Physik-Institut

Machine Learning Techniques in Gamma-ray Astrophysics

UZH ML Workshop, 16/11/20

Dr. A. Mitchell

11/16/20 Page 1

Very High Energy (VHE) γ-ray Astronomy

VHE ≈ 30 GeV - 300 TeV

"particle astrophysics"/"astroparticle physics": study the most energetic astrophysical objects in our universe,

Identify sources of cosmic rays: astrophysical particle accelerators

Introduction to Gamma-Ray Astronomy

What kinds of sources accelerate cosmic rays?

- Cosmic rays are scattered by magnetic fields
- Cosmic rays interact within the source environment producing gamma-rays
- Gamma-rays travel without deflection from source to observer

VHE Emission Mechanisms

Inverse Compton Scattering:

scattering of energetic particles on background low energy photons (e.g. CMB, starlight...) – energy transfer: photons accelerated to TeV energies

Pion decay $\pi^0 \rightarrow \gamma + \gamma$:

signature for hadronic emission and the presence of highly energetic charged particles; potential cosmic ray source

Ground-based gamma-ray telescopes

Earth's atmosphere is opaque to gamma-rays:

Solution – build a satellite? → Fermi-LAT

→ Only works up to energies ~ 2 TeV

Lower rate, need larger area → use atmosphere as part of the detector

Cherenkov Detection Technique

Ground-based gamma-ray telescopes

Earth is opaque to gamma-rays:

Solution – build a satellite?

→ Only works up to energies ~ 2 TeV

Lower rate, need larger area → use atmosphere as part of the detector

- → Charged particles travelling faster than the **local** speed of light produce Cherenkov radiation
- → Illuminates a light pool on the ground

Detection of Cosmic Rays and Gamma Rays

Detection of Cosmic Rays and Gamma Rays

Stereoscopic Observation Technique source direction source image is on image axis \Rightarrow several viewing angles for precise event-by-event source location!

Imaging Atmospheric Cherenkov Technique

γ-ray images have a characteristic elliptical shape

Background: Cosmic Ray triggered air showers

γ-hadron separation is key

Current state-of-the-art: machine learning approaches

Current IACT Arrays

MAGIC-II

MAGIC, La Palma, Spain

Extensive Air Showers

Simulation of Extensive Air Showers as seen from the ground here

Hadronic EAS can look very similar to gamma-rays

- → Parameterise images to distinguish between gamma and hadron initiated EAS
- → "Hillas Parameters"

Gamma-hadron Separation

Hadronic air showers – major source of background in gamma-ray astronomy.

A lot of effort goes into reducing the background – identifying gamma-rays. Hillas parameters help:

e.g. "Mean Reduced Scaled Width"

 \rightarrow for a given image size and distance (from shower to telescope on the ground), the expected width from lookup tables $\langle w_i \rangle$ is compared to the measured width W_i

 \rightarrow Scaled width per telescope i is given by $SCW_i = (W_i - \langle W_i \rangle)/\sigma_i$ and the mean $MRSW = \frac{1}{\sum_{i \in N} w_i} \cdot \sum_{i \in N} (SCW_i \cdot w_i) \rightarrow$ key discriminating variable

Page 14

Gamma-hadron Separation

There are also other parameters of the image reconstruction

Each show some variation between gammas (black) and protons (red)

→ Multivariate Analysis!

Page 15

Decision Trees

Tree structure represents decision paths

Classification trees → predict a class (discrete options)

Regression trees → predict a real number (continuous)

Decision trees → map n-dimensional input to 1d output.

Event with set of parameters $M_i = (m_{i,1}, ..., m_{i,6})$

Tree needs to learn how to make a decision – in this case signal S or background B.

- → Provide list of variables with classification potential
- → Provide representative training data

Monte Carlo and training data

Training data can be either:

- → Simulations of how EAS appear in a telescope camera (known input)
- → "OFF" data i.e. background from real data In practise, to train a BDT:
- 1. Split training data into subsets based on attributes
- 2. Repeat process iteratively to grow the decision tree
- 3. Stop when leaves (terminal nodes) reach a certain level of purity

Page 17

Gamma-ray data analysis

Notice the "irreducible" background.

If a proton transfers most energy to a neutral pion π^0 early in the EAS development, this decays $\pi^0 \rightarrow \gamma + \gamma$...and looks like a gamma-ray shower.

Particle identification is done on a statistical basis.

To calculate a significance, we compare a signal "ON" region to a background "OFF" region to find the excess gamma-ray counts.

 $N_{\gamma} = N_{ON} - \alpha N_{OFF}$ where α is a normalisation factor

(...among other methods...)

Berge et al A&A 466 (2007) 1219-1229

Page 18

Gamma-ray data analysis – performance

A more sensitive analysis enhances the difference between ON and OFF counts.

Therefore also saves observing time

Note: parameter importance changes with:

- -- gamma-ray energy
- -- observing direction

Artificial Neural Networks

Mapping N-dimensional input to M-dimensional output Each neuron returns a response to input signals

Numeric weights determine importance of inputs

RNN = "Recurrent Neural Network" CNN = "Convolutional Neural Network"

Back-propagation:

- → provide N training events & input parameters
- → Let ANN classify and compare output to expectation
- → Adjust weights and repeat

Convolutional Neural Networks

	0	0	
Convolutions for feature extraction account for input often rotated / translated	0	0	
	0	1	
account for input often rotated / translated			In

mage

Convolved **Feature**

Stack successive convolutions, use as input to Neural Network

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Recurrent Neural Networks

Deal with sequences of data

- → Use these to combine information from multiple telescopes
- → Network weights are modified based on information already seen

Neural Networks for gamma-hadron separation

Hexagonal pixels = headaches!

Deep NNs – map each pixel to input layer

Much better relative performance predicted

on simulations

Neural Networks for gamma-hadron separation

However....highly sensitive to Night Sky Background (i.e. ambient starlight, scattered moonlight etc.)

→ CRNN must be trained to well-matched conditions. → Is it worth it?

11/16/20

Machine Learning for Source Classification

Gamma-ray sources = cosmic ray accelerators

Introducing: Blazars → active galactic nuclei with jet pointing towards Earth

Strong gamma-ray emitters, time variable

ESO/WFI (visible); MPIfR/ESO/APEX/A.Weiss et al. (microwave); NASA/CXC/CfA/R.Kraft et al. (X-ray)

Sophia Dagnello, NRAO/AUI/NSF

Machine Learning for Source Classification

Gamma-ray sources = cosmic ray accelerators
Introducing: Blazars → active galactic nuclei with jet pointing towards Earth
Strong gamma-ray emitters, time variable

Recent paper: classifying gamma-ray blazars according to sub-type (BL Lac vs FSRQ) with an ANN (data from Fermi-LAT satellite)

Machine Learning for Source Classification? → Open Problems

SNR = Supernova Remnant

Composite

SNR

Binary

12 PWN

Not associated

Potential Application: Supernova Remnants – radio data

Credit: Dr Natasha Hurley-Walker (ICRAR/Curtin) and the GLEAM Team

The future: Cherenkov Telescope Array

31 countries, >200 institutes, > 1500 members, 2 sites, up to 100 telescopes

Big Data in the future of astronomy

Thank you for your attention

Any questions?