Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\sqrt{s} = 13$ TeV

JHEP 04 (2022) 087 The CMS Collaboration

Group D

Shiwen An Irene Bachiller Perea

Sudipta Das

Tommaso Fulghesu

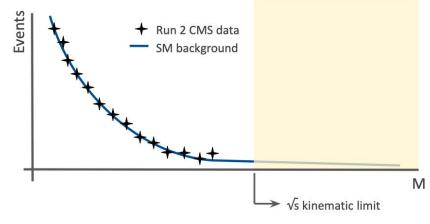
Ben Hodkinson Pranati Jana Jinheung Kim SooJin Lee Xiaowen Li Geliang Liu Matteo Marchegiani David Munoz Perez Papia Panda

Thanaporn Sichanugrist Rongrong Song Zebing Wang

AEPSHEP

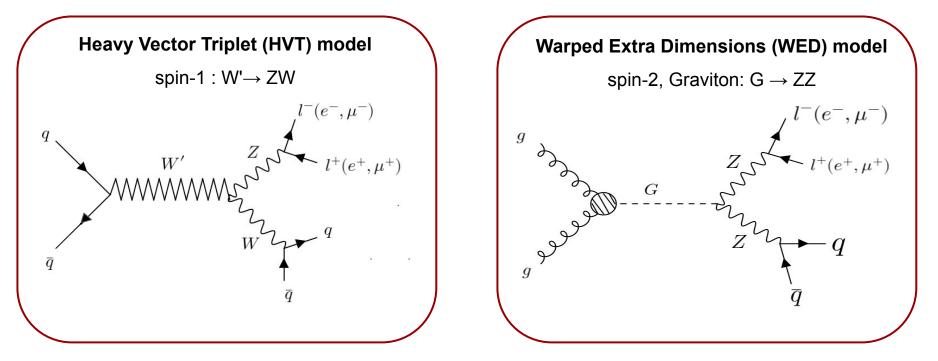
05-18 OCTOBER 2022, Pyeongchang, SOUTH KOREA

Introduction


- SM extensions predict additional heavy gauge bosons, or deviations in the variables of the 2/2q system.
- Search for new physics in **diboson** ZZ / ZW / ZH events with **2 leptons and 2 quarks** final states.
- → Using pp collision, at \sqrt{s} = 13 TeV, Run 2 (L = 138 fb⁻¹) dataset recorded by CMS experiment.

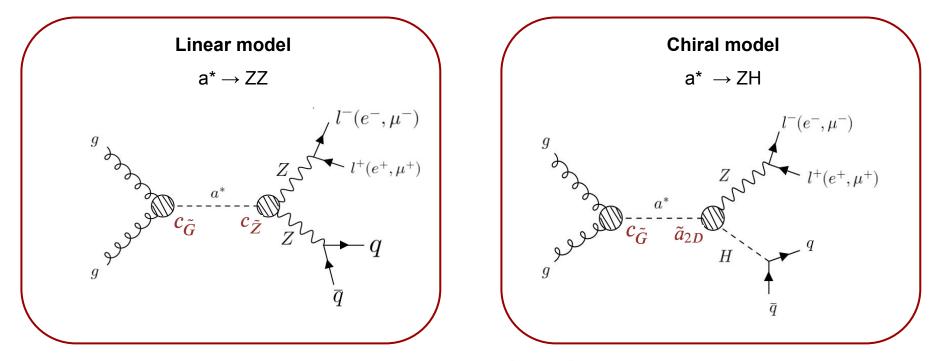
Analysis strategy:

- → Search from deviations w.r.t. the SM prediction.
- ➔ Discriminant variable: invariant mass of the 2l2j system.
- Both resonant and non-resonant deviations.
- \rightarrow If no deviation is found, upper limit on the σ will be set.


What's new?:

→ First search for the Axion-Like Particles (ALP) mediated ZZ / ZH production at the LHC.

Models


→ Resonant models:

→ Resonance mass range: [450, 2000] GeV

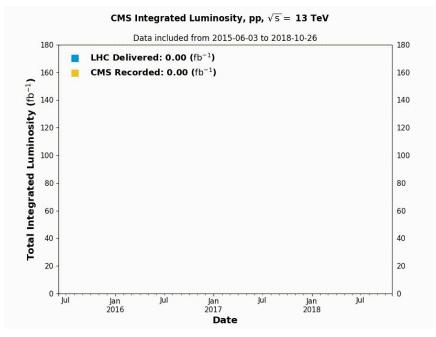
Models

→ Non-resonant models: axion-like particles (ALP) neutral pseudo-scalar boson as mediators.

Sensitive to 2-dimensional parameter space: the couplings $|c_{\tilde{G}}c_{\tilde{Z}}| |c_{\tilde{G}}\tilde{a}_{2D}|$ ind the scale of new physics f_a .

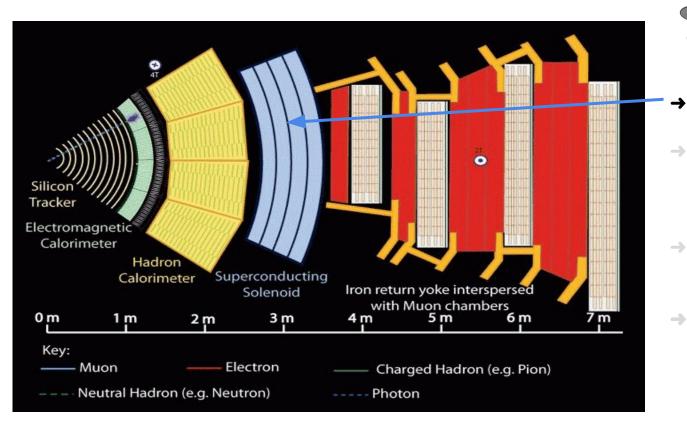
Group D

Signal simulation

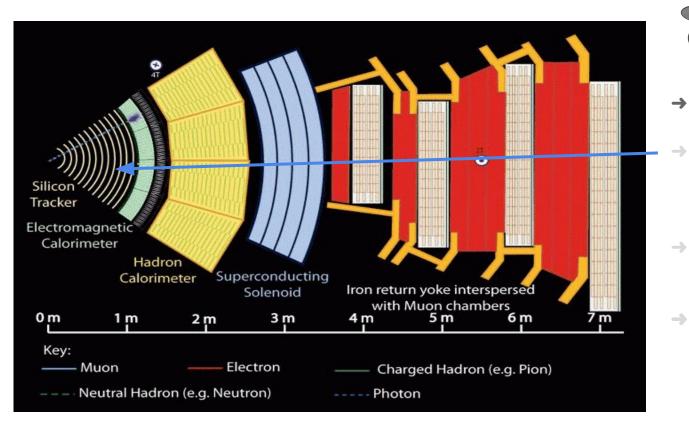

Simulated with Madgraph at LO

- → **Gravitons (WED):** m(G) = 450 2000 GeV and curvature parameter κ of WED metric Bulk graviton production cross sections, etc. are taken from [1404.0102]
- → W' bosons (HVT): m(W') = 450 2000 GeV W' production cross sections, widths, branching fractions etc. are taken from [JHEP 2009 20(2014) 20060]
 - Model A (gauge $SU_1(2) \times SU_2(2) \times U_Y(1)$) with coupling strength $g_y=1$
 - Model B (minimal composite Higgs model SO(5) \rightarrow SO(4)) with coupling strength g_{V} =3
- → ALPs (non-resonance): $m(a^*) = 1$ MeV, f_a (new physics energy scale), derivative coupling
 - Linear EFT: • Chiral EFT: $c_{\tilde{G}}/f_a = c_{\tilde{Z}}/f_a = 1 \text{ TeV}^{-1}$ (coupling for a-g-g and a-Z-Z) $c_{\tilde{G}}/f_a = \tilde{a}_{2D}/f_a = 1 \text{ TeV}^{-1}$ (coupling for a-g-g and a-Z-H)

Data and simulation

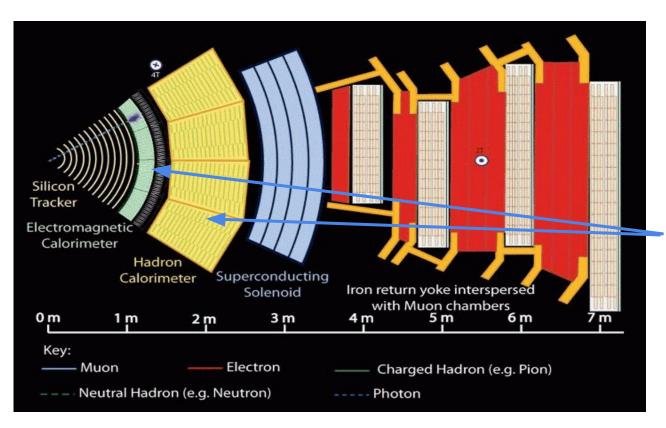

- Data: proton-proton collisions recorded by CMS during Run2 (2016-2018), L = 138 fb⁻¹
- → Simulation:
 - Madgraph simulator
 - i. Z+jets at LO and NLO
 - ii. ZZ, ZW, ZH at NLO
 - iii. Signal at LO
 - Parton showering and Hadronization: PYTHIA8
 - PDF: NNPDF3.0 (2016) and NNPDF3.1 (2017, 2018, ALP)
 - Detector simulation: GEANT4

AEPSHEP 2022

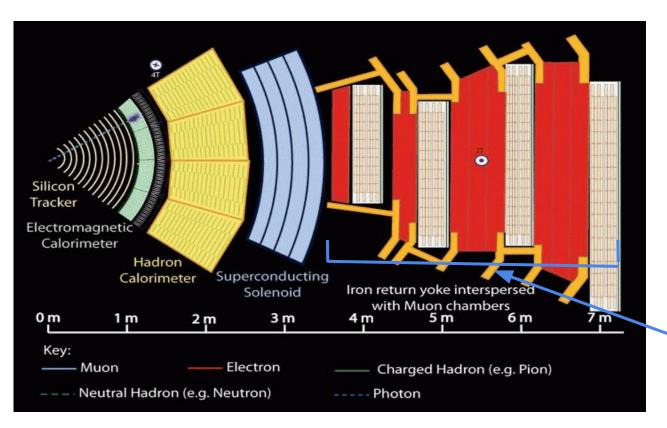

6

COMPONENTS OF THE DETECTOR

→ 3.8T Solenoid Magnet: bending particles


- Silicon Tracker: measurement of the momentum of charged particles
- → ECAL and HCAL: Measurement of the energy for electron and hadrons
- Muon Chambers (DTs, CSCs, RPCs): measurement of the muon momentum

COMPONENTS OF THE DETECTOR


- → 3.8T Solenoid Magnet: bending particles
 → Silicon Tracker:
 - measurement of the momentum of charged particles
 - **ECAL and HCAL**: Measurement of the energy for electron and hadrons
- Muon Chambers (DTs, CSCs, RPCs): measurement of the muon momentum

COMPONENTS OF THE DETECTOR

- → 3.8T Solenoid Magnet: bending particles
- → Silicon Tracker: measurement of the momentum of charged particles
- → ECAL and HCAL: Measurement of the energy for electron and hadrons
- Muon Chambers (DTs, CSCs, RPCs): measurement of the muon momentum

COMPONENTS OF THE DETECTOR

- → 3.8T Solenoid Magnet: bending particles
- → Silicon Tracker: measurement of the momentum of charged particles
- → ECAL and HCAL: Measurement of the energy for electron and hadrons
- Muon Chambers (DTs,
 CSCs, RPCs): measurement of the muon momentum

Reconstruction

LEPTONS			μ*/- μ*/-
	p _T resolution	Isolation	$\Delta R \qquad \gamma \gamma \pi^{+\prime-} \pi^{+\prime-}$
Electron	1.7 - 4.5%	ΔR = 0.3	
Muon	1 - 3% up to p _T = 100 GeV, < 7% up to p _T = 1 TeV	ΔR = 0.4	Isolated Non-Isolated

JETS

р _т resolution	Isolation from leptons	b-tagging
5-10%	ΔR > 0.8 (0.4) for AK8 (AK4) jets	NN (DeepCSV) → Loose (medium) → 84 (64) % efficien

- Anti-kT jet clustering
- Pileup rejection (PUPPI)
- Cleaning/grooming (softdrop) •
- Quark/gluon AK8 jets rejected using subjettiness variable τ_{21}

% efficiency

Event Selection

- Trigger selection:
 - Electron: $[p_T > 27 (32) \text{ GeV}$ for the 2016 (2017 and 2018) sample; tight identification] OR [electron $p_T > 115 \text{ GeV}$; no isolation]
 - Muon: p_T > 24 (27) GeV for 2016 and 2018 (2017); tight identification and loose isolation
- Leptonic Z reconstruction:
 - p_T(I) > 40 GeV, p_T(II) > 150 GeV (resolved) and p_T(II) > 200 GeV (boosted), 76 < m(II) < 106 GeV

Boosted W / Z / H [AK8(J)]:

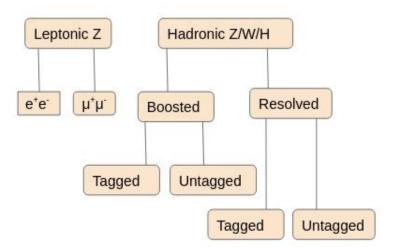
- p_T(II) > 200 GeV; p_T(J) > 200 GeV
- m_{SD} (J) > 30 GeV
- τ₂₁ < 0.40 (0.45) in 2016 (2017 and 2018)

- Tight ID

Resolved W / Z / H [AK4(j)]:

jetls

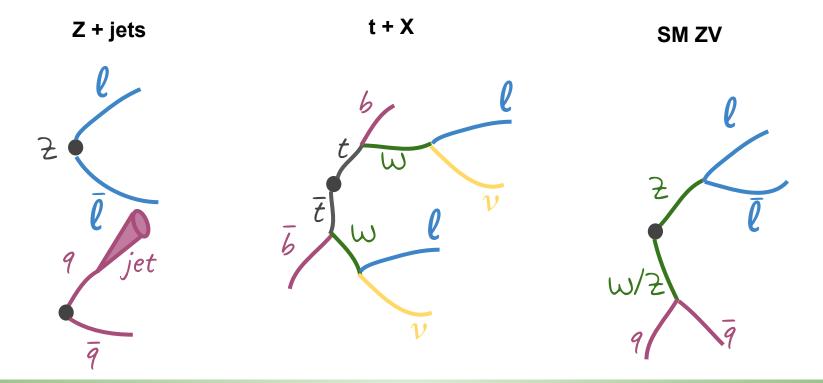
- veto boosted
- dijet combination with m(jj) > 30 GeV
- p_T(II) > 150 GeV, p_T(jj) > 150 GeV
- ΔR(jj) < 1.5; PU-beta > 0.2
- Tight ID


Event Categorization

To increase the sensitivity to the signal, events are split into **8 categories** by combining:

- → electrons/muons
- boosted/resolved
- → tagged/untagged

Each category is further split into **3 regions**:


- → SR1: signal region sensitive to ZV
- → SR2: signal region sensitive to ZH
- → SB: background enriched sideband region

	Boosted	Resolved
SR1	65 < m _{SD} (J) < 105 GeV	65 < m(jj) < 110 GeV
SR2	95 < m _{SD} (J) < 135 GeV	95 < m(jj) < 135 GeV
SB	30 < m(jj) < 65 GeV &	30 < m(jj) < 65 GeV &
	135 < m(jj) < 300 GeV	135 < m(jj) < 180 GeV

Background estimation

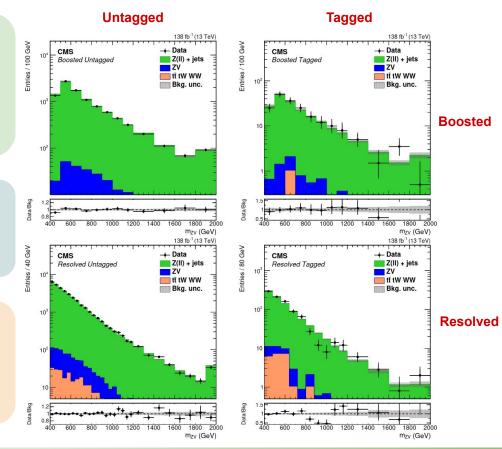
Background = processes whose final state is the same or can be mistaken as that of the signal (dilepton+dijet)

Background estimation

m_{ZV} distributions:

Z + jets (dominant)

→ Linear fit of the m_{ZX} shape in each SB category to match MC to data within uncertainties:


 $m corr(m_{ZX}, s) = 1 + s(m_{ZX} - 500\,{
m GeV})/(500\,{
m GeV})$

SM ZV: ZZ and ZW with $Z \rightarrow II (3-20\%)$

Estimated from MC simulation

t + X: tt, tW, WW, Z→TT, fakes (4%)

 Lepton flavor symmetric backgrounds determined from eµ data using a top quark-enriched control region

Group D

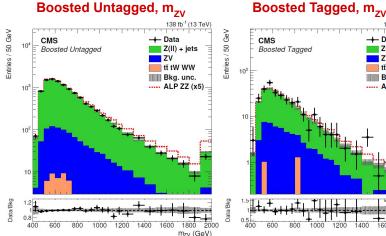
Systematics

The systematic uncertainties influence both the **normalization** and **shape** of the background and signal.

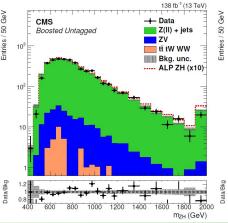
Dominant effect: background shape correction uncertainty.

Quantized by calculating the change on the fitted signal cross section when a given parameter is displaced by ± 1 std from its post-fit value.

Fraction of	Воо	sted	Resolved		
signal σ total uncertainty (%)	Untagged	Tagged	Untagged	Tagged	
Bulk graviton	11	13	3	3	
ALP linear ZZ	42	42	16	16	
ALP chiral ZH	9	44	7	23	


Systematics:

Background and signal normalization uncertainties (%)


	Boosted		Resolved	
Source	Background	Signal	Background	Signal
Integrated luminosity	1.8		1.8	
Electron trigger and ident.	2.0		2.0	
Muon trigger and ident.	1.5		1.5	
Electron energy scale	0.8	< 0.1 - 0.2	0.9	< 0.1
Muon momentum scale	0.5	< 0.1 - 0.1	0.6	< 0.1
Jet energy scale	1.0	< 0.1 - 0.1	2.8	0.1 - 1.9
Jet energy resolution	0.3	< 0.1 - 0.3	0.3	1.0
V/H identification (τ_{21})	5 (ZV)	5	—	
V/H identification (extrap.)	—	2.6-6.0	—	
V/H mass scale	0.6 (ZV)	0.4 - 0.8	—	
V/H mass resolution	5.0 (ZV)	5.0-6.0	—	
b tag SF, untagged	0.1	1.0 - 7.4	0.1	0.7–2.2
b tag SF, tagged	12	12	3.6	4
Mistag SF, untagged	0.3	< 0.1 - 0.2	0.2	0.1
Mistag SF, tagged	3.5	0.1–0.3	3.8	0.4 - 1.0
SM ZV production	12		12	—
t + X normalization	4 (eµ)		4 (eµ)	
SR-to-SB norm. ratio	3 (Z + jets)		5 (Z + jets)	—
PDFs	—	1.5 - 1.6	—	0.3 - 1.1
Renorm. and fact. scales	—	0.1 - 0.3	—	0.2–0.3
Pileup	0.5	0.1–0.2	0.1	0.1–0.2
MC statistics, untagged	0.3	0.7	0.2	1
MC statistics, tagged	2	1.5	1.5	2
Total, untagged	4	8–13	6	3–4
Total, tagged	13	14–16	8	5–6

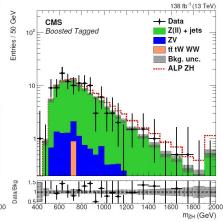
Fitting procedure * Signal selection efficiency: 30~40 %

- → Maximum-likelihood fit to m_{ZV} / m_{ZH} distributions for electrons / muons, boosted / resolved, tagged / untagged categories in SR (SR1 for m_{ZV}, SR2 for m_{ZH}) + SB simultaneously.
- The background-only hypothesis is tested against the signal + background hypothesis.
- Systematic and MC statistical uncertainties included as nuisance parameters in the fit.
- Z+jets normalizations and shape corrections float in the fit, independently for each categories.
- In the ALP fits, for given value of the f_a scale, events with m_{ZV} or $m_{ZH} > f_a$ are excluded from the fit.

Boosted Untagged, m_{ZH}

Boosted Tagged, m_{7H}

138 fb⁻¹ (13 TeV

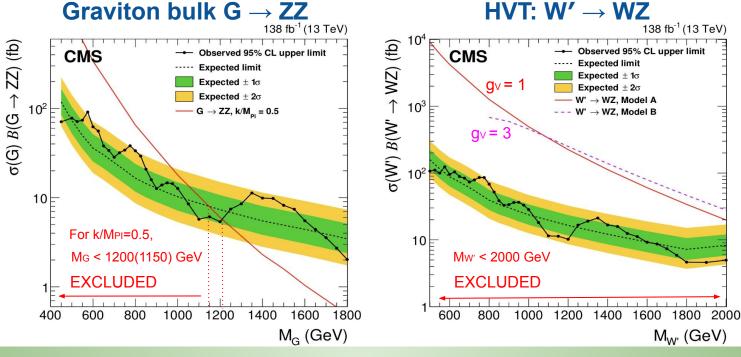

Data

Z(II) + iets

tī tW WW

Bkg. unc.

--- AI P 77

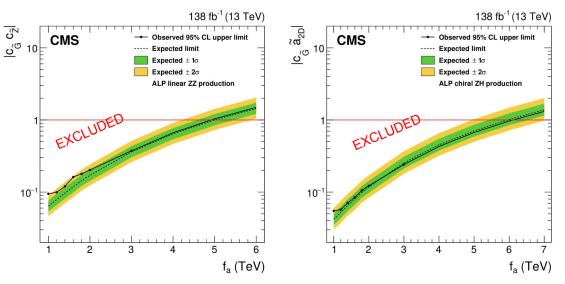

Group D

AEPSHEP 2022

16th October 2022 15

Results: G and W'

- → No significant excess was observed wrt the SM prediction.
- Upper limits on the production cross section times the branching ratio as a function of the resonance mass is computed, at 95% confidence level.



Results: ALP

 $a^* \rightarrow ZZ$

$a^{\star} \rightarrow ZH$

- ➔ No significant excess was observed.
- → Upper limits on the coupling strengths as a function of f_a is computed, at 95% CL for m_a < 100 GeV.

• Upper limits on $\sigma(gg \rightarrow a^* \rightarrow ZZ/ZH)$ at 95% CL for f_a = 3 TeV.

Model (fb)		Expected				Observed
	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Observed
ALP linear ZZ	79	107	151	218	304	162
ALP chiral ZH	32	39	64	94	134	57

Group D

<u>Summary</u>

- The work presents a search of new physics processes in the 2l2j final states.
 - Resonances: heavy new resonances W' and G decaying to ZZ / ZW dibosons.
 - Non-resonant ZZ or ZH production mediated by axion-like particles (ALPs).
 - The search is sensitive to the mass range of (450-2000) GeV.
- ➔ No significant excess is observed in the data above the standard model expectations.
- → Upper limits at 95 % CL:
 - Graviton: $\sigma(G) \times B(G \rightarrow ZZ) < (2-90)$ fb. Masses below 1200 GeV were excluded.
 - W' boson: $\sigma(W') \ge B(W' \rightarrow ZW) \le (5-120)$ fb. Masses below 2000 GeV were excluded.
 - Production of ZZ (ZH) mediated by non-resonant ALP: $\sigma < 162$ (57) fb.
 - Constrain on the couplings, $|c_{\tilde{G}}c_{\tilde{Z}}|$ and $|c_{\tilde{G}}\tilde{a}_{2D}|$ vs the scale f_a .

Data and Simulation (detail list of simulation program)

2016-2018 LHC dataset

	Signal simulation w/ Madgraph	Parton showering and hadronization w/ PYTHIA	PDFs of colliding protons w/
Graviton, W'	LO	v8226 CUETP8M1(2016) v8230 CP5 (2017, 2018)	NNPDF30(2016) NNPDF31(2017, 2018)
ALPs	LO	v8230 CUETP8M1	NNPDF31
SM->Z(II) jets	2016 (NLO) 2017, 2018 (LO) reweight	v8226 CUETP8M1(2016) v8230 CP5 (2017, 2018)	NNPDF30(2016) NNPDF31(2017, 2018)
SM->ZZ, ZW, ZH	NLO		

*All sample are processed via simulation of CMS detector using GEANT4

Considering Model

-Pseudo Nambu-Goldstone boson of SSB at fa

-Neglect small interactions between axions and fermions

- $g_{agg} \lesssim 1.1 \times 10^{-5} \,\text{GeV}^{-1}$ (90% CL) for $m_a \lesssim 60 \,\text{MeV}$

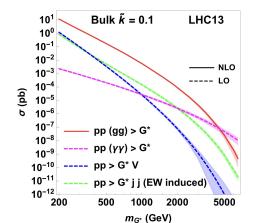
-No information for axion-Z-Z bound

NLO				
$\delta \mathcal{L}_{ ext{eff}} \supset$	$-\frac{g_{agg}}{4}aG_{\mu\nu}\tilde{G}^{\mu\nu}-\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}-\frac{g_{aZ\gamma}}{4}aF_{\mu\nu}\tilde{Z}^{\mu\nu}$			
	$-\frac{g_{aZZ}}{4}aZ_{\mu\nu}\tilde{Z}^{\mu\nu}-\frac{g_{aWW}}{4}aW_{\mu\nu}\tilde{W}^{\mu\nu},$			
where				
	$g_{agg}=rac{4}{f_a}c_{ ilde{G}}, \qquad g_{a\gamma\gamma}=rac{4}{f_a}(s_w^2c_{ ilde{W}}+c_w^2c_{ ilde{B}}),$			
	$g_{aWW} = \frac{4}{f_a} c_{\tilde{W}}, \qquad g_{aZZ} = \frac{4}{f_a} \left(c_w^2 c_{\tilde{W}} + s_w^2 c_{\tilde{B}}^2 \right),$			
$g_{a\gamma Z}=rac{8}{f_a}s_wc_w(c_{ ilde W}-c_{ ilde B}),$				

Linear EFT

Linear expansions of gauge invariant operators built on the SM field -> NLO are listed in the box

Chiral EFT


The Higgs field is realized by (1) U= $e^{i\sigma\pi/v}$ (π are longitudinal components of gauge fields *W*, *B*) & (2) higgs *h* -> construct invariant lagrangian -> *a*-*H*-*Z* coupling appears at LO and those listed in the box at NLO

Gravitons theory

Considering Model

- Gravition couples SM particles through Energy momentum tensor
- Two model parameters (m_G, k)

$$\mathcal{L} = -\frac{x_1 \tilde{k}}{m_G} h^{\mu\nu(1)} \times d_i T^i_{\mu\nu}$$

Massless Boson coupling

MGr(GeV)

ww

tt gg YY

AEPSHEP 2022

Group D

' theory

- W' (BSM candidate) is based on "HVT" model.
 - Model A: Extended gauge symmetry: а.
 - Gauge symmetry: $SU_1(2) \times SU_2(2) \times U_2(1)$
 - SM H transforms as $(2,1,\frac{1}{2})$
 - Additional field φ transforms as (2,2,0)
 - ϕ get vev after SSB and gauge symmetry breaks as SU₁(2) \times U₂(1)
 - Couplings present is this model: c_{μ} = coupling between SM vector bosons and Higgs, c_{μ} : coupling between fermions, g_v : interaction of W' with SM fermions(=1).
 - b. Model B: MCHM (Minimal composite Higgs model):
 - Higgs generates mass via symmetry breaking of SO(5) to SO(4)
 - Additional field ρ_{μ} transforms as (3,1) under SO(4) g_{v} : interaction of W' with SM fermions(=3)

W' theory

Considering Model

- Additional real vector V embedding W and Z $^{\prime}$

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu]} a + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a}$$

$$+ i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$$

$$+ \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu]c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c} .$$

$$(2.2)$$

Event Selection

- Trigger selection:
 - Electron: One electron with p_T > 27 (32) GeV and for the 2016 (2017 and 2018); passing tight identification and isolation ; electron p_T > 115 GeV; no isolation
 - Muon: $p_T > 24$ (27) GeV and $|\eta| < 2.4$ for 2016 and 2018 (2017); tight identification and loose isolation
- Leptonic Z reconstruction:
 - Two electron or two muon with opposite charge
 - Leading and subleading $p_T(I) > 40$ GeV, $p_T(II) > 150$ GeV (resolved) and $p_T > 200$ GeV(boosted), 76 < m(II) < 106 GeV
 - Boosted W/Z/H Tagging [AK8(J)]:
 - p_T(II) > 200 GeV; p_T(J) > 200 GeV
 - PUPPI softdrop mass m_{sp} (J) > 30 GeV
 - PUPPI τ_{21} HP cut
 - Tight ID

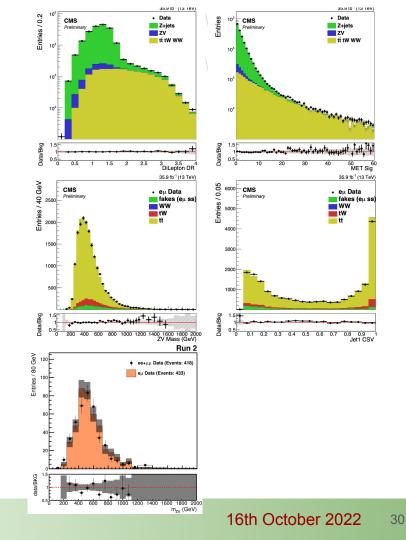
Resolved [AK4(j)]:

- veto boosted
- dijet combination with m(jj) > 30 GeV
- p_τ(II) > 150 GeV, p_τ(jj) > 150 GeV

jetls

- ΔR(jj) < 1.5; PU-beta > 0.2
- Tight ID

B-Tagging Categorization of events based on DeepCSV Tagged: 1 Medium and 1 Loose tag.


RUDA

Background Estimation (t+X)

Data driven background

- Data driven background from eµ data
- Leptonic Z cut loosened (m(ll) > 50 GeV) to enhance the t+X background
 - Good agreement between the data and the estimation of the non-Z decay background
- Tested in the top quark-enriched control region: MET significance > 6, |m(II) - m(Z)| > 10 GeV, 1 medium DeepCSV tag

AEPSHEP 2022

Group D

Results

Entries / 50 GeV

10

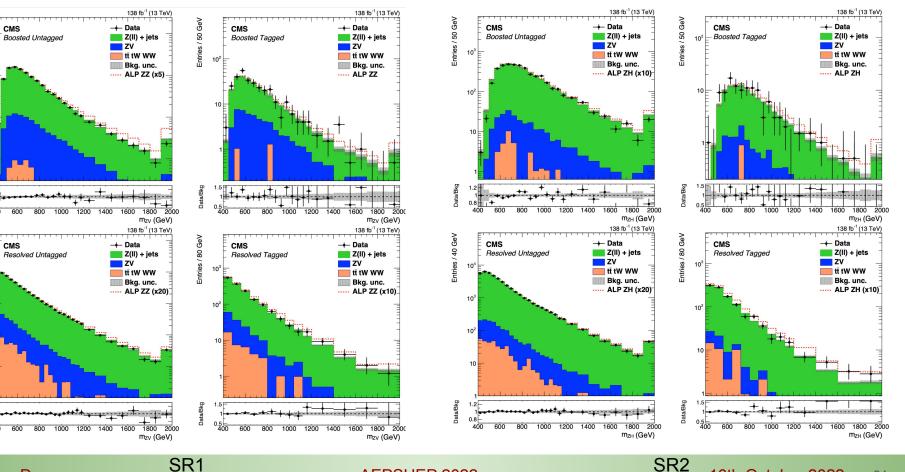
10²

10

0.8

10⁴

10³


10²

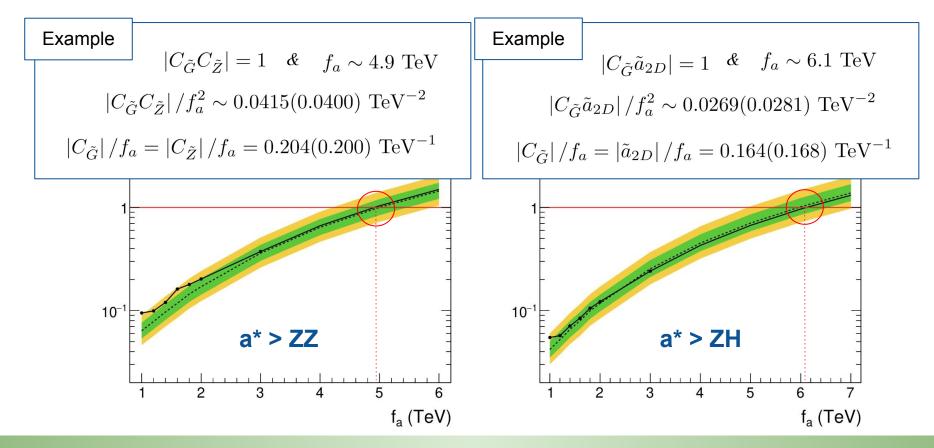
Data/Bkg

400

Data/Bkg

Entries / 40 GeV

16th October 2022 31


AEPSHEP 2022

SR1

Group D

400

Results: Examples of ALP coupling coefficients

Comparison with other heavy resonances measurements

• CMS Collaboration, "Search for a heavy resonance decaying into a Z boson and a Z or W at \sqrt{s} = 13 TeV", *JHEP* **09** (2018) 101

Upper limit	CMS 36.5 fb ⁻¹	CMS 139 fb ⁻¹ (our result)
$\sigma(G) \mathrel{\times} B(G \to ZZ)$	(1.5-400) fb	(2-90) fb
$\sigma(W') \ge B(W' \rightarrow ZW)$	(3-3000) fb	(5-120) fb

This analysis importantly benefits from the increase in the amount of data collected.

• ATLAS Collaboration, "Search for heavy resonances decaying into a pair of Z bosons in the I+I-I'+I'- and $I+I-vv^-$ final states using 139 fb-1 of proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector", *Eur. Phys. J. C* **81** (2021) 332

Mass exclusion range	ATLAS (fully leptonic final state)	CMS 139 fb ⁻¹ (our result)
M _G	< 1800 GeV	< 1200 GeV

Fully leptonic final states seem to provide stronger exclusion limits.