Quench Analysis MBHA-002 Quick upate 04 Febuary 2020

G. Willering, V. Desbiolles, G. Ninet, F. Mangiarotti L. Fiscarelli

Quench history

	Ramp	Temper							
	rate	ature	Current	Precurso	r Location	Location		QA	LQA
1	10	1.9	8.34	Yes	D1U	CS	head	1 and 2	
2	10	1.9	9.51	Yes	D2L	CS	head	1	
3	10	1.9	10.37	Yes	D1U	CS	head	1	
4	10	1.9	11.43	Yes	D1L	CS	head	1	
5	10	1.9	11.71	No	D1U	NCS		5	
6	10	1.9	11.88	No	D1U	NCS		5	
7	10	1.9	11.015	No	D1U	NCS		5	
8	10	1.9	11.88	Yes	D1U	CS	head	1	
9	10	1.9	11.83	No	D1U	NCS		5	
10	10	1.9	11.42	No	D1U	NCS		5	
11	10	1.9	11.32	No	D1U	NCS	head		<1 (shifted)
12	50	1.9	11.95	No	D1U	NCS	head		3
13	VI	1.9	10.02	No	D1U	NCS	head		3
14	10	4.5	10.57	No	D1U	Straight	~40-50 cm from head		>11
15	10	1.9	10.96	No	D1U	NCS	head		3
16	flattops	1.9	11.938	No	D1U	Straight	~40-50 cm from head		
17	50	1.9	11.87	No	D1U	NCS	head		<1
18	10	4.5	10.95	No	D1U	Straight	~40-50 cm from head		>11
19	V-I	4.5	11.55	No	D1U	Straight	~105 to 115 cm from head		>11 (shifted)
20	10	4.5	11.09	No	D1U	NCS	head		<1 (shifted)
21	10	4.5	11.06	No	D1U	NCS	head		<1 (shifted)
22	50	4.5	10.42	No	D1U	NCS	head		<1 (shifted)
23	1	4.5	11.6	No	D1U	Straight	~105 to 115 cm from head		>11
24	10	1.9	ongoing						

Quench Location

Quench 22: 10.43 kA @ 4.5 K, 50 A/s Abnormal propagation:

Ramp rate and temperature dependency

For comparison MBHB-001 hybrid

Instability at 1.9 K at 10 A/s. Reproducibility at 4.5 K at 10 A/s.

- 4.5 K higher ramp prate gives lower quench current
- 4.5 K highest quench current with very low ramp rates

V-I measurements

- Significant voltage buildup in voltage in coil D1U
- Voltage buildup starts from very low current of 6 kA
- Clear decay of voltage on current plateaus.
- No sign of degradation in aperture 2, nor in coil D1L

Additional V-I measurements

Several features:

- 10 A/s ramp straight to 10.5 kA, reaching 12 uV, showing decay time constant on 30 minutes plateau
- Ramp down to 6 kA, shows **negative voltage**
- 30 A/s ramp to 10.5 kA (lower voltage than 10 A/s ramp, this can be influenced by pre-cycles).

Quench propagation

Very fast propagation

Anomaly in LQA signals

Quench 23: 11.6 kA @ 4.5 K, 1 A/s (start 1.1 meter from the head, MRB shaft inserted towards CFB end) Abnormal propagation:

Curves A-C flip sign for most segments. (transposition pitch 100 mm, pickup coil length 40 mm)

To be studied:

Can a quench propagate through a single strand (or a few strands)

To check

Quench signal should repeat each 5 segments.

If always the same strand has propagating quench, repeatibitly between quench.

Conclusion

- Coil D1U has a clear damage
- Decay in V-I curves indicate current redistribution -> Local defect
- Voltage buildup starts at very low current -> severe damage to some of the conductor
- 3 quench locations:
 - We believe that the 50 A/s ramp at 4.5 K forces the current through the defect the most and may indicate the location of the defect. The defect is therefore most likely in the head.
 - At 1.9 K the large variation in quench current indicates self-field instabilities
 - Quenches in the straigth segment are assumed to result from current redistribution effects caused by the defect.
 - The pickup coils give propagation signals on the straigth part inconsistent with any earlier proposed model. There are no good models for localizing quenches in the head.
 - Difficult to pinpoint the defect to a single turn.

Discussion on the cause

- Cool down damage? (the head non-connection side sees negligble thermal gradient <<30 K)
- Due to high quench integral? **No**, the NCS head did not see a quench yet at the first suspicious quench.
- Due to powering? See next slide.
- Production damage?

First powering to 6 kA was a splice cycle including V-I measurements.

No sign of any voltage.

This was the first time this magnet reached 6 kA.

Clear voltage at 6 kA
This was the last powering before warm up.

Conclusion: a weakness appeared, or an existing weaknes degraded more during the powering/quenching.

Backup