C. Wiesner

# PE Mini Lectures: Further planning

01.10.2020



Planning

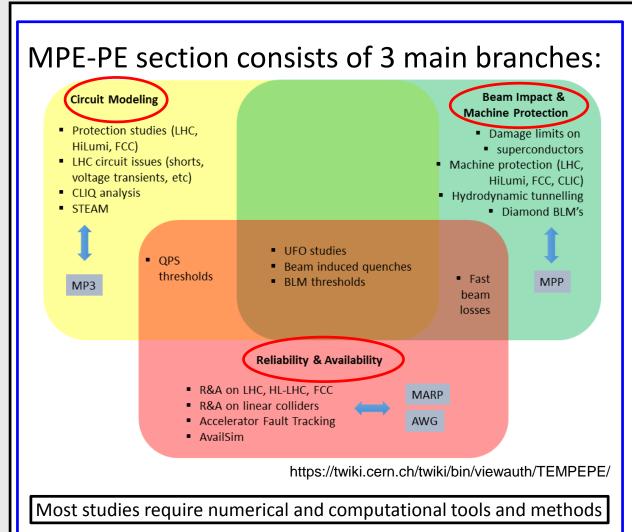


## Mini Lectures: Next topics (tentative plan)

Plan: mini lecture ~every 4 weeks (shifted by 2 weeks from the section meeting) on **Thursdays, 10.30h.** 

| Scientific computing: numpy                                           | Cedric    | 1.10.2020         | Computational methods         |
|-----------------------------------------------------------------------|-----------|-------------------|-------------------------------|
| Data processing: pandas                                               | Michal    | 8.10.2020         | Computational methods         |
| Introduction to reliability and availability studies for accelerators | Thomas    | 29.10.2020        | Availability                  |
| Introduction to superconductivity and s.c. magnets                    | Lorenzo   | 26.11.2020        | Magnets                       |
| How to build a s.c. magnet?                                           | Arjan     | Jan 2021<br>(TBC) | Magnets                       |
| How to protect a s.c. magnet?                                         | Emmanuele | Feb 2021<br>(TBC) | Magnets                       |
| Restart and extend beam physics topics                                |           | > Feb 2021        | Beam & Accelerator<br>Physics |

Ideas and volunteers always welcome! ©


# Backup



Planning

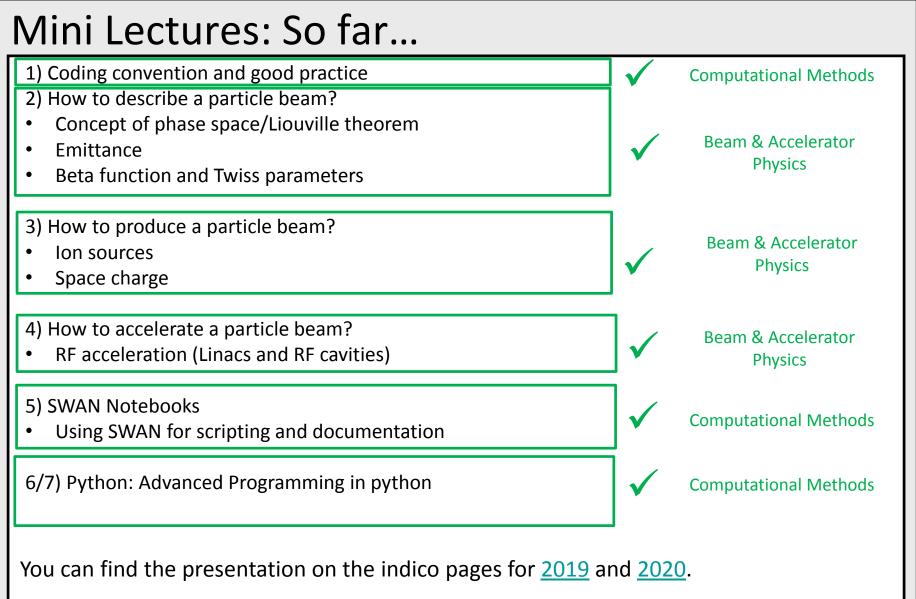


### **MPE-PE Section**



### Section meetings:

- Present and discuss ongoing studies and topics
- Often there is not enough time to present underlying concepts and used tools


#### Mini lectures:

- Learn and share (basic)
   knowledge and technical
   tools useful for our work
- More efficient communication and collaboration between the section members and, thus, increase synergies



Planning





# Mini Lectures: Proposed Topics (May 2019)

| <ul> <li>Beam &amp; Accelerator physical structure</li> <li>How to describe a particle beam?</li> <li>Phase-space, Liouville theorem, emittance, optical functions (α, β,</li> <li>How do accelerators work?</li> <li>Beams production: ion sources</li> </ul>                       | n <b>m?</b><br>prem,<br>hs (α, β, γ), σ                                       |                                                                                                                                                                                | <ul> <li>What types of magnets do we need? And how do we get them?</li> <li>Dipoles, quadrupoles, and more: beam-dynamics and hardware realization</li> <li>Kicker and septa</li> </ul> |                                                                                                                       | Magnets<br>How do superconducting acc. magnets work?<br>• Basics of superconductivity<br>• Basics of superconducting magnet<br>• Superconducting cable design<br>• Why use superfluid helium?<br>Why and how to protect a s.c. magnet? |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Beam transport, FODO lattice</li> <li>Beam acceleration: linacs and acc. of</li> <li>Beam collision: synchrotron, collide</li> <li>Acc. hardware: beam dump, cavities</li> </ul>                                                                                            | er, luminosity, $\beta^*$                                                     |                                                                                                                                                                                |                                                                                                                                                                                         | <ul> <li>How to quench a s.c. magnet?</li> <li>How to protect a s.c. magnet?</li> <li>Quench/damage limits</li> </ul> |                                                                                                                                                                                                                                        |  |
| <ul> <li>What can go wrong? Beam-related failures</li> <li>Failure classification (risk, slow/fast/ultrafast failures)</li> <li>Failure examples: magnet powering,<br/>injection/extraction failures, UFOs, QH firing</li> <li>Failure criticality for different machines</li> </ul> |                                                                               | <ul> <li>How does the CERN accelerator complex work?</li> <li>Injectors: LINACs, PSB, PS, SPS</li> <li>LHC operation and cycle</li> <li>LHC availability and faults</li> </ul> |                                                                                                                                                                                         |                                                                                                                       | <ul> <li>Reliability and availability</li> <li>Basic definitions (for CERN and other accelerators)</li> <li>Introduction to risk assessment</li> <li>Lifetime distributions and bathtub</li> </ul>                                     |  |
| <ul><li>What happens if the beam is lost?</li><li>Beam-matter interaction</li><li>Hydrodynamic tunnelling</li></ul>                                                                                                                                                                  | s lost?<br>MP Systems<br>• Main MP syste<br>LHC (BIS, PIC, N<br>QPS, LBDS, CO |                                                                                                                                                                                | WIC, Visits                                                                                                                                                                             |                                                                                                                       | curve<br><b>Reliability &amp; Availability</b>                                                                                                                                                                                         |  |
| Machine Protection • Electronics for                                                                                                                                                                                                                                                 |                                                                               |                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                       |                                                                                                                                                                                                                                        |  |
| ComputationalBasics ofMethodsIntroduction                                                                                                                                                                                                                                            | f co-simulation<br>ction to machine le                                        | earning                                                                                                                                                                        | ce / Object-oriented prog<br>ow to simulate a magneti                                                                                                                                   |                                                                                                                       |                                                                                                                                                                                                                                        |  |

