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Outlook

Computational Chemistry: what we have now and challenges for
the future
How can Machine Learning help us?
Applications
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Computational Chemistry

Potential energy surfaces (PES)
Molecular forces
Electron densities
Molecular dynamics
Thermodynamic properties
Spectroscopy
...
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Time vs Accuracy

Cheap Methods
↓

Fast but not accurate and not
transferable

Expensive Methods
↓

Slow but more accurate and
transferable

Classical mechanics → Quantum mechanics
Newton laws → HΨ = EΨ
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Classical MD vs AIMD

Do we care about the electrons?

No
because we only want to simulate
the motion of the nuclei
↓
Classical mechanics is enough
↓
Classical MD

Yes
because we care about chemical
bonds
↓
We need to use quantum machanics
↓
AIMD
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MD
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How Machine Learning can help us

BEFORE:
use simplified potentials to reduce computational complexity
derived directly from physical approximations

NOW:
use trained potentials
from machine learning based fitting to large datasets
obtained from (Ab Initio) electronic structure calculations

1

1J. Behler, J. Chem. Phys. 145, 170901 (2016).
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Machine learning in quantum chemistry

expensive methods → ←training data
↓

machine learning
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Workflow
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Behler–Parrinello scheme

E = f (G (x),w , b) → scalar regression

Coordinates Features (ACSF) training
x → G (x) → w , b → E → ∂E

∂x

2,3 body terms E , ∂E∂x

Michela Pauletti 10 / 19



What do we need?

MD trajectory of the target method
↓
Uncorrelated MD frames

What is the training cost?
How many configurations do we need?
What do we do when we cannot collect enough uncorrelated frames?

↓
Energies and forces
↓
training → potential
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Answering some questions

What is the training cost?
It depends on how big the system is and how many atom species are
involved. Simple systems can be trained in a couple of hours without
requiring many computational resources.
How many configurations do we need?
It depends on the complexity of the system. In general 1000
configurations are already enough for rather simple systems (single
component, no more than 3 atom species).
What do we do when we cannot collect enough uncorrelated
frames?
Explore more phase space if possible (higher energy configurations).
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Machine learning predictions - Radial distribution function
O-O pair in water
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A different type of application - delta learning
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Delta learning
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Advantages and Disadvantages

Advantages
Extremely fast → as force
fields
Potentially very accurate → it
depends on the target method
Delta learning

Disadvantages
The training can require many
data
Specific descriptors (i.e.
ACSF) are needed
Transferability (?)
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