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Very High Energy (VHE) γ-ray Astronomy

VHE ≈ 30 GeV – 300 TeV
“particle astrophysics”/“astroparticle physics”: study the most energetic 
astrophysical objects in our universe, 
Identify sources of cosmic rays: astrophysical particle accelerators 



Introduction to Gamma-Ray Astronomy

What kinds of sources accelerate cosmic rays? 

• Cosmic rays are scattered by magnetic fields
• Cosmic rays interact within the source environment producing gamma-rays

• Gamma-rays travel without deflection from source to observer
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VHE Emission Mechanisms

Inverse Compton Scattering:
scattering of energetic particles on background low energy photons (e.g. 
CMB, starlight…) – energy transfer: photons accelerated to TeV energies

Pion decay π0 à γ + γ : 
signature for hadronic emission and the presence of highly energetic 
charged particles; potential cosmic ray source

Synchrotron

Bremsstrahlung

Inverse 
Compton

Pion
Decay
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Ground-based gamma-ray telescopes

Earth’s atmosphere is opaque to gamma-rays:
Solution – build a satellite? à Fermi-LAT 

à Only works up to energies ~ 2 TeV

Lower rate, need larger area à use atmosphere as part of the detector
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Cherenkov Detection Technique
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Ground-based gamma-ray telescopes

Earth is opaque to gamma-rays:

Solution – build a satellite? 

à Only works up to energies ~ 2 TeV

Lower rate, need larger area à use atmosphere as part of the detector

à Charged particles travelling faster than the local speed of light produce 

Cherenkov radiation

à Illuminates a light pool on the ground 
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At 100 GeV

~ 10 Photons/m2

(300 – 600 nm)~ 120 m

Focal Plane
~ 10 km

Particle
Shower

Intensity
® Shower Energy: 
atmosphere is a 
calorimeter
Image Orientation
® Shower Direction

5 nsec

Detection of Cosmic Rays and Gamma Rays

Cherenkov 
Light

120 m

g



several viewing
angles for precise
event-by-event 
source location!

Stereoscopic Observation Technique

source 
direction

source image is on 
image axis Þ
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Imaging Atmospheric Cherenkov Technique

γ-ray images have a 
characteristic elliptical shape

Background: Cosmic Ray 
triggered air showers

γ-hadron separation is key

Current state-of-the-art:
machine learning approaches
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Extensive Air Showers

Simulation of Extensive Air Showers as seen from the ground here

Hadronic EAS can look very similar to gamma-rays 

à Parameterise images to distinguish between gamma and hadron initiated EAS

à ”Hillas Parameters”
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Mitchell et al Astropart. Phys. 

111 (2019) 23-34

HESS Collaboration 

A&A 457 (2006) 

899-915

https://www.mpi-hd.mpg.de/hfm/CosmicRay/ChLight/ChLat.html


Gamma-hadron Separation

Hadronic air showers – major source of background in gamma-ray 

astronomy. 

A lot of effort goes into reducing the background – identifying gamma-rays. 

Hillas parameters help: 

e.g. “Mean Reduced Scaled Width” 

à for a given image size and distance (from shower to telescope on the 

ground), the expected width from lookup tables !" is compared to the 

measured width #"

à Scaled width per telescope i is given by $%#" = #" − #" /)" and the 

mean *+$# = ,
∑.∈0 1.

2 ∑"∈3 $%#" 2 !" à key discriminating variable
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Gamma-hadron Separation

There are also other parameters of the image reconstruction
Each show some variation between gammas (black) and protons (red)

à Multivariate Analysis!
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Decision Trees

Tree structure represents decision paths

Classification trees à predict a class (discrete options)
Regression trees à predict a real number (continuous)

Decision trees à map n-dimensional input to 1d output. 

Tree needs to learn how to make a decision – in this case signal S or 
background B. 
à Provide list of variables with classification potential

à Provide representative training data 
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Monte Carlo and training data

Training data can be either: 
à Simulations of how EAS appear in a telescope camera (known input)

à ”OFF” data – i.e. background from real data
In practise, to train a BDT:

1. Split training data into subsets based on attributes
2. Repeat process iteratively to grow the decision tree

3. Stop when leaves (terminal nodes) reach a certain level of purity
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Gamma-ray data analysis 

Notice the “irreducible” background. 
If a proton transfers most energy to a neutral pion π0 early in the EAS 
development, this decays π0 à γ + γ …and looks like a gamma-ray shower. 

Particle identification is done on a statistical basis.
To calculate a significance, we compare a signal “ON” region to a background 
“OFF” region to find the excess gamma-ray counts. 

!" = !$% − '!$(( where α is a normalisation factor

(…among other methods…)
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Berge et al A&A 466 
(2007) 1219-1229



Gamma-ray data analysis – performance 

A more sensitive analysis enhances the difference 
between ON and OFF counts. 
Therefore also saves observing time

Note: parameter importance changes with:
-- gamma-ray energy

-- observing direction

11/16/20 Page 19Ohm et al Astropart. Phys. 31 (2009) 383-391



Artificial Neural Networks

Mapping N-dimensional input to M-dimensional output

Each neuron returns a response to input signals

Numeric weights determine importance of inputs

Back-propagation: 

à provide N training events & input 

parameters

à Let ANN classify and compare 

output to expectation

à Adjust weights and repeat

11/16/20 Machine Learning in Gamma-ray Astronomy, A. Mitchell Page 20

RNN = “Recurrent 

Neural Network”
CNN = “Convolutional 

Neural Network”



Convolutional Neural Networks

Convolutions for feature extraction 
à account for input often rotated / translated
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https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Stack successive convolutions, use as input to Neural Network



Recurrent Neural Networks

Deal with sequences of data
à Use these to combine information from multiple telescopes

à Network weights are modified based on information already seen
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Neural Networks for gamma-hadron separation

Hexagonal pixels = headaches!

Deep NNs – map each pixel to input layer

Much better relative performance predicted 

on simulations 
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Parsons & Ohm, EPJC, 80 (2020) 363



Neural Networks for gamma-hadron separation

However….highly sensitive to Night Sky Background 
(i.e. ambient starlight, scattered moonlight etc.)

àCRNN must be trained to well-matched conditions. à Is it worth it?  
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Machine Learning for Source Classification

Gamma-ray sources = cosmic ray accelerators
Introducing: Blazars à active galactic nuclei with jet pointing towards Earth

Strong gamma-ray emitters, time variable 
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Sophia Dagnello, NRAO/AUI/NSF
ESO/WFI (visible); MPIfR/ESO/APEX/A.Weiss et al. 
(microwave); NASA/CXC/CfA/R.Kraft et al. (X-ray)



Machine Learning for Source Classification

Gamma-ray sources = cosmic ray accelerators
Introducing: Blazars à active galactic nuclei with jet pointing towards Earth

Strong gamma-ray emitters, time variable 

Recent paper: classifying gamma-ray blazars according to sub-type (BL Lac 
vs FSRQ) with an ANN  (data from Fermi-LAT satellite)
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Kovacevic et al, MNRAS 493 (2020) 1926-1935



Machine Learning for Source Classification?
à Open Problems
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H.E.S.S. Galactic Plane Survey, A&A 612 (2018) A1

SNR = 
Supernova 
Remnant



Potential Application: Supernova Remnants – radio data
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Credit: Dr Natasha Hurley-Walker (ICRAR/Curtin) and the GLEAM Team



The future: Cherenkov Telescope Array

31 countries, >200 institutes, > 1500 members, 2 sites, up to 100 telescopes 
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Big Data in the future of astronomy
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~1000 PB/year

~3 PB/year ~10-100 TB/yearThis talk

www.cta-observatory.org



Thank you for your attention

Any questions?
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