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e Computational Chemistry: what we have now and challenges for
the future

@ How can Machine Learning help us?

@ Applications
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Computational Chemistry

Potential energy surfaces (PES)
Molecular forces

Electron densities

Molecular dynamics
Thermodynamic properties

Spectroscopy
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Time vs Accuracy

Cheap Methods Expensive Methods
{ {
Fast but not accurate and not Slow but more accurate and
transferable transferable

Classical mechanics — Quantum mechanics
Newton laws — HV = EV

Michela Pauletti 4 /19



Classical MD vs AIMD

Do we care about the electrons?

No Yes

because we only want to simulate because we care about chemical

the motion of the nuclei bonds

\ \:

Classical mechanics is enough We need to use quantum machanics
\ \:

Classical MD AIMD
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Classical mechanics Higher level of theory

@3 7 Abnitio
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How Machine Learning can help us

BEFORE:

@ use simplified potentials to reduce computational complexity
@ derived directly from physical approximations
NOW:
@ use trained potentials
@ from machine learning based fitting to large datasets

@ obtained from (Ab Initio) electronic structure calculations
1

'J. Behler, J. Chem. Phys. 145, 170901 (2016).



Machine learning in quantum chemistry

expensive methods — +training data

1

machine learning
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Workflow

Results
Analysis
Properties
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Behler—Parrinello scheme

E = f(G(x),w, b) — scalar regression

Coordinates Features (ACSF) training
x — G(x) - wob — E — %
2,3 body terms E, %
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What do we need?

MD trajectory of the target method
{

Uncorrelated MD frames
@ What is the training cost?
@ How many configurations do we need?

@ What do we do when we cannot collect enough uncorrelated frames?

1

Energies and forces

1

training — potential
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Answering some questions

@ What is the training cost?
It depends on how big the system is and how many atom species are
involved. Simple systems can be trained in a couple of hours without
requiring many computational resources.

@ How many configurations do we need?
It depends on the complexity of the system. In general 1000
configurations are already enough for rather simple systems (single
component, no more than 3 atom species).

@ What do we do when we cannot collect enough uncorrelated
frames?
Explore more phase space if possible (higher energy configurations).
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Machine learning predictions - Radial distribution function

O-O pair in water

ML water & | ¢
A PBE water

g(r)
N
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A different type of application - delta learning

Results
Analysis
Properties

Target method - Same configurations .
Starting method with both methods Difference
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Delta learning

—— KG ML potential
—— KG atomic potential
—— Kohn-Sham PBE

0 1 2 3 4 5 6
r [A]



Advantages and Disadvantages

Advantages Disadvantages
@ Extremely fast — as force @ The training can require many
fields data
o Potentially very accurate — it @ Specific descriptors (i.e.
depends on the target method ACSF) are needed
@ Delta learning e Transferability (?)
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