Machine learning in quantum chemistry

Michela Pauletti

Department of Chemistry - michela.pauletti@chem.uzh.ch

UZH ML Workshop 16/11/2020

Michela Pauletti 1 / 19

Outlook

- Computational Chemistry: what we have now and challenges for the future
- How can Machine Learning help us?
- Applications

Michela Pauletti 2 / 19

Computational Chemistry

- Potential energy surfaces (PES)
- Molecular forces
- Electron densities
- Molecular dynamics
- Thermodynamic properties
- Spectroscopy

• ...

Michela Pauletti 3 / 19

Time vs Accuracy

Cheap Methods

↓
Fast but not accurate and not transferable

Expensive Methods
.

Slow but more accurate and transferable

Classical mechanics \rightarrow Quantum mechanics Newton laws \rightarrow $H\Psi = E\Psi$

Michela Pauletti 4 / 19

Classical MD vs AIMD

Do we care about the electrons?

No

because we only want to simulate the motion of the nuclei

 \downarrow

Classical mechanics is enough

Classical MD

Yes

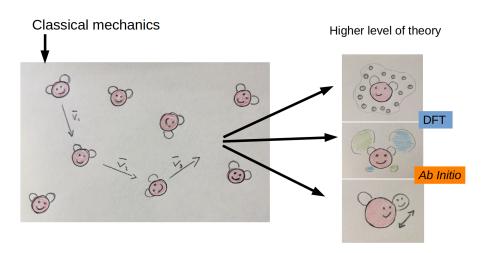
because we care about chemical bonds

We need to use quantum machanics

 \downarrow

AIMD

Michela Pauletti 5 / 19



Michela Pauletti 6 / 19

How Machine Learning can help us

BEFORE:

- use simplified potentials to reduce computational complexity
- derived directly from physical approximations

NOW:

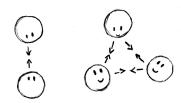
1

- use trained potentials
- from machine learning based fitting to large datasets
- obtained from (*Ab Initio*) electronic structure calculations

Michela Pauletti 7 / 19

¹J. Behler, J. Chem. Phys. 145, 170901 (2016).

Machine learning in quantum chemistry

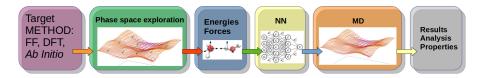


expensive methods \rightarrow

←training data
↓
machine learning

Michela Pauletti 8 / 19

Workflow



Michela Pauletti 9 / 19

Behler-Parrinello scheme

$$E = f(G(x), w, b) \rightarrow \text{scalar regression}$$

Coordinates Features (ACSF) training
$$x \rightarrow G(x) \rightarrow w, b \rightarrow E \rightarrow \frac{\partial E}{\partial x}$$
 2,3 body terms $E, \frac{\partial E}{\partial x}$

Michela Pauletti 10 / 19

What do we need?

MD trajectory of the target method

Uncorrelated MD frames

- What is the training cost?
- How many configurations do we need?
- What do we do when we cannot collect enough uncorrelated frames?

 \downarrow Energies and forces \downarrow training \rightarrow potential

Michela Pauletti 11 / 19

Answering some questions

• What is the training cost?

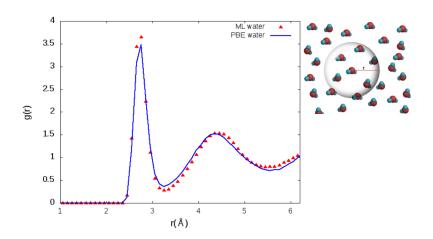
It depends on how big the system is and how many atom species are involved. Simple systems can be trained in a couple of hours without requiring many computational resources.

- How many configurations do we need?
 It depends on the complexity of the system. In general 1000 configurations are already enough for rather simple systems (single component, no more than 3 atom species).
- What do we do when we cannot collect enough uncorrelated frames?

Explore more phase space if possible (higher energy configurations).

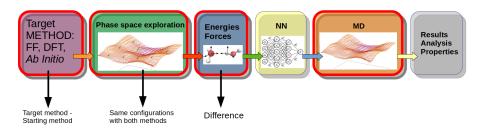
Michela Pauletti 12 / 19

Machine learning predictions - Radial distribution function O-O pair in water



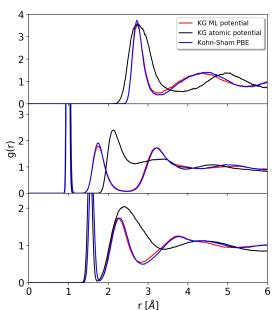
Michela Pauletti 13 / 19

A different type of application - delta learning



Michela Pauletti 14 / 19

Delta learning



Michela Pauletti 15 / 19

Advantages and Disadvantages

Advantages

- ullet Extremely fast o as force fields
- Potentially very accurate → it depends on the target method
- Delta learning

Disadvantages

- The training can require many data
- Specific descriptors (i.e. ACSF) are needed
- Transferability (?)

Michela Pauletti 16 / 19

Anknowledgments

- Dr. Vladimir V. Rybkin
- Prof. Dr. Jürg Hutter's group

Michela Pauletti 17 / 19

References

- J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Physical review letters 98, 146401 (2007).
- J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials, The Journal of chemical physics 134, 074106 (2011).
- S. Desai, S. T. Reeve, and J. F. Belak, Implementing a neural network interatomic model with performance portability for emerging exascale architectures, arXivpreprint arXiv:2002.00054 (2020).
- https://github.com/CompPhysVienna/n2p2

Michela Pauletti 18 / 19

Michela Pauletti 19 / 19