C. Wiesner

PE Mini Lectures #7
Introduction

20.02.2020
Today

7th PE Mini Lecture

- **10:30**
 - **PE Mini Lectures: Introduction and further planning**
 - **Speaker:** Christoph Wiesner (CERN)

- **10:40**
 - **Introduction Hugo Pelomares**

- **10:50**
 - **Introduction Mathis Bancel**

- **11:00**
 - **Advanced Programming in Python – Part 2**
 - **Speaker:** Michal Maciejewski (CERN)
MPE-PE Section

MPE-PE section consists of 3 main branches:

- **Circuit Modeling**
 - Protection studies (LHC, HiLumi, FCC)
 - LHC circuit issues (shorts, voltage transients, etc)
 - CLIQ analysis
 - STEAM

- **Beam Impact & Machine Protection**
 - Damage limits on superconductors
 - Machine protection (LHC, HiLumi, FCC, CLIC)
 - Hydrodynamic tunnelling
 - Diamond BLM’s

- **Reliability & Availability**
 - R&A on LHC, HL-LHC, FCC
 - R&A on linear colliders
 - Accelerator Fault Tracking
 - AvailSim

PE section meetings:
- Present and discuss ongoing studies and topics
- Often there is not enough time to present underlying concepts and used tools

PE mini lectures:
- Learn and share (basic) knowledge and technical tools within the section
- More efficient communication and collaboration between the section members and, thus, increase synergies

Most studies require numerical and computational tools and methods

https://twiki.cern.ch/twiki/bin/viewauth/TEMPEPE/
Mini Lectures: Where are we?

<table>
<thead>
<tr>
<th>Topic</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Coding convention and good practice</td>
<td>Computational Methods</td>
</tr>
<tr>
<td>2) How to describe a particle beam?</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• Concept of phase space/Liouville theorem</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• Emittance</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• Beta function and Twiss parameters</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>3) How to produce a particle beam?</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• Ion sources</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• Space charge</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>4) How to accelerate a particle beam?</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>• RF acceleration (Linacs and RF cavities)</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>5) SWAN Notebooks</td>
<td>Computational Methods</td>
</tr>
<tr>
<td>• Using SWAN for scripting and documentation</td>
<td>Computational Methods</td>
</tr>
<tr>
<td>6/7) Python: Advanced Programming in python</td>
<td>Part II – today</td>
</tr>
<tr>
<td>You can find the presentation on the indico pages for 2019 and 2020</td>
<td></td>
</tr>
</tbody>
</table>
Mini Lectures: Next topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to transport a particle beam?</td>
<td>Christoph</td>
<td>Beam & Accelerator Physics</td>
</tr>
<tr>
<td>Magnet types and their beam-dynamics functions</td>
<td>Christoph</td>
<td>Beam & Accelerator Physics / Magnets</td>
</tr>
<tr>
<td>Introduction to superconductivity and s.c. magnets</td>
<td>Lorenzo</td>
<td>Magnets</td>
</tr>
<tr>
<td>How to build a s.c. magnet?</td>
<td>Arjan</td>
<td>Magnets</td>
</tr>
<tr>
<td>How to protect a s.c. magnet?</td>
<td>Emmanuele</td>
<td>Magnets</td>
</tr>
<tr>
<td>Introduction to reliability and availability studies for accelerators</td>
<td>Thomas</td>
<td>Availability</td>
</tr>
</tbody>
</table>

Volunteers welcome! 😊
Backup
Beam & Accelerator physics

How to describe a particle beam?
- Phase-space, Liouville theorem, emittance, optical functions (α, β, γ, σ)

How do accelerators work?
- Beams production: ion sources
- Beam transport, FODO lattice
- Beam acceleration: linacs and acc. cavities
- Beam collision: synchrotron, collider, luminosity, β^*
- Acc. hardware: beam dump, cavities, ...

What can go wrong? Beam-related failures
- Failure classification (risk, slow/fast/ultrafast failures)
- Failure examples: magnet powering, injection/extraction failures, UFOs, QH firing
- Failure criticality for different machines

What happens if the beam is lost?
- Beam-matter interaction
- Hydrodynamic tunnelling

Machine Protection

Computational Methods
- Coding conventions and good practice / Object-oriented programming
- Basics of co-simulation
- Introduction to machine learning
- How to simulate a particle beam? How to simulate a magnetic field?

Magnets

How do superconducting acc. magnets work?
- Basics of superconductivity
- Basics of superconducting magnet
- Superconducting cable design
- Why use superfluid helium?

Why and how to protect a s.c. magnet?
- How to quench a s.c. magnet?
- How to protect a s.c. magnet?
- Quench/damage limits

Reliability and availability

- Basic definitions (for CERN and other accelerators)
- Introduction to risk assessment
- Lifetime distributions and bathtub curve

Special Topics... Visits...