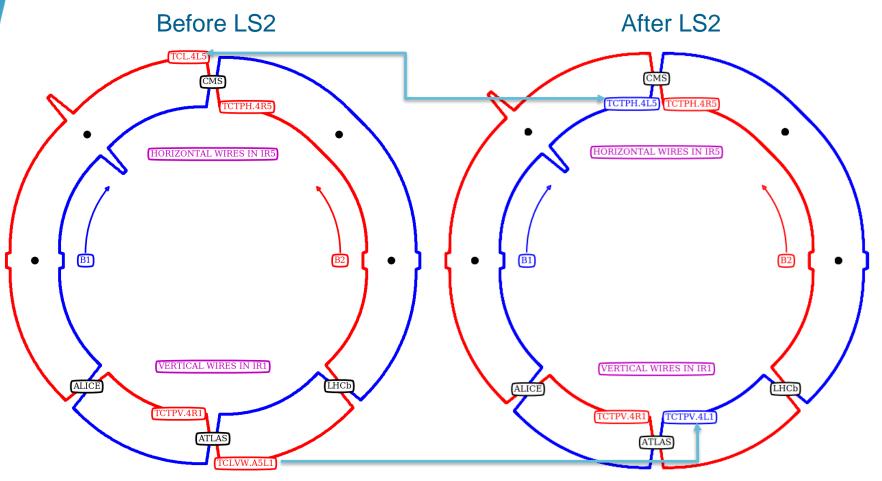


Progress with the wire interlocks for Run3

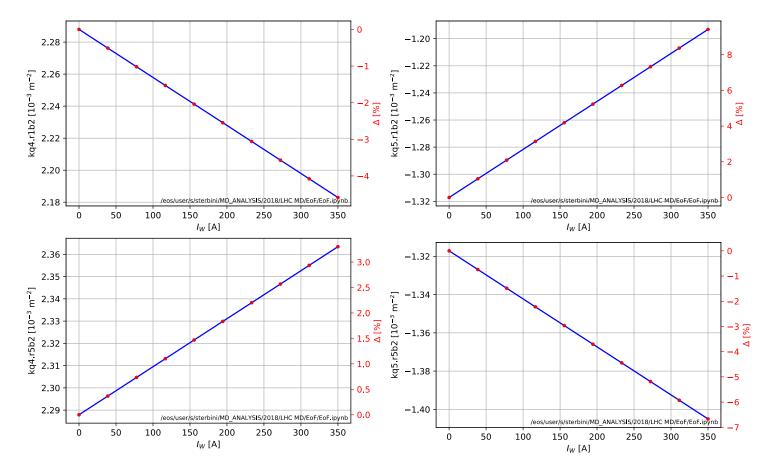
R. Bruce, L. Ceccone, R. Mompo, M. Solfaroli, Y. Papaphilippou, A. Poyet, **A. Rossi**, G. Sterbini, J. Uythoven, J.Wenninger, D. Wollmann, M. Zerlauth.


Beam-Beam and Luminosity Meeting on February 7th 2020

Outline

- New installation during LS2
- 2018 studies on effect of wire off (and Q4/5 trim on) on β-beating, tune shift and collimation hierarchy
- Power converter + circuit time constant
- Wire overheating
- Proposal for interlocks

Changes during LS2

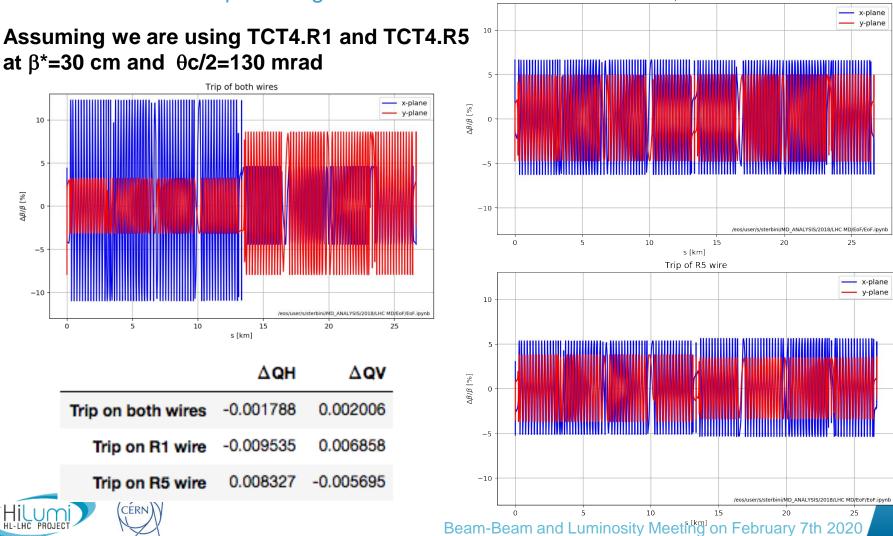

Courtesy of Guido Sterbini BE-ABP

/eos/user/s/sterbini/MD_ANALYSIS/2018/LHC MD Optics/OpticsInjection.ipynb

Wire-in-jaw collimators have been moved to new position. Commissioning planned for Q4 of 2020

Beam-Beam and Luminosity Meeting on February 7th 2020

Q4/5-feedforward on when wires on



When we trim a wire the Q4/5 close to the wire are trimmed to compensate as close as possible the quadrupolar perturbation of the wire.

G. Sterbini, M. Solfaroli

What if a wire PCs trips? G. Sterbini

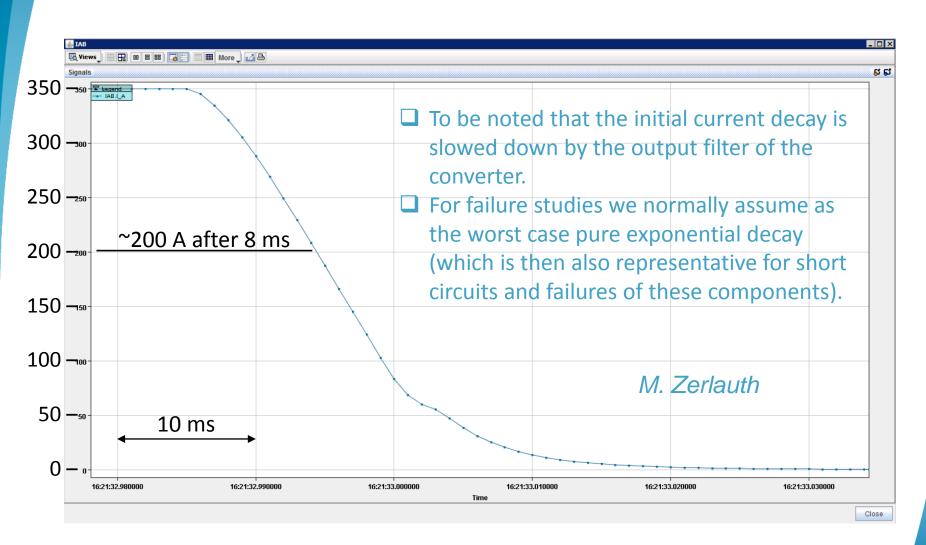
IF the wire PC trips, AND the beam is NOT automatically dumped: the Q4/5 trim will cause tune shift and β -beating.

5

Effect on collimation hierarchy (R. Bruce)

Studying effect on collimation hierarchy from β-beat due Q4/Q5 correction still running after wire trips on 2018 baseline optics

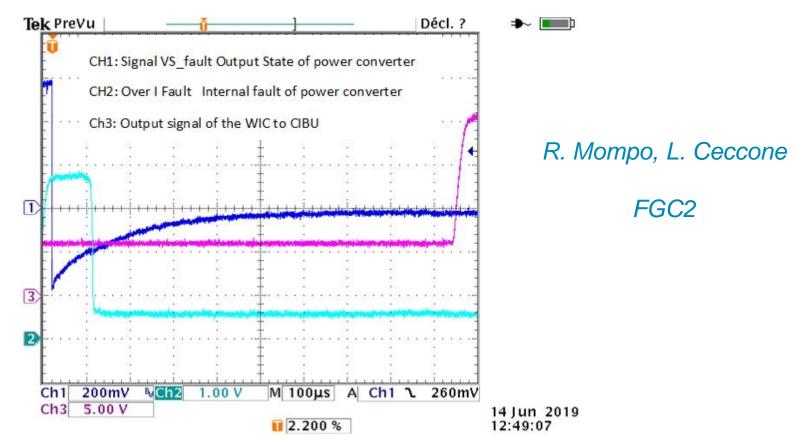
- Typically observing up to 0.2 σ difference in effective collimator settings
 - Not expected to be critical for most collimators
 - No hierarchy breakage expected in IR7, unless β-beating from other effects comes on top
 - Up to 0.7 σ difference in the worst case
- Most critical case: Effective σ-setting of dump protection and IR5 TCT 30 cm
 25 cm


σ-setting	Nominal	Trip IR5	σ-setting	Nominal	Trip IR5
TCDQ.B4L6.B2	7.24	7.46	TCDQ.B4L6.B2	7.3	7.56
TCTPH.4R5.B2	8.5	8.43	TCTPH.4R5.B2	7.8	7.68

- At 25 cm, margin between TCDQ and TCT is reduced to about 0.1 σ
 - On top of other sources of β-beat, risk to be out of tolerance at 25 cm discouraged running scenario
 - For regular operational use, preferable to do loss maps with wire off and compensation running
- Phase advance MKD-TCT shifts by 1-2 degrees and stays within tolerance no issue expected
- For any operational use in Run 3, all studies should be repeated with final

CERN

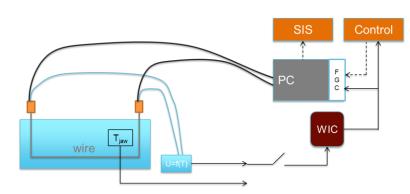
Wire current decay after converter fault


Power converter failure, FPG and WIC

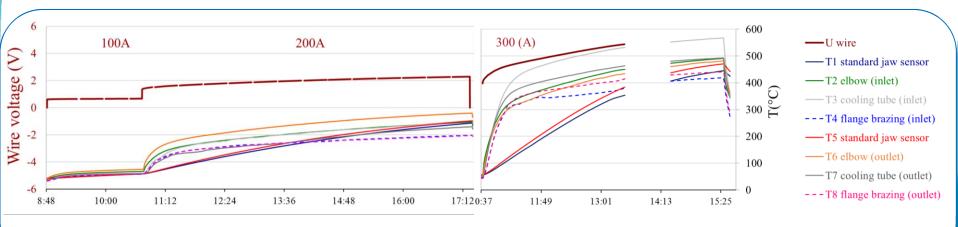
- There are 4 main reasons to generate POWERING_FAILURE on the FGC2 (which is the one used for the BBCW) and the FGC3 (which is relevant for the RD1s, RD34s and in the future for newer converter installations):
 - 1. VSFAULT: Voltage source Internal Fault (fast power abort unsafe, over voltage, over current, aux PSU)
 - 2. VSEXTINTLK: Voltage source External Interlock (water, earth current, equipment stop button)
 - 3. DCCT faults
 - 4. FGCFAULT: which is used for remote testing as asserted from the software as well as the PIC2 tests.
- In the first 3 cases, the signal gets from the voltage source buffers to the FGC FPGA, via a relay to the WIC. Max reaction time = max. 350us (voltage source signal delay) + max. 10us (FPGA processing delay) + max. 3ms (relay reaction time) = 3.36ms
- In the latter case, it depends on the software and might take from ~8ms (FGC2, FGC3) to 20/40ms (FGClite).

M. Zerlauth

 Very small overall delay between the occurrence of an internal converter failure until the beam dump to the BIS: 1.2ms for the latest FGC3 version, and 1ms for the FGC2



 Confirm (*M. Zerlauth*) WIC path sufficient interlock chain even for the most (time) critical failures of the wire compensator



Wire overheating

- Wire resistivity f(T)
- If wire voltage > 2.6V*
 = if hottest point @ 350A
 < 200°C, WIC cuts the PC
- WIC could dump at the same time

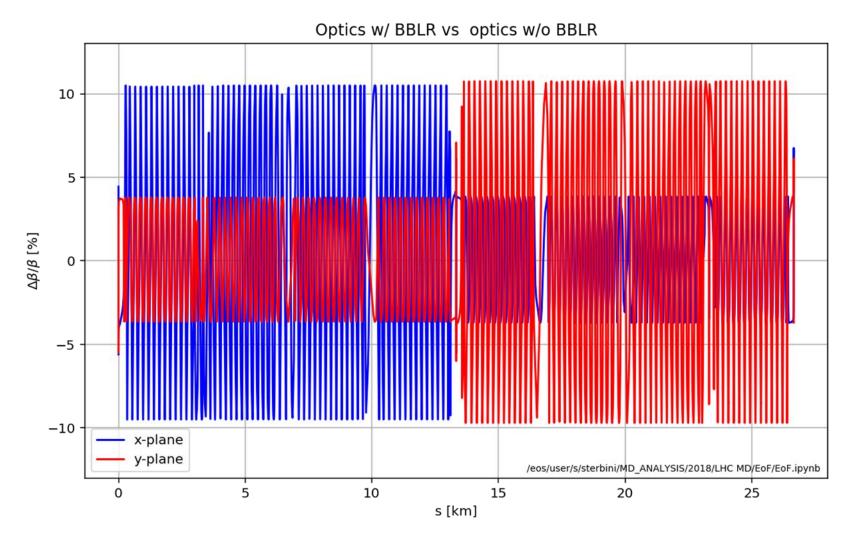
• Long time constant of system, no constraints on collimator HW

Tests performed on spare wire-in-jaw, under vacuum with no coolant

*Note this also correspond to Iw=375A

10

Future work


- Insert wire power converter into the matrix of converters for beam dump
 - (R. Mompo) to be tested during commissioning
- Finalize tests on interlock delays with FGC2 : During <u>standard</u> <u>commissioning</u>, trigger a fast powering failure → observe the effect on the circulating beam and measure the reaction time of interlocks
- Define required controls changes : Jorg foresees introducing the control of the wire in the LHC sequence <u>LBOC (3 Dec. '19)</u> BUT not possible for all cycle. Needs discussion on operational use cases
 - (Guido at <u>LBOC 3 Dec. '19)</u>, wire switched on at end of levelling (still to be finalised).
- Commissioning procedure to be done, including list of tests after installation, revalidation after failure and replacement of voltage measuring card or power converter, after shut-downs.

Thank you

Backup – effective collimator settings

		hcb2_nominal_25c l		-		•			•
									m
TCTPH.4R8.B2	15.00	14.91	14.92	14.52	14.59	14.51	14.58	14.90	14.93
TCTPV.4R8.B2	15.00	14.82	14.84	14.28	14.36	14.53	14.58	14.61	14.65
TCP.D6R7.B2	5.00	4.97	4.97	4.98	4.98	4.96	4.96	4.97	4.97
TCP.C6R7.B2	5.00	5.03	5.04	5.06	5.06	4.91	4.93	5.20	5.17
TCP.B6R7.B2	5.00	5.01	5.01	5.04	5.03		4.96	5.09	5.08
TCSG.A6R7.B2		6.54	6.53	6.68	6.65	6.58	6.56	6.64	6.61
TCSG.B5R7.B2		6.51	6.50	6.66	6.62		6.68	6.43	6.43
TCSG.A5R7.B2		6.52	6.51	6.67	6.63	6.74	6.69	6.44	6.44
TCSG.D4R7.B2		6.68	6.65	7.01	6.93	6.88	6.82	6.81	6.77
TCSG.B4R7.B2		6.53	6.52	6.69	6.66	6.75	6.71	6.45	6.46
TCSG.A4R7.B2		6.48	6.48	6.46	6.47	6.54	6.53	6.41	6.43
TCSG.A4L7.B2	6.50	6.45	6.46	6.34	6.37	6.42	6.44	6.38	6.40
TCSG.B5L7.B2	6.50	6.43	6.45	6.19	6.25	6.23	6.28	6.39	6.42
TCSG.D5L7.B2	6.50	6.44	6.46	6.20	6.25	6.25	6.29	6.39	6.41
TCSG.E5L7.B2	6.50	6.45	6.46	6.21	6.27	6.25	6.30	6.41	6.43
TCSG.6L7.B2	6.50	6.52	6.53	6.35	6.38	6.35	6.38	6.52	6.53
TCLA.A6L7.B2	10.00	9.89	9.90	9.73	9.77		9.81	9.82	9.85
TCLA.B6L7.B2	10.00	10.05	10.05	9.78	9.83	9.87	9.91	9.93	9.96
TCLA.C6L7.B2	10.00	10.14	10.10	10.65	10.52	10.43	10.34	10.35	10.27
TCLA.D6L7.B2	10.00	10.04	10.04	9.87	9.90		10.12	9.77	9.81
TCLA.A7L7.B2	10.00	9.91	9.90	9.88	9.89	10.20	10.15	9.59	9.64
TCDQA.A4L6.B									
2	7.30	7.32	7.26	7.36	7.31	7.14	7.12	7.56	7.46
TCDQA.C4L6.B									
2	7.30	7.32	7.26	7.36	7.31	7.14	7.12	7.56	7.46
TCDQA.B4L6.B									
2	7.30	7.32	7.26	7.36	7.30	7.13	7.12	7.56	7.46
TCSP.A4L6.B2	7.30	7.31	7.25	7.34	7.29	7.12	7.10	7.55	7.45
TCTPH.4R5.B2	7.80	7.78	8.52	7.57	8.33	7.65	8.41	7.68	8.43
TCTPV.4R5.B2	7.80	7.78	8.50	7.91	8.62	7.83	8.55	7.83	8.55
TCP.6R3.B2	15.00	15.11	15.10	16.02	15.85	15.63	15.53	15.52	15.43
TCSG.5R3.B2	18.00	18.14	18.13	18.29	18.27	18.29	18.26	18.22	18.20
TCSG.4L3.B2	18.00	17.93	17.92	19.04	18.84	18.52	18.41	18.43	18.34
TCSG.A5L3.B2	18.00	17.93	17.91	18.95	18.76	18.59	18.46	18.30	18.22
TCSG.B5L3.B2	18.00	17.94	17.93	18.81	18.66	18.54	18.42	18.24	18.17
TCLA.A5L3.B2	20.00	20.19	20.20	20.36	20.33	20.75	20.66	19.78	19.84
TCLA.B5L3.B2	20.00	19.94	19.94	20.13	20.11	20.12	20.09	20.05	20.02
TCLA.6L3.B2	20.00	20.28	20.29	19.54	19.68	19.93	19.99	19.96	20.01
TCLA.7L3.B2	20.00	19.78	19.78	20.05	20.02	19.90	19.89	19.93	19.91
TCTPH.4R2.B2	37.00	36.86	36.85	39.27	38.95	38.13	37.98	37.94	37.79
TCTPV.4R2.B2	37.00	36.97	36.98	36.86	36.98	36.12	36.36	37.80	37.67