{\beta\beta} \times M_A}$$

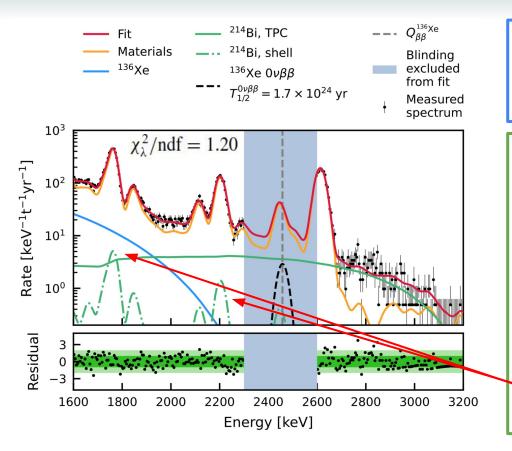
Fit Results:


The best-fit double-electron capture rate:

$$A_{2\nu \text{ECEC}} = (300 \pm 50) \text{ t}^{-1} \text{yr}^{-1}$$


The resulting 2vECEC half-life (first
$$>5\sigma$$
 in any isotope):

$$T_{1/2}^{2\nu \text{ECEC}} = (1.1 \pm 0.2_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ yr}$$


$$\prod_{\mathrm{j}}^{\mathrm{constraints}}\mathrm{Gauss}\left(heta_{\mathrm{j}},\,\mu_{\mathrm{j}},\,\sigma_{\mathrm{j}}
ight).$$

Ονββ search with XENON1T: Background sources AEPSHEP[§] Group C

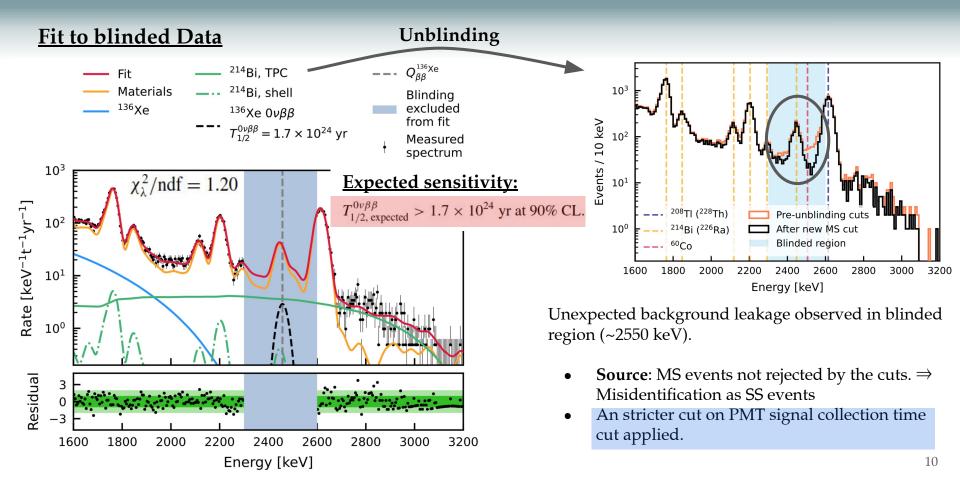
Ονββ search with XENON1T: Background sources AEPSHEP Group C

2**νββ** of ¹³⁶Xe

Continuous spectrum ending at signal peak Modelled from theoretical calc.

²²²Rn contamination

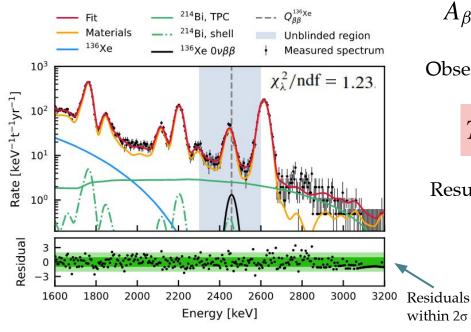
Rn emanation from materials to LXe target


Internal TPC ²¹⁴Bi β -decays to ²¹⁴Po are easily tagged and have >99% rejection efficiency

• ²¹⁴Bi spectrum is continuous

External (shell) ²¹⁴Bi β -decays with γ -rays in the active volume

Several ²¹⁴Bi absorption peaks


0vββ search with XENON1T: Unblinding

0vββ search with XENON1T

AEPSHEP Group C

Final unblinded result:

Best-fit $0\nu\beta\beta$ rate: $A_{\beta\beta} = (65 \pm 87) t^{-1} yr^{-1}$ $\langle m_{\beta\beta} \rangle$

 $\langle m_{\beta\beta} \rangle \equiv \left| \Sigma_i U_{ei}^2 m_{\nu_i} \right|$ $\langle m_{\beta\beta} \rangle^2 = \frac{m_e^2}{G_{0\nu} |M_{0\nu}|^2 T_{1/2}^{0\nu}}$

Observed exclusion limit:

$$T_{1/2}^{0\nu\beta\beta} > 1.2 \times 10^{24}$$
 yr at 90% CL

Resulting neutrino mass range:

$$\langle m_{\beta\beta} \rangle < (0.8-2.5) \, {\rm eV}/c^2$$

Large uncertainty due to nuclear ME

EXO-200 [2] and KamLAND-Zen [3] supersede this result by 2 orders of magnitude.

Projection of XENONnT sensitivity to 0νββ decay

Best experimental limits for different isotopes amLAND-Zen ¹⁰⁰Mo XENON1T 10²⁶ 10⁰ ¹³⁰Te EXO200 ¹³⁶Xe ⁷⁶Ge ¹³⁶ Xe $T_{102}^{00\beta\beta}$ [yr] 10_{52} XENONnT 1000 days projection $\langle m_{\beta\beta}\rangle$ [eV/c²] 10^{-1} Inverted hierarchy 1024 10^{-2} FXENON1 Expected median lower limit (90% C.L.) Normal hierarchy 1σ range of expected limits 10^{-3} 10²³ 10^{-3} 10^{-2} 10^{-4} 10^{-1} 200 400 600 800 1000 Live time [d] $m_{\text{lightest}} [eV/c^2]$

- XENONnT is not yet competitive with dedicated experiments
- However, future Xe DM detectors can also enter the game

Conclusions and prospects

AEPSHEP Group C

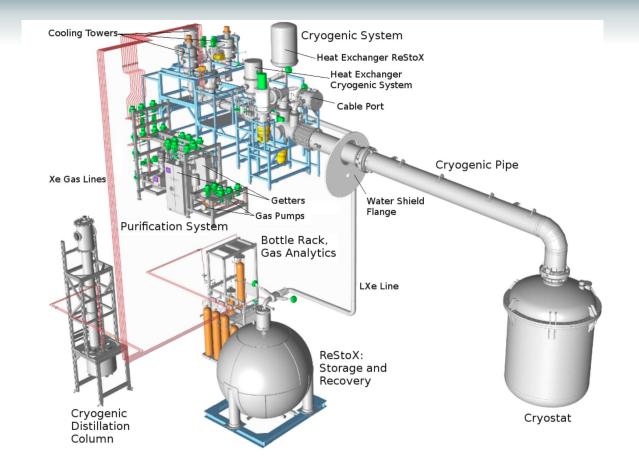
• XENON1T is awesome

- <u>Main goal</u>: Direct detection of Dark Matter
- Nevertheless, **broader physics program** such as
 - First significant measurement of 2vECEC
 - Searches of 0νββ for experimental evidence of Majorana neutrinos
- XENONnT is n times more awesome!
 - Sensitivity studies to $0\nu\beta\beta$ decay \Rightarrow Closer to dedicated experiments
 - Exciting prospects for XENONnT, low background and optimized detection

Thank you very much for your attention!

Backup Slides

Reference


AEPSHEP Group C

[1] E. Aprile et al. (XENON Collaboration), Eur. Phys. J. C 77, 881 (2017).

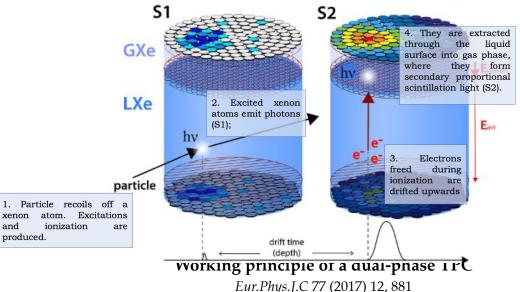
[2] G. Anton et al. (EXO-200 Collaboration), Phys. Rev. Lett. 123, 161802 (2019).

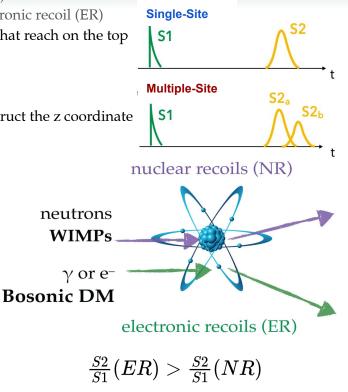
[3] S. Abe et al. (KamLAND-Zen Collaboration), arXiv:2203.02139

[4] Murra, M., et al. "Design, construction and commissioning of a high-flow radon removal system for XENONnT." arXiv preprint arXiv:2205.11492 (2022).

Dual-Phase Xenon TPC Detection Principle

AEPSHEP Group C


- Recoil of *a particle* with the Xe atom excite and ionize which causes a release of photos and *e* 1.
 - *WIMP, neutron* or **v** interacts with LXe: Nuclei scatter \rightarrow Nuclear recoil (NR) 1.1.
 - 1.2. γ rays, charged particles or ν_e interacts with LXe: Atomic electrons \rightarrow Electronic recoil (ER)
- First scintillation signal S1 is emitted from the first photons of the excited Xe atom that reach on the top 2. and the bottom PMTs
- Ionized electrons go upwards with the electric field and drift to the liquid-gas 3.
- Second scintillation signal S2 is emitted in GXe 4.


xenon

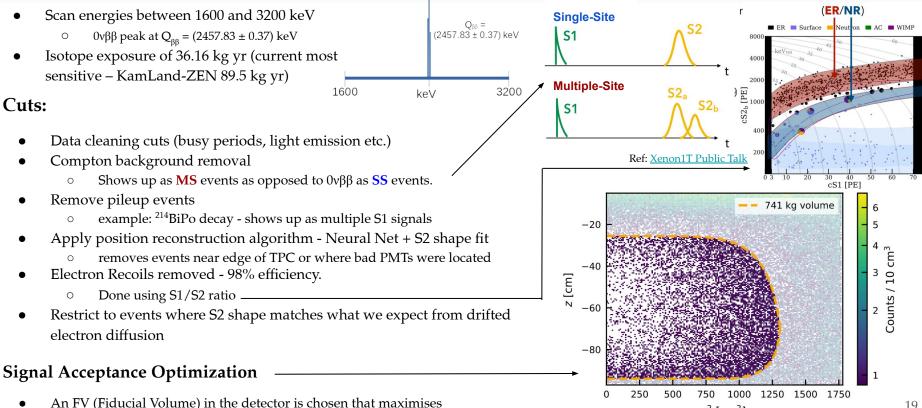
produced.

and

Events can be reconstructed in 3D using the drift time between S1 and S2 to reconstruct the z coordinate 5. and the S2 hit pattern on the top PMT array for the (x,y) coordinates.

17 A particle interacting with LXe

XENON1T in LNGS

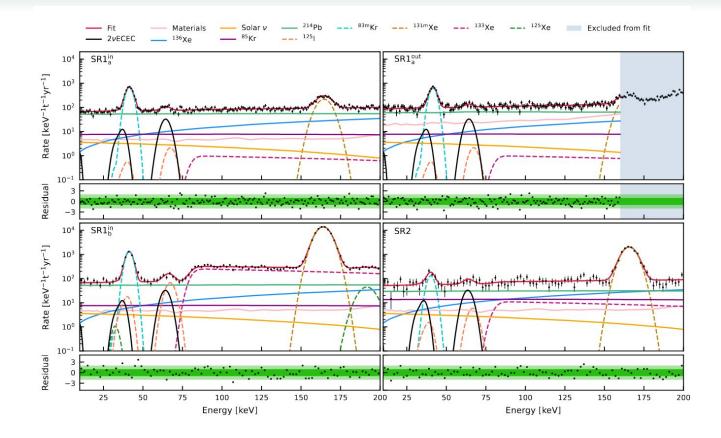

Event Selection

signal-to-noise ratio:

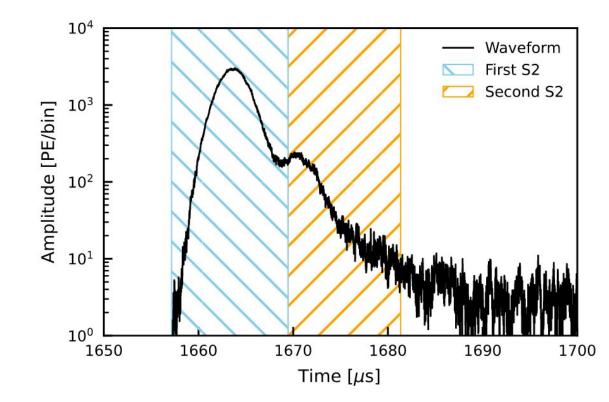
AEPSHEP Group C

 r^{2} [cm²]

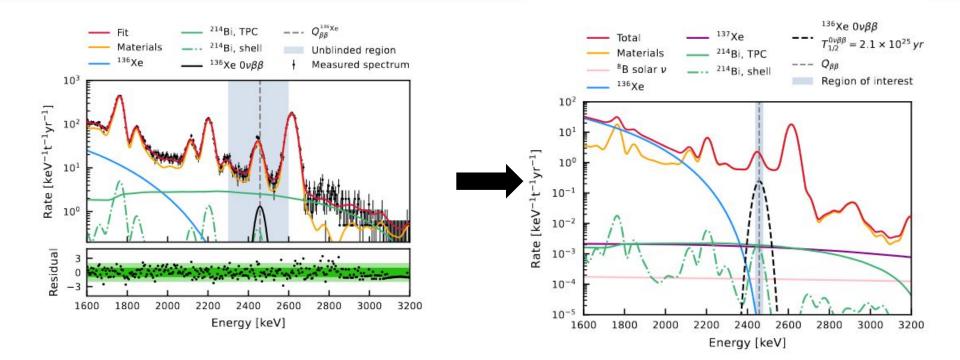
Dataset:


Mass of isotopes

	mass (g/mol)	delta m (keV)		mass (g/mol)	delta m (keV)
Te124	123.9028179	-2864.437522	Te136	135.9201	11998.57557
1124	123.9062099	295.1904819	1136	135.91465	6921.932695
Xe124	123.905893	0	Xe136	135.907219	0
Cs124	123.912258	5928.959979	Cs136	135.9073116	86.25635414
Ba124	123.915094	8570.677261	Ba136	135.9045759	-2462.032069


EXO-200 and KamLAND-Zen supersede this result by 2 orders of magnitude

- EXO-200 [2]: $T_{1/2} > 3.5 \times 10^{25} \text{ yr } \langle m_{\beta\beta} \rangle < (93 286) \text{ meV}$
- KamLAND-Zen [3]: $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr at } 90\% \text{ C.L. } \langle m_{\beta\beta} \rangle < (36 156) \text{ meV}$


Search for ¹²⁴Xe Two-Neutrino double electron capture (2/2) **AEPSHEP**^³ Group C

Limits 0v β β XENON1T: Background leakage into unblinded region

Projection of XENONnT: Background and signal

Background sources

- Main background: radioactive impurities in the detector material, comprised of several radioactive decay chains
 - \circ ²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co
 - Their contributions are obtained using radioassay
- Intrinsic LXe backgrounds also play a (subdominant) role
 - Comes from ²²²Rn emanation from detector materials to LXe target
 - Composed of ²¹⁴Pb and ²¹⁴Bi isotopes, >99% rejection using timing information
 - Background modelling is validated in a fit that excludes the blinded signal region (2300–2600 keV)

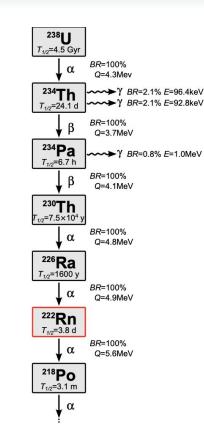
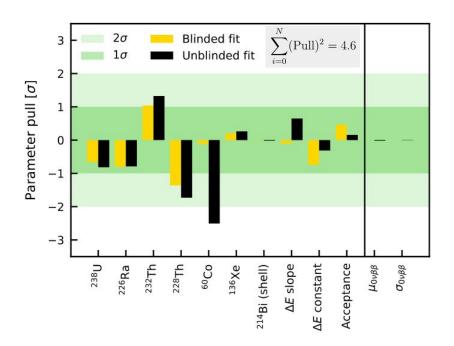


TABLE VII. Best-fit signal and background model parameters for the XENON1T 2ν ECEC search that were shared among all datasets. Unitless parameters state the relative change to the expected value. The meaning of the parameters is given in Sec. III D.

Parameter	Fit value	Constraint	Unit
$A_{2 m vECEC}$	300 ± 50	_	$t^{-1}yr^{-1}$
Solar ν	1.00 ± 0.02	1.00 ± 0.02	_
¹³⁶ Xe	0.99 ± 0.03	1.00 ± 0.03	—
$^{238}\mathrm{U}$	1.0 ± 0.5	1.0 ± 0.6	-
²²⁶ Ra	0.5 ± 0.3	1.0 ± 0.5	_
232 Th	0.9 ± 0.6	1.0 ± 0.6	_
228 Th	0.9 ± 0.6	1.0 ± 0.6	_
60 Co	0.6 ± 0.3	1.0 ± 0.4	_
40 K	1.0 ± 0.3	1.0 ± 0.3	-
$\mu_{ m 83mKr,misID}$	32.1 ± 0.6	32.1 ± 0.6	keV
$\sigma_{ m 83mKr,misID}$	1.3 ± 0.2	1.3 ± 0.2	keV
$f_{ m 83mKr,misID}$	2.6 ± 0.4	2.6 ± 0.4	10^{-4}


TABLE IX. Parameter constraints and best-fit parameters for the XENON1T $0\nu\beta\beta$ search. Best-fit parameters are given for the blinded and unblinded data. Unitless parameters state the relative change to the expected value. For the acceptance, the constrained and best-fit acceptances are given instead of the fit parameters. Due to the implementation of the acceptance, the Gaussian constraint on the acceptance scaling parameter yields an asymmetric acceptance range. Due to the internal processing of the thorium chain, the respective best-fit parameters cannot be translated directly to ²²⁸Th event counts in Tab. V.

Parameter	\mathbf{Unit}	Constraints	Blinded fit value	Unblinded fit value
²³⁸ U	-	1.0 ± 0.6	0.6 ± 0.1	0.5 ± 0.1
226 Ra	-	1.0 ± 0.5	0.620 ± 0.008	0.624 ± 0.008
232 Th	-	1.0 ± 0.6	1.6 ± 0.1	1.8 ± 0.1
²²⁸ Th	-	1.0 ± 0.6	0.2 ± 0.1	0.0 ± 0.1
⁶⁰ Co	-	1.0 ± 0.4	1.0 ± 0.3	-0.1 ± 0.1
¹³⁶ Xe	-	1.00 ± 0.03	1.01 ± 0.03	1.01 ± 0.03
²¹⁴ Bi, TPC	$\mu Bq/kg$	_	1.7 ± 0.1	1.25 ± 0.09
²¹⁴ Bi, LXe shell	$\mu Bq/kg$	10 ± 5	10 ± 5	10 ± 5
$\Delta E_{ m slope}$	-	$(1.5\pm0.2) imes10^3$	$(1.5\pm0.1) imes10^3$	$(1.6\pm0.1) imes10^3$
$\Delta E_{ m offset}$	keV	-4.4 ± 0.3	-4.6 ± 0.3	-4.5 ± 0.2
ϵ	%	$88.6\substack{+8.9\\-0.3}$	$88.3\substack{+0.6\\-0.1}$	$85.2\substack{+4.6 \\ -0.3}$
$\mu_{0\nu\beta\beta}$	$\rm keV$	2457.8 ± 0.4	-	2457.8 ± 0.4
$\sigma_{0\nu\beta\beta}$	keV	19.7 ± 0.3	-	19.7 ± 0.3
$A_{0\nu\beta\beta}$	$t^{-1}yr^{-1}$	_	_	60 ± 90

Pulls

AEPSHEP Group C

Fit to blinded data

Pulls:

- No pulls of the blinded fit $>2\sigma$.
- The pull on 60 Co close to 0.
- No notable pulls on the systematic uncertainty parameters.