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Motivations

Identify impact of inclement weather

Identify impact of special events

Examine compliance with geofencing policy

Identify illegal riding or parking

Examine scooter companies’
maintenance operation



Challenges
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• Difficult to define what is normal

• Challenging to label abnormal 
data instances

• Difficult to engineer features

• Challenging to detect both 
spatial and temporal anomalies 

Data-Driven 
Unsupervised Deep 
Learning Approach

ConvLSTM-
Autoencoder
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ConvLSTM-Autoencoder
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Experiments

• Study Area
- Washington DC, USA

• Data
- Lime scooter data (19/09/2018 – 18/07/2019, ~ 10 months)
- Spin scooter data (27/03/2019 – 15/07/2019, ~ 4 months)
- Lyft scooter data (27/03/2019 – 15/07/2019, ~ 4 months)

• Experiment Design
- 1. Test of robustness to different data samples
- 2. Identify anomalies across three scooter companies

Chair of Geoinformation Engineering 516.11.20



Experiment 1 – Robustness Test

• Assumptions
- Abnormal data samples are rare compared to normal samples

• Test of Assumptions
- Is the model robust to different compositions of normal and abnormal samples

• Data samplings (Lime data)
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• all data (303 days) • 60% randomly sampled data • 23% data with low anomaly score (<0.3)

• 23% data with high anomaly score (> 0.4) • 10% randomly sampled data (30 days)
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Experiment 1 - Results
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Experiment 2 – Anomaly Identification

• Anomaly Definition
- Spikes in the anomaly score
- Common spikes across three scooter companies that indicate systematic influence

• Data Set
- Lime, Spin, and Lyft scooter data (27/03/2019 – 15/07/2019)
- NOAA weather data, event history, and government-issued policies
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Comparing Lyft Scooter Patterns Between An Abnormal 
Day and A Normal Day

Likely a Lyft 
maintenance

Barbecue 
battle event 
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Hourly Anomaly Score Comparison
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Spin Scooter Lime Scooter Lyft Scooter

E-Scooter Patterns on July 4th, 2019



Conclusions

1. Demonstrated the effectiveness of the ConvLSTM-Autoencoder in identifying anomalous 
e-scooter patterns.

2. A robustness test showed that the method is robust to low data sampling rate.
3. Identified three meaningful types of anomalies: weather-driven anomaly, event-driven 

anomaly, and company-driven anomaly.
4. The results could be used to monitor malicious usage of scooters, guide transportation 

planning, and examine the compliance of policy.
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