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The Large Hadron Collider

• Highest energy particle collider in the world
• Constructed by CERN between 1998-2008
• Collides protons at energies of 13-14 TeV

producing new particles that are measured in the detectors

• The LHC will run for many more years yet
⇒ much more data to come
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New physics searches

• Higgs boson discovery in 2012
• ... but no new physics discovery since

(composite Higgs, supersymmetry, ...)

So, why? ...
• there’s just no new physics there
• the statistics are too small
• or, we haven’t performed the right search.

Can machine learning help?
• (Variational) AutoEncoders (← what I will get to soon)
• Classification Without Labels (CWoLa) [Collins, Howe, Nachman (2019)]

• Density estimation [Nachman, Shih (2020)]

• Latent Dirichlet Allocation [BMD, Faroughy, Kamenik (2019)]

• ...
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Could new physics be hidden in jet substructure?

Boosted jets Boosted top jets

Sequential clustering histories Global jet observables
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Could new physics be hidden in jet substructure?

Proposed scenario:
• Unknown heavy resonance ‘A’

decaying to di-jets
pp→ A→ B C

• ‘B’ and/or ‘C’ are also unknown
Goal:

• Unsupervised classification of these
events from background events

Observables:

• High-level, e.g. jet masses, N-subjettiness, ...
• ... but we don’t know what to look for

⇒ Use neural networks to find anomalies in the data.
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Bump hunting

[Kasieczka, Nachman, Shih (2019)]

• We expect anomalies to be localised in invariant mass
• We need to look for bumps in the invariant mass spectrum

• ... We need a classifier to improve signal-to-background ratio
• The classifier needs to be invariant-mass independent!
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Variational Autoencoders

Data for each event embedded in a vector ~xi

Two anomaly measures:

1. Distance from centre in latent space
2. Reconstruction error

7



Variational Autoencoders invariant mass latent dimension

Data for each event embedded in a vector ~xi

Two anomaly measures:

1. Distance from centre in latent space
2. Reconstruction error

The network can learn locally in the invariant mass.
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An invariant mass latent dimension

Decoder output:

Through the latent space, we can explore what the networks
learn about invariant mass
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The LHC Olympics [Kasieczka, Nachman, Shih (2019)]

What is it?
A LHC anomaly challenge using di-jets

Test data

• 1M background events and 1k signal events
• Use to design and optimise tehcniques

Blackboxes

• 1M unlabelled events possibly containing anomalies
Goals:

• Identify anomalies
• Characterise them as well as possible

i.e. how heavy are the jets, describe the physical processes, ...
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Results: test data

Neural network architecture and optimisation:

• 1 latent dimension + an invariant mass latent dimension
• 2 layers of 100 nodes in encoder and decoder
• SeLu activations and MSE loss
• Adadelta optimiser
• Train for 100 epochs, batch size of 10k events
• Best performance correlated with minima in the mean

log-variance in latent space
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Results: test data

Now perform cuts, and study the invariant mass spectrum:

The VAE successfully finds the anomalous events localised at 3.5 TeV
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Results: test data

Can we see characteristics of these anomalous events?
Look at features of anomalous events in the signal region:

Anomalous events with jet masses of 500 GeV and 100 GeV

We can also do the same with other features.
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Results: blackbox data

Here we don’t have truth labels, so we run the same algorithm and
study the invariant mass spectrum:

The VAE finds a bump localised at 3.8 TeV
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Results: blackbox data

Is this bump actually a signal?
Let’s look in the signal region and see if there are any features:

Anomalous events with jet masses of ∼ 740 GeV and 370 GeV
We can also do the same with other features.

This agrees with the results from the challenge!
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Concluding remarks

1. Simple VAE with a 1D latent space was enough to find the
anomalous events

2. Why?
Probably because of the high-level inputs we used
... we know approximately where to look

3. What next?
- Understand the optimisation procedure

... we’re not sure why this works
- Apply this technique to other types of signals,

perhaps with a richer substructure
- Explore the idea of embedding observables in the latent space

Thanks for your time!
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