

MBHSP109 Update Cool down 7 Results on magnet performance

Salvador Ferradás Troitiño (TE-MSC-TF) Gerard Willering (TE-MSC-TF) Franco Mangiarotti (TE-MSC-TF) Jerome Feuvrier (TE-MSC-TF) Jean Luc Guyon (TE-MSC-TF)

05 February 2020 - 11T Dipole Technical Meeting #23

1. SP109 History

- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 7 @ 1.9 K
- 6. Conclusions and next steps

SP109 history

Winter 2018-2019:

Long magnets test station. ΔT of 150K

- Cool down 1
 Powering to Ultimate current
- Cool down 2
 Verification. Change in the VI curve at (both1.9 K and 4.5 K). Quench current 100 A lower @ 4.5 K
- Cool down 3
 Further reduction in coil performance (at both 1.9 K and 4.5 K). Quench current ~ 50 A lower @ 4.5 K

Spring 2019:

Long magnets test station. ΔT 50 K

Cool down 4

VI showed degradation even after a reduced gradient cooldown

High quench integral studies reaching up to 16.5 MA²s

VI showed degradation after high-QI quenches

July-August 2019:

HFM test station. △T 50 K

Cool down 5 and 6
 No powering. HV tests, focusing on QH-Coil.

More information included in 11T Technical meeting #6
Prepared by G. Willering, M. Duda et al

- 1. SP109 History
- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 7 @ 1.9 K
- 6. Conclusions and next steps

Goals of cool down 7 & 8

Cool down 7 (Jan 2020)

Phase 0 - 4.5 K

Training quench and VI at 4.5 K.

Phase 1 - 1.9 K

Ramp to target current and HV tests.

Phase 2 – 200 K

HV tests @ 3 bars

Cool down 8 (not possible due to schedule)
 Verification of test station and cooling rate dependency, at 4.5 K

- 1. SP109 History
- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 7 @ 1.9 K
- 6. Conclusions and next steps

Cooling procedure of Long Magnets vs HFM cryostats

Long Magnets test station

- Cooling to 4.5 K
- Injection of LHe

■ Warm – up

Vaporization using heaters installed between yoke and shell

HFM test station

- Cooling to 4.5 K,
 - 2 steps
 - 1. RT 80 K
 - Gas injection at desired temp
 - 2. 80 K 4.5 K
 - LHe injection
- Warm up
 - 1. 80 K RT
 - Gas injection at desired temp
 - 2. 4.5 K 80 K
 - Vaporization using heaters at the bottom of the cryostat

- 1. SP109 History
- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 7 @ 1.9 K
- 6. Conclusions and next steps

Cooldown # 7: Coil limit @ 4.5 K

Phase 0 - 4.5K

- It was concluded previously, that thermal cycling affected the performance of the magnet.
- The quench current of the magnet decreased after the high QI studies during CD 4.

This was observed also at 1.9K

More information included in <u>11T Technical meeting #6</u> Prepared by G. Willering, M. Duda et al

Cooldown # 7: Coil limit @ 4.5 K

Phase 0 - 4.5K

A full TC in HFM would be helpful to study the station-dependency.

Before high QI @ CD4

CD 1 – CD 4 Voltage increase due to thermal cycling

Before high QI @ CD4

- 1. SP109 History
- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 7 @ 1.9 K
- 6. Conclusions and next steps

Cooldown # 7: Performance @ 1.9 K

Phase 1 - 1.9K

- Ramp to target current of 12.2 kA without quench.
 - Showing good memory

- 1. SP109 History
- 2. Goals of cool down 7 & 8
- 3. Cooling procedure of Long Magnets vs HFM cryostats
- 4. Cool down 7 @ 4.5 K
- 5. Cool down 8 @ 1.9 K
- 6. Conclusions and next steps

Conclusions and next steps

- The magnet reached 12.2 kA @ 1.9 K showing good memory
- There is degradation at 4.5 K as it was seen at 1.9 K after high-QI studies in CD 4

Cooldown 8 if possible to compare test station dependency

Additional slides

V-I measurements in SP109 at 4.5 K

Back

High QI

- VI curve shifts after last QI quench (hotspot temperature > 300 K)
- Quench current drops after last QI quench
- During quench almost full length of the segment is not superconducting: almost full length sees high temperature
- Consistent with thermal cycle observation

Back

More tests to follow and verify tomorrow

High QI

