

CMS - SLHC Bunch timing issues

Hardware effects Physics issues

16 October 2006

J. Nash - CMS Upgrade Perspective

Parameter [units]	Nominal	Ultimate	Short bunch	Long bunch	
No. of bunches <i>n</i> b	2808	2808	5616	936	
$p^+ 5$ bunch N_b [10 ¹¹]	1.15	1.7	1.7	6.0	
Bunch spacing <i>1t_{sep}</i> [ns]	25	25	12.5	75	
Beam current [A]	0.58	0.86	1.72	1.0	
E _{beam} [MJ]	366	541	1085	631	
Beta at IP B*[m]	0.55	0.50	0.25	0.25	
Xing angle θ_c [µrad]	285	315	445	430	
Bunch length [cm]	7.55	7.55	3.78	14.4	
Piwinski ratio $\theta_{c} \sigma_{s}/(2\sigma^{*})$	0.64	0.75	0.75	2.8	
L lifetime τ_L [h]	15	10	6.5	4.5	
L_{peak} [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.3	9.2	8.9	
$\mathcal{T}_{turnaround}\left[h ight]$	10	10	5	5	
Events per Xing	19.2	44.2	88	510	
one year <i>L</i> dt [fb ⁻¹]	66.2	131	560	410	

ε_n = 3.75 mm in all the options

16 October 200627 June 2006 -

J. Nash - CMS Upgrade PerspectiveW.Scandale, LHC luminosity and energy

CMS Upgrade Issues

- These upgrade scenarios put different constraints on the detector
 - 12.5 ns or 75 ns beam crossings
 - 12.5 ns reduces the pile-up in the detector, although out of time pileup is an issue for detectors (*cross-talk* from previous bunch)
 - 75 ns puts a very large pile-up, but is "easier" for some of the electronics to cope with (no out of time pile-up use 25nsec electronics)
- Detector issues
 - Effects on Calorimetry
 - Noise from pile-up: Bkgd noise increases by 2-5 times
 - Jet and e,gamma resolution worse
 - Forward jet tagging may be compromised by IR changes
 - Tracking
 - Pattern recognition, vertex resolution
 - B-tagging how much worse with extreme pile-up?
 - Trigger
 - 12.5 ns pushes some of the front end capabilities

Tracking with 500 min Bias events

Issues with Bunch crossing timing

- Assume new tracker and trigger electronics can cope with the choice of bunch timing
- Electronics for other detectors
 - ECAL not easily accessible
 - HCAL can be changed
 - MUONS can be changed
- Situation for 12.5ns or 25ns very different from 10ns or 15 ns
 - Electronics clocked at 40 Mhz
 - QPLL which synchronizes links to this clock has a very narrow frequncy lock
 - Can clock system at 40 Mhz and cope with 12.5ns
- 75 ns should not be a problem

100 GeV electrons. 25ns bins. Each histo is average pulse shape, phased +1ns to LHC clock

J. Freeman16 October 2006CMS Workshop for SLHCFeb 26-27, 2004J. Nash - CMS Upgrade Perspective

- Need to quantify physics risk associated with going to large number of events/x-ing
- Should establish a few benchmark processes
- Need to limit the scope of any studies
 - Can we reduce to 2 the number of options to study

SLHC Physics: Extra gauge bosons

- SLHC extends reach for Z'
 - Cross sections fall with E
 - SLHC gives access to higher E
- Good electron resolution required (including understanding saturation)

Z' mass (TeV)	1	2	3	4	5	6
$\sigma(Z' \to e^+e^-)(fb)$	512	23.9	2.5	0.38	0.08	0.026
$\Gamma_{Z'}$ (GeV)	30.6	62.4	94.2	126.1	158.0	190.0

SUSY searches - measurements

- SLHC statistics will be vital in reaching understanding of complicated SUSY channels
 - Sparticles seen, but statistics for reconstruction limited at LHC

 $\tilde{\chi}_{1}^{0}$

W

• Performance of the detector here is vital

w

b

- B-tagging
- Lenton id

What if no Higgs is found?

- Will need to look at WW scattering
 - Some mechanism required to avoid unitarity violation
- Forward Jet Tagging Essential
 - Fake fwd jet tag ($|\eta| > 2$) probability from pile-up (preliminary ...)

J. Nash - CMS Upgrade Perspective