

A universal framework for t-channel dark matter

Benjamin Fuks (LPTHE / Sorbonne Université)

[with Chiara Arina & Luca Mantani: 2001.05024]

LHC DM WG public meeting

CERN, 04 February 2020

A comprehensive approach to new physics calculations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

A generic implementation for t-channel DM

2 spins: J_X, J_Y
13 masses:

I DM mass: m_X
I DM mass: m_X
I2 mediator masses (SM = Q_L, u_R, d_R)

9 couplings

3 vectors in flavour space
SM = Q_L, u_R, d_R

Many free parameters / spin combination

Spin options

X (DM)	Spin	Self-conj.	Y	Spin
$ ilde{S}$	0	yes		1/2
S	0	no	$\psi Q, \psi u, \psi d$	1/2
$ ilde{\chi}$	1/2	yes		0
χ	1/2	no	$\varphi_Q, \varphi_u, \varphi_d$	
$ ilde{V}_{\mu}$	1	yes		1/2
V_{μ}	1	no	arphi Q, arphi u, arphi d	

- Dark matter
 - \star Spin 0, 1/2 and 1
 - ★ Majorana or not

Mediators

- \star Spin 0 or 1/2 (no spin 1)
- ★ Independent couplings to all gauge eigenstates

Model restrictions

I8 restrictions with 3 parameters each Name DM Mediators Parameters S3M_uni $\tilde{\chi}$ $\varphi_{Q_f}, \varphi_{u_f}, \varphi_{d_f}$ S3D_uni χ $\tilde{\chi}$ S3M_3rd $\varphi_{Q_3}, \, \varphi_{u_3}, \, \varphi_{d_3} \qquad M_{\varphi}, \, M_{\chi}, \, \lambda_{\varphi}$ S3D_3rd χ $\tilde{\chi}$ S3M uR φ_{u_1} S3D_uR χ \tilde{S} F3S_uni $\psi_{Q_f}, \, \psi_{u_f}, \, \psi_{d_f}$ F3C_uni S \tilde{S} F3S_3rd $\psi_{Q_3},\,\psi_{u_3},\,\psi_{d_3}$ $M_S,\,M_{\psi},\,\hat{\lambda}_{\psi}$ SF3C_3rd \tilde{S} F3S_uR ψ_{u_1} SF3C_uR \tilde{V}_{μ} F3V_uni $\psi_{Q_f}, \, \psi_{u_f}, \, \psi_{d_f}$ V_{μ} F3W_uni \tilde{V}_{μ} F3V_3rd $\psi_{Q_3}, \psi_{u_3}, \psi_{d_3} \qquad M_V, M_{\psi}, \hat{\lambda}_{\psi}$ F3W_3rd V_{μ} \tilde{V}_{μ} F3V_uR ψ_{u_1} V_{μ} F3W_uR

- Universal models (uni):
 - \star I dark matter particle
 - ★ 12 mass-degenerate mediators
 - ★ I flavour-conserving coupling

$$\mathcal{L}_{\mathtt{X_uni}}(X) = \sum_{F=Q,u,d} \sum_{f=1}^{3} \left[\lambda_{\varphi} \bar{X} F_{f} \varphi_{F_{f}}^{\dagger} + \text{h.c.} \right]$$

- 3rd generation models (3rd):
 ★ I dark matter particle
 ★ 4 mass-degenerate mediators
 - \star I flavour-conserving coupling

$$\mathcal{L}_{\mathtt{X_3rd}}(X) = \sum_{F=Q,u,d} \left[\lambda_{\varphi} \bar{X} F_{3} \varphi_{F_{3}}^{\dagger} + \text{h.c.} \right]$$

- ✤uR models (uR):
 - \star I dark matter particle
 - \star I mediator

 \star Coupling to the right-handed up-quark

$$\mathcal{L}_{\mathtt{X}_\mathtt{u}\mathtt{R}}(X) = \left[\lambda_{\varphi} \bar{X} u_1 \varphi_{u_1}^{\dagger} + \mathrm{h.c.}\right]$$

DM production at colliders: generalities

Three contributing classes of processes Image: Second state of the second state

Mediator pair production (+ mediator decays into DM+jet)

Dark matter signal

- Each subprocess contributes to signal region population
 - \star Jets generated from ISR or in the mediator decays
- The signal is less naive than from considering YY production only

DM signal production at NLO

NLO computations are not trivial

- * Overlap
 - ★ YY @ LO \otimes Y → Xq decay
 - ★YX @ NLO (real emission)
- Possible (huge) enhancement w.r.t. LO (if YY dominates over XY)
 Spoiling the perturbative expansion for the original process
- *All three subprocesses need to be considered separately to avoid double counting
 - ★ Resonances must be subtracted

Mediator pair production

Two classes of contributions: QCD and t-channel DM-induced

- \star Model-dependent relative dominance
 - → couplings, masses
- \star Mixed order situation
 - \rightarrow to be simulated separately
- \star Problem of the interference
 - \rightarrow reweighted LO simulations

Example: the S3D_uR case

	The	S3D_uR mod	el: Dirac DM c	ouplings to the	right-handed ι	ıp quark
	$\frac{X (D)}{\chi}$	$\frac{1}{2}$ M) Spin Self-contract $1/2$ no	nj. Y (med.) Sp φ_{u_1}	$\underbrace{\frac{\mathrm{Din}}{\mathrm{m}}}_{0} \qquad \mathcal{L}_{\mathtt{X}_{-\mathtt{u}\mathtt{R}}}(X) =$	$= \left[\lambda_{\varphi} \bar{X} u_1 \varphi_{u_1}^{\dagger} + \mathbf{h}. \mathbf{e} \right]$	e.]
·	✤ Ber✤ Ber✤ Lar	nchmark BMI: m nchmark BM2: m ge DM-mediato	n _X = 150 GeV, m n _X = 150 GeV, m or coupling	n _Y = 500 GeV, λ n _Y = 1000 GeV, λ	= l=	
•	Total	rates				
	Scen.	XX [fb]	XY [fb]	YY (total) [fb]	YY (QCD) [fb]	YY (t-channel) [fb]
	S 1	$775.3^{+0.4\%}_{-0.8\%} \pm 1.9\%$	$1617^{+16.5\%}_{-13.4\%}\pm1.0\%$	$473.5^{+23.6\%}_{-16.9\%} \pm 3.0\%$	$324.2^{+34.2\%}_{-23.8\%} \pm 3.4\%$	$261.5^{+7.1\%}_{-6.3\%}\pm2.5\%$
	S2	$122.0^{+1.8\%}_{-2.0\%}\pm1.9\%$	$74.1^{+20.3\%}_{-15.8\%} \pm 1.2\%$	$7.452^{+19.8\%}_{-14.5\%} \pm 5.6\%$	$3.545^{+37.3\%}_{-25.4\%}\pm7.2\%$	$6.939^{+11.1\%}_{-9.4\%}\pm5.0\%$
	S 1	$929.8^{+1.9\%}_{-1.3\%} \pm 1.9\%$	$2212^{+5.9\%}_{-6.3\%}\pm1.0\%$	$648.4^{+8.0\%}_{-9.2\%}\pm3.1\%$	$484.7^{+10.7\%}_{-12.4\%} \pm 3.4\%$	$314.1^{+2.6\%}_{-2.6\%}\pm2.5\%$
	S2	$139.1^{+1.3\%}_{-1.1\%} \pm 2.0\%$	$101.8^{+6.0\%}_{-7.1\%} \pm 1.2\%$	$9.888^{+6.5\%}_{-7.6\%}\pm 5.8\%$	$5.303^{+11.2\%}_{-13.3\%} \pm 7.4\%$	$8.749^{+3.6\%}_{-3.9\%} \pm 4.9\%$
	 Large XX contribution; then XY → could be a significant component of the signal ▲ NLO rates matter 					

✤YY is smaller

 \star QCD and *t*-channel diagrams both important

 \star Large destructive interferences

- Reduction of the TH errors \rightarrow to a few percents

Differential distributions: missing energy

Recasting ATLAS SUSY 2016-27 (monojet; 36 ifb)

CLs exclusion from the best region

Process	CL_s [LO]	E_T^{miss} constraint	CL_s [NLO]	E_T^{miss} constrtaint
Total	$75.6^{+10.1}_{-10.5}$ %	$\in [700,800]~{\rm GeV}$	$97.8^{+0.9}_{-1.4}$ %	$\geq 700~{\rm GeV}$
XX	$0.7^{+0.6}_{-0.6}$ %	$\in [250, 300]~{\rm GeV}$	$3.6^{+0.3}_{-0.6}$ %	$\geq 900~{\rm GeV}$
XY	$62.7^{+12.3}_{-10.4}$ %	$\in [500,600]~{\rm GeV}$	$83.9^{+2.9}_{-4.3}$ %	$\in [700,800]~{\rm GeV}$
YY [total]	$24.0^{+3.1}_{-3.1}$ %	$\geq 900~{\rm GeV}$	$58.1^{+2.2}_{-3.1}$ %	$\geq 900~{\rm GeV}$
YY [QCD]	$10.7^{+4.4}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$17.0^{+2.1}_{-2.1}$ %	$\geq 900~{\rm GeV}$
YY [t-channel]	$29.6^{+3.3}_{-2.6}$ %	$\geq 900~{\rm GeV}$	$38.9^{+1.2}_{-1.8}$ %	$\geq 900 {\rm ~GeV}$

NLO simulations are crucial

- * Modification of the rates (larger yields) and shapes (different best region)
- \star Better control of the theory errors
- Considering all signal components is crucial
 - \star One component alone is not sufficient to exclude the scenario

SI (lighter mediator) is excluded too (from YX, YY and the total)

Summary- outlook

The Über UFO is available

- LO calculations straightforward (collider + cosmo)
- $NLO @ colliders \rightarrow not so straightforward$
- More information:
 - **\star** See the paper (2001.05024) for the syntax
 - ★ Web: <u>http://feynrules.irmp.ucl.ac.be/wiki/DMsimpt</u>

✦ Validation

- Comparison with the literature
 - ★ Cosmological observables (see Chiara's talk)
 - \star SUSY cross sections

Next steps?