10th Mini lecture: **Reliability and Availability**

T. Cartier-Michaud Acknowledgments: A. Apollonio, M. Blumenschein, L. Felsberg, B. Todd, J. Uythoven Main source: A. Apollonio, ADS School 2016

Outline

- Definitions: Reliability and Availability
- Motivational !
- Risk Assessment
- Prediction of Reliability and Availability
- Case study: HL Inner Triplet

Outline

- Definitions: Reliability and Availability
- Motivational !
- Risk Assessment
- Prediction of Reliability and Availability
- Case study: HL Inner Triplet

- **Reliability** (in [0-1]) is the probability that a system does not fail during a defined period of time (or number of cycles, amount of work) under given functional and environmental conditions.
 - 99% reliability of a magnet after X thermal cycles in the tunnel
 - 99% reliability of a source after X hours of production at Y mA
 - 99% reliability of a target after X MJ absorbed below Y MW
- **Availability** (in [0-1]) is the probability that a system is functioning according to its specification at any point in time.
 - 70% availability of LHC
 - 99% availability of LINAC2

- **Reliability:** idea of time integration, with:
 - f(t), the time dependent failure density (exponential, Weibull, ...)
 == distribution of how long should we wait before a failure occurs
 - F(t), the cumulative distribution function
 = probability that the system is still running after a given time
 - Lambda(t), the failure rate or hazard function
 = ratio between item which have failed and total number of units

$$f(t) = \lambda exp(-\lambda t)$$

$$F(t) = \int_{0}^{t} f(s)ds = 1 - exp(-\lambda t)$$

$$\Lambda(t) = \lambda \quad \square \quad \text{The failure rate of an exp}$$

The failure rate of an exponential distribution does not depend on the time = no memory = no aging

Failure Rate

https://en.wikipedia.org/wiki/Bathtub_curve

Time

- Availability: idea of operation, with:
 - t: a duration of observation,
 - t_UP: the time the system spent functioning and
 - t t_UP = t_DOWN: the time the system spent not functioning
 - then Availability = t_UP / t
- for an exponential distribution with a failure rate λ

=> mean time to fail = MTTF = $1/\lambda$

=> mean time to repair = MTTR
(mean time before failures = MTBF = MTTF + MTTR)

=> availability = MTTF / (MTTR + MTTF)

Reliability in the Machine Protection context, and Availability

- **Reliability:** computed with respect to major events / features:
 - Being able to protect a magnet during a quench
 - Being able to dump the beam
 - => if systems are not protected, up to months of repairs / high cost
- Availability: computed with respect to every event
 - Glitch of power converter
 - Cryo failure
 - => repair can be almost instantaneous to a few hours

=> the failures considered for the reliability are also taken into account but their probability of occurrence is so low that their impact is low

High reliability and high availability might sometimes conflict:
 => unnecessary beam dump

Reliability and Availability of LHC

- LHC = circular accelerator + last accelerator of a chain
- True reliability of LHC = Product of the reliability of the chain: if LINAC4 is down, LHC cannot be fed
- O. Brüning et al 2005 **Production of physics != availability:** LHC Project Note 313 LHC operation is based on Physics Beam dump 14000 phases in a specific order. 12.7 kA Prepare Systematic failures of 1s physics Ramp down Start ramp Physics during squeeze phase = **MB** current ⁵ E Preinjection ~100% availability but no m plateau time spent in stable beam! Injections 3

-3000

-2000

-1000

0

Time (s)

1000

2000

2

3000

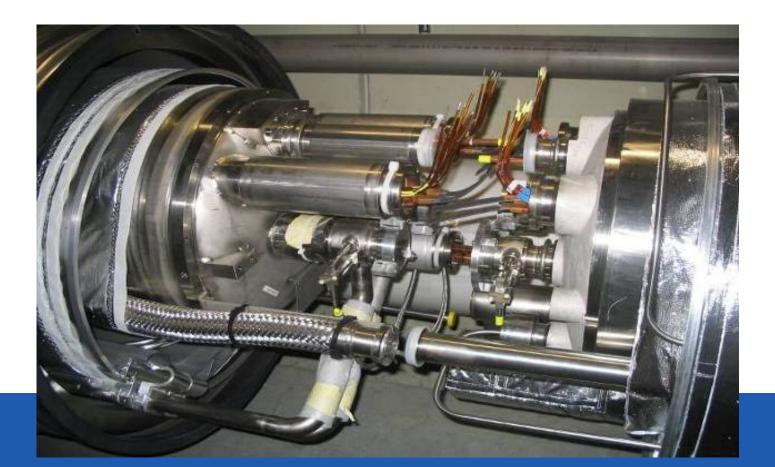
Outline

- Definitions: Reliability and Availability
- Motivational !
- Risk Assessment
- Prediction of Reliability and Availability
- Case study: HL Inner Triplet

Risk Assessment: risk examples

Picture source: http://en.wikipedia.org/wiki/File:Alstom AGV Cerhenice img 0365.jpg Shared as: http://creativecommons.org/licenses/by-sa/3.0/deed.en

Picture source: http://militarytimes.com/blogs/scoopdeck/2010/07/07/the-airstrike-that-never-happened


Shared as: public domain

3 · 10¹⁴ protons in each beam (@ 7 TeV) Kinetic Energy of 200 m Train at 155 km/h ≈ 360 MJ Stored energy per beam is 360 MJ

Risk Assessment: risk examples

10 000 high current superconducting cable joints~ 600 MJ stored in each magnet

Risk Assessment: risk examples

- **1 / 10 000** joints failed in 2008
- ~ 420 MJ dissipated in the tunnel

(electric arc + vaporizing material + moving magnets)

Reliability and Availability in the life cycle

Concept phase	Design, prototype, contract	plan, purchase	Implement, build	Install and use		
Development		Produ	uction	Field		

Prof. Dr. B. Bertsche, Dr. P. Zeiler, T. Herzig, IMA, Universität Stuttgart, CERN Reliability Training, 2016

• The earlier the reliability constraints are included in the design, the more effective the resulting measures will be.

Outline

- Definitions: Reliability and Availability
- Motivational !
- Risk Assessment
- Prediction of Reliability and Availability
- Case study: HL Inner Triplet

Risk Assessment

1) Identification of the failure modes
 => Failure Mode Analysis and Effects

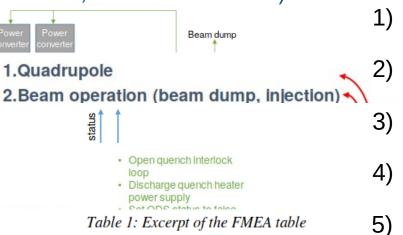
IEC 60812, Analysis techniques for system reliability -Procedure for failure mode and effects analysis (FMEA), edition 2.0, 2006

2) Allocation of a consequence and/or tolerance
 => Risk Matrix

ISO/TR 14121-2:2012, Safety of machinery -Risk assessment - Part 2: Practical guidance and examples of methods, 2013

1+2=3) Reliability Requirements and Initial Risk Evaluation
 => RIRE, M. Blumenschein and al.:

https://cds.cern.ch/record/2666957/files/73.an%20approach%20to%20reliability%20assessment%20at%20CERN_20181011.pdf


FMEA: study of the system

(Illustrations from the quench detection system of LHC, M. Blumenschein)

Failure Modes and Effects Analysis is a quite flexible tool adapted / customized to different contexts

- 1) Block diagram of the system environment: neighboring systems, interfaces, common cause failure, ...
- 2) Structure of the system itself
- 3) Function of each sub part of the system
- Context dependent function / Easter eggs 4)
- 5) Failure Modes and End Effects

==> lots of discussion with experts ==> lots of "naive" questions asked

Table 1: Excerpt of the FMEA table

FMEA black box level: quench detection system									
Context	Normal operation of QPS (~4800 h/a)	Asymmetric quench (~0.5 s)	Post quench 1 (~5-10 min)						
Function	Keep quench interlock loop closed	Open quench interlock loop	Keep quench interlock loop opened						
ID failure mode	OP.1	AQ.1	PQ1.1						
Failure mode	Quench interlock loop opened 1002 or 2002	Quench interlock loop not opened 1oo2	QIL is closed locally 1002 or 2002						
Immediate effect	False energy extraction, no firing of the quench heaters, false circuit quench interlock	Energy is extracted, both quench heater series are fired, circuit quench interlock is sent	No effect in this state, if undetected, higher probability of missing interlock in case of quench						
End effect	False beam dump	Injection delayed (3 h)	Injection delayed (3 h)						
Severity of EE	2	2	2						
Detection Method	Quench interlock loop monitoring indicates loop status	Detector post mortem, (no final detection if only loop relay is broken	Post mortem (loop falgs, loop open or closed)						
Notes	after upgrade additional loop voltage monitors (eases fault localization)	Quench interlock loop is opened by second, redundant quench detector							
Recommendations		put secondary relay contact in detector							

Risk Matrix: allocation of tolerance

- Risk = consequence * probability
- Acceptable risk are defined by experts with respect to availability targets and reliability targets

LHC risk matrix		Recovery								
		∞	year	month	week	day	hours	minutes		
			S6	S5	S4	S3	S2	S1		
	1 / hour									
	1 / day									
ي ک	1 / week									
lend	1 / month									
Frequency	1 / year									
Ē	1 / 10 years									
	1 / 100 years			EE2						
	1 / 1000 years									
		Protection				Availability				

Data driven Risk Matrix

- The overall availability reliability are defined
- The distribution of allowed / not allowed couples of ۲ (recovery time, frequency) could follow different distribution
- Definition of data driven risk matrices (using AFT inputs)

		[1m - 20m)	[20m - 1h)	[1h - 3h)	[3h - 6h)	[6h - 12h)	[12h - 24h)	[24h - 2d)	[2d - 1w)	[1w - 1M)	[1M - 1Y)	[1Y - 10Y)
-ailure frequency	1/H	U	U	U	U	U	U	U	U	U	U	U
	1/Shift	~	U	U	U	U	U	U	U	U	U	U
	1/Day	A	~	~	~	U	U	U	U	U	U	U
	1/Week	A	А	A	А	~	~	U	U	U	U	U
	1/Month	A	А	A	A	А	A	~	U	U	U	U
	1/Year	A	А	A	А	А	А	А	А	U	U	U
	1/10Years	A	А	A	А	А	A	А	А	A	U	U
	1/100Years	A	А	A	A	А	A	А	А	А	А	U
ц <u>т</u>	1/1000Years	A	А	A	А	А	А	А	А	А	А	А

Outline

- Definitions: Reliability and Availability
- Motivational !
- Risk Assessment ==> schematics + targets
- Prediction of Reliability and Availability
 Failure rate figures + computational methods
- Case study: HL Inner Triplet

Failure rate estimation

1) Failure rates measure on comparable devices

- Test campaign (accelerated lifetime, ...)
- AFT, PM, nxcals, LASER, ... => logging is important !
- 2) Experts' estimate
 - Large uncertainties
- 3) According to manufacturer / Military Handbook
 - Very pessimistic approach

The lower the reliability of the input, the more important the sensitivity analysis over that parameter

CÉRN

Accelerator Fault Tracking

System Downtimes: Root Cause 🚯 Fault time by system Beam Exciters 1 Access System Other 4 SIS Orbit 9 Vacuum IT Services **3** Access Infrastructure Collimation **1**2 Beam-induced Quench Beam Injection Operation 92 Machine Interlock Systems LBDS Cooling and Ventilation Beam Losses Accelerator Controls Magnet circuits 20 Electrical Network Electrical Network Fault time by system: 39.28 h Beam Instrumentation Injection Systems Access Management Radio Frequency QPS 20 50 77 Experiments Power Converters 52 158 Transverse Damper 19 Cryogenics Injector Complex 27 163 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 Fault time [h] Fault vs. Operation Time Distribution () \equiv Stable Beams: 2192.2 h (25.0 %) Precycles (119): 89.3 h (1.0 %) Operation (other): 4958.6 h (56.6 %) In fault (combining overlapping): 1519.9 h (17.4%)

23

https://aft.cern.ch/

Model and computational methods

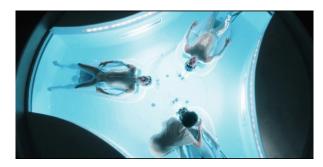
• Reliability Block Diagram: what is the minimum set of components that allows fulfilling the system functionality?

۲

•

Model and computational methods

- Functional Block Diagram, Reliability Block Diagram, Fault Tree, Event Tree, ...
- Computations:
 - "Analytical": possible when the structure/logic is simple
 - "Numerical": possible even for complex structure/logic but higher computational cost (simulation budget for Inner Triplet study ~= 30 000 core.hours with AvailSim4)
- AvailSim4 (developed at CERN):
 - Discrete Event Simulation: first principle +complex logic ready
 - Monte Carlo ~= random exploration of possible scenarios


Use of the Predictions

- Do we meet the reliability / Availability target?
- If no, trying to refine the reliability / availability study :-D
 What are the sensitive elements?
 - are the inputs on the failure rates accurate enough?
 - could a test campaign better estimate some failure rates and relax/dismiss a weak point?
- What is the more cost efficient way to improve the system?
 - more monitoring
 - more periodic inspection / predictive maintenance
 - more reliable (/expensive) components (if any)
 - more (/diverse) redundancy

Predictive maintenance

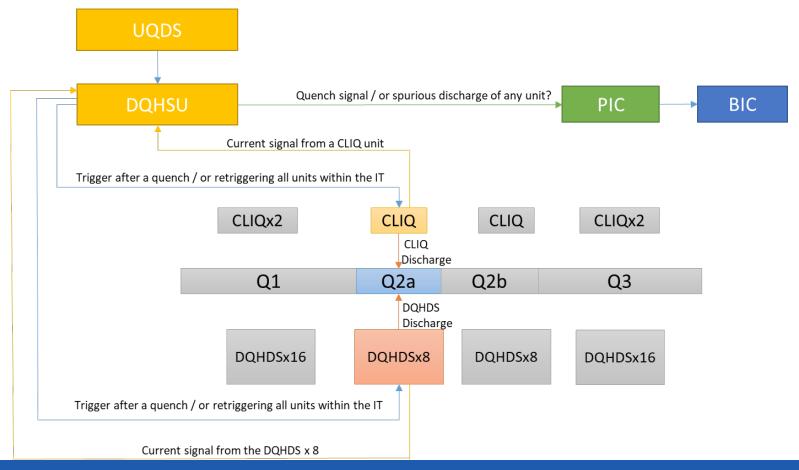
 Predicting a failure before it happens = increasing availability and reliability by early repair

 Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case https://doi.org/10.1007/978-3-030-57321-8_8

~= Training a Neural Network on the LASER database to predict faults / detect non trivial dependencies between systems

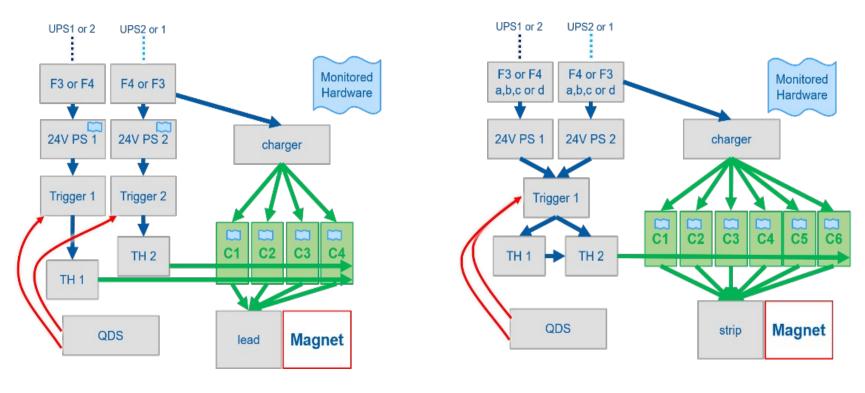
 Prediction of break down in an RF cavity to better protect the machine and increase availability (WIP) CLIC team talk: https://indico.cern.ch/event/957293/

- Magnets for final focusing before collision points HL requires an update with a new technology
- FMEA:


unprotected quench is the worst failure for the system
 too slow protection of a quench is the worst failure for
 the close by experiment
 electrical arcs in the power rack is the worst failure for

personal safety (not machine protection)

• Risk matrix: case 1 has an acceptable probability of occurrence of 2.1% in 20 years

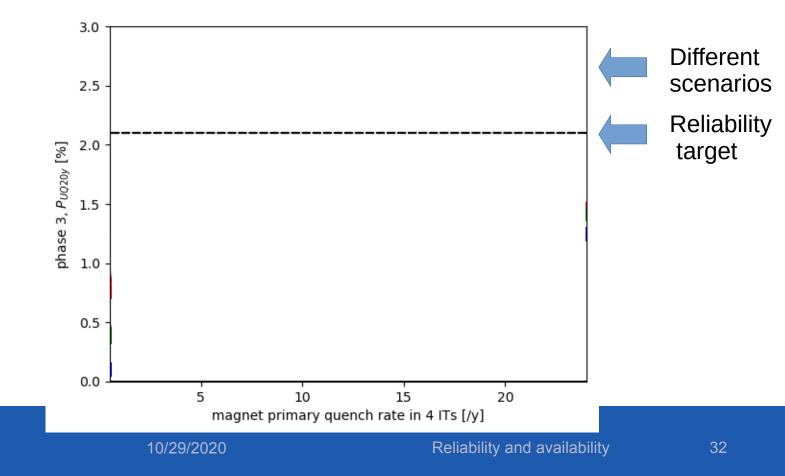


• (some) Functional Block Diagrams

• (some) Functional Block Diagrams

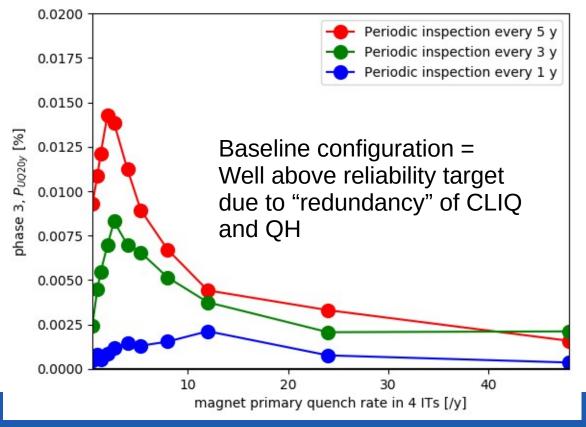
CLIQ power unit

QH power unit



Failure rates inputs

	PS24V	trigger	тн	charger	capacitor	strip	c. breaker
# of element	6 000	6 000	12 000	6 000	36 000	5 000	6 000
Number of faults	2	0 -> 1	0 -> 1	0 -> 1	0 -> 1	10	6
Operation time [y]	7 (+2 of LS)	7 (+2 of LS)	7 (+2 of LS)	7 (+2 of LS)	7 (+2 of LS)	7 (+2 of LS)	7 (+2 of LS)
measured MTTF [y]	21 000	42 000	84 000	42 000	252 000	3 500	7 000
MTTR [h]	5	5	5	5	5	change magnet	5
Type of faults	blind	blind	blind	blind	monitored	blind	blind
# in IT	384	384	384	192	1152	192	192



 Probability of not protecting a magnet in 20 years using CLIC only (no QH):

 Probability of not protecting a magnet in 20 years using CLIQ and QH

10/29/2020

Reliability and availability

Conclusion

- Wide rage of methods and tools to estimate and adjust reliability and availability of systems
- Predictions are as good as the hypothesis
 Estimation of failure rate of components is difficult, especially on very
 rare failure events ==> sensitivity analysis
- ... but reliability and availability studies are more and more important as systems become more and more complex / have more severe failures
- **Unknown unknowns** are most likely what will be the problem in the end. To compensate, one of the main drivers when designing a system is experience gained on similar/previous designs

Thank you for your attention

10/29/2020