Numerical simulation of beam dynamics
in particle accelerators

A flavor of techniques and tools used to predict/push
the performance of the Large Hadron Collier at CERN

Part 1: single part|cle methods
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Introduction

"\ A particle accelerator is a machine used to accelerate particles (electrons,
protons, ions, etc...) using electromagnetic fields

— There are many accelerators in the word used for a variety of applications

(industrial, medical, research)

Example of industrial application:

lon implantation in the fabrication of integrated circuits
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y Introduction

S Example of medical application:

e Accelerator for cancer treatment




Introduction

Example of research application:

e Large Hadron Collider (LHC) for high-energy physics research

Largest and most powerful particle accelerator ever built (27 km circumference)

It is designed to:
store 450 GeV protons (in two counter rotating beams)
accelerate them up to 7 TeV




y The Large Hadron Collider (LHC)

8-fold symmetric structure:

* 8 Long Straight Sections (LSS) to host
experiments and other equipment

X" W
(\S (- e
‘ 41 b

LSS 3
(Collimation)

LSS 2
(ALICE)

LSS 1

T2 (ATLAS)



LSS 3
(Coll

The Large Hadron Collider (LHC)

LSS 5
(CMS)

8-fold symmetric structure:

* 8 Long Straight Sections (LSS) to host

experiments and other equipment

LSS 6
(Beam dump)



y The Large Hadron Collider (LHC)

8-fold symmetric structure:

* 8 Long Straight Sections (LSS) to host
experiments and other equipment

LSS 5
(CMS)

LSS 6

(Beam dump) e 8 Arcs (2.45 km each - Periodic magnet

lattice to bend and focus the beams)

LSS 3
(Collimation)

LSS 2
(ALICE)

—= Main magnets
(superconducting)

8.33 T dipoles



y The Large Hadron Collider (LHC)

8-fold symmetric structure:

e 8long Stralght Sectlons (LSS) to host
$ equipment

" Periodic magnet
s the beams)
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y Accelerating structures

S * To manipulate and accelerate charged particles we use electromagnetic fields

o The Lorentz force acts on the particles  F =!qE +qv xB

* The magnetic field force does not change Accelerating structures can be concatenated
the energy of the particles to form a linear accelerator (“linac”):
* The acceleration itself needs to be done — Acceleration is very fast (single passage)

by an electric field in specifically designed

—> But achievable energy is quite limited
accelerating structures

Accelerating
structure

LINAC 4 at CER




y Bending magnets

S * To manipulate and accelerate charged particles we use electromagnetic fields

o The Lorentz force acts on the particles F = gE +qv x B :

* Magnetic fields do not change the
energy of the particles but can be used
very effectively to guide them

 “Dipole magnets” are used to bend
the particles’ trajectory




y The synchrotron

N/

* We can use a set of dipole magnets to keep
the particles on a closed trajectory




y The synchrotron

N/

* We can use a set of dipole magnets to keep
the particles on a closed trajectory

o Allows to accumulate “re-use” for
many turns the energy gain from the
same accelerating structure (RF cavity)

* Inthe Large Hadron Collider (LHC):

o We want to increase the proton energy
by ~6000 GeV

o Accelerating cavities provide only
~500 keV/turn (in average)

o Acceleration is done in about
~15million turns (20 minutes)



y Need for focusing

<7 e Due to the way they are produced, particle beams always have a small divergence

Al




y Need for focusing
e Due to the way they are produced, particle beams always have a small divergence

N/
o Over time particles would be inevitably lost on the walls of the beam-pipe




y Quadrupole magnets

<7 e Due to the way they are produced, particle beams always have a small divergence
o Over time particles would be inevitably lost on the walls of the beam-pipe

* To keep the particles close to the center of the beam-pipe we use quadrupole
magnets

o Ina quadrupole, the magnetic force is linearly proportional to the distance
from the center of the magnet (F, = - k x)

Quadrupole

Al




y Quadrupole magnets

<7 e Due to the way they are produced, particle beams always have a small divergence
o Over time particles would be inevitably lost on the walls of the beam-pipe

* To keep the particles close to the center of the beam-pipe we use quadrupole
magnets

o Ina quadrupole, the magnetic force is linearly proportional to the distance
from the center of the magnet (F, = - k x) = it acts like a focusing lens

o Quadrupole magnets focus the beam in one direction but defocus on the
orthogonal one

Quadrupole
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y Quadrupole magnets

<7 e Due to the way they are produced, particle beams always have a small divergence
o Over time particles would be inevitably lost on the walls of the beam-pipe

* To keep the particles close to the center of the beam-pipe we use quadrupole
magnets
o Ina quadrupole, the magnetic force is linearly proportional to the distance
from the center of the magnet (F, = - k x) = it acts like a focusing lens

o Quadrupole magnets focus the beam in one direction but defocus on the
orthogonal one = quadrupoles with opposite polarity are alternated to
confine the beams in both planes
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* Beam optics calculations

o An example: the LHC betatron squeeze



Beam envelope

* Inthe presence of dipole and quadrupole magnets alone (linear regime) it is
possible to compute the envelope of the beam without having to evaluate the
trajectories of the single particles

o Courant-Snyder formalism based on the Floquet theorem

z(s) = \/E:\/ﬁ(s):cos[lIf(s)—l—qb]

W — -
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Shaping the “beam optics”

<7 * Quadrupole strengths can be used to shape the particle beam envelope (in the
same way in which lenses can be used to shape a beam of light)
Example: LHC betatron squeeze

Beam size at interaction point = 0.188 mm
- (beta* = 11.00 m)
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Before putting the beams in collisions,
: the beam-size at the interaction
_____ -~ | point needs to be reduced (squeezed)

? 5 to maximize the collision rate

-4000 —-2000 0 2000 4000

Position along the ring [m]



()

~/_~

0.05
0.00
-0.05

Quad. strength

10

Beam envelope [mm]
o

-10

Shaping the “beam optics”

* Quadrupole strengths can be used to shape the particle beam envelope (in the
same way in which lenses can be used to shape a beam of light)
Example: LHC betatron squeeze
Beam size at interaction point = 0.188 mm
(beta* = 11.00 m)
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* Beam optics calculations

o Numerical optimization techniques



y Shaping the “beam optics”

7~ * The relation between the quadrupole strengths and the beam size is non-trivial

o Several technical constraints also need to be taken into account (e.g.
maximum quadrupole strength, current sign, size of the beam pipes,
magnets in series that must have the same current)

o Numerical optimizers need to be used to identify suitable quadrupole
strengths as a function of given constraints on the beam envelope

CERN’s workhorse code for these calculations is the MAD-X code.

http://mad.web.cern.ch/mad/



http://mad.web.cern.ch/mad/

1

y Shaping the “beam optics

J * To illustrate how an optimization algorithm works we consider a simple problem
with 2 constraints and 2 degrees of freedom:
o We want the maximum and the minimum of the beam envelope (s) to
assume specified values o, and oz (marked by the red lines in figure)
o We can change the strength of two families of quadrupoles (kq; and kg;)
We define a suitable “cost function”:
32 o F (kqi, kqz) =
o% —1 2 2
Omax (kQ1,kQ2) — oA L [ Tmin (kQ1,kqQ2) —oB
oA OB
151
E
=10 To solve our problem we need to search the
E minimum of this quantity as function of ky, and kg,
O
@ 37 V V V \/ v This is called an “optimization problem”
0

s [m]



@ Shaping the “beam optics”

<7 _/\ We define a suitable “cost function”:

2 2
F (kQ].? sz) — \/(amax (kQI: kQ2) - O'A) + (O'mm (le, sz) —_ O'B)

OA OB

To solve our problem we need to search the minimum of this quantity as
function of ko, and kg,

e With only two degrees of freedom we can visualize the function as surface

* With more than two degrees of freedom it can become too expensive to map the
whole parameter space = we need to search for the minimum “blindly”
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- y Gradient method

<7_~\ Asimple optimization technique is the “gradient method”. It is based on the
following iteration (starting from an arbitrary “guess” of the solution) :

Ilteration O
Strength Q1

I —— — ——
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y Gradient method
A simple optimization technique is the “gradient method”. It is based on the

N/
following iteration (starting from an arbitrary “guess” of the solution) :

1. At the given point we evaluate the gradient of the cost function, _VF = — ( OF OF )
tells us the direction in which our surface is the steepest 3kQ1 ’ aqu

Ilteration O
Strength Q1
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y Gradient method
A simple optimization technique is the “gradient method”. It is based on the

N/
following iteration (starting from an arbitrary “guess” of the solution) :

1. At the given point we evaluate the gradient of the cost function, _VF = — ( OF OF )
tells us the direction in which our surface is the steepest 3kQ1 ’ 3kQ2

2. We take a new point in that direction and we go back to 1.

lteration 1
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y Gradient method
A simple optimization technique is the “gradient method”. It is based on the

N/
following iteration (starting from an arbitrary “guess” of the solution) :

1. At the given point we evaluate the gradient of the cost function, _VF = — ( OF OF )
tells us the direction in which our surface is the steepest 3kQ1 ’ 3kQ2

2. We take a new point in that direction and we go back to 1.

Iteration 2
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B y Gradient method

<7_~\ Asimple optimization technique is the “gradient method”. It is based on the
following iteration (starting from an arbitrary “guess” of the solution) :

1. At the given point we evaluate the gradient of the cost function, _VF = — ( OF OF )
tells us the direction in which our surface is the steepest 5kQ1 ’ 5kQ2

2. We take a new point in that direction and we go back to 1.

After a certain number of iterations the algorithm will converge to a minimum of the cost function

Iteration 3
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B y Gradient method

<7_~\ Asimple optimization technique is the “gradient method”. It is based on the
following iteration (starting from an arbitrary “guess” of the solution) :

1. At the given point we evaluate the gradient of the cost function, _VF = — ( OF OF )
tells us the direction in which our surface is the steepest 3kQ1 ’ aJlfin

2. We take a new point in that direction and we go back to 1.

After a certain number of iterations the algorithm will converge to a minimum of the cost function
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X [m]

Orbit design
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Similar techniques are user to shape the beam trajectories (closed orbit)

Beam crossing scheme
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y Orbit correction

~/_~

Iterative methods are used also to correct the beam trajectory (with respect to a known
reference) due to daily small fluctuations = done online on the circulating beams

Before correction

E
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Non-linearities

* Dipolar and quadrupolar fields are in principle sufficient to keep the particles on a
closed trajectory and keep them focused.

* Nevertheless in a realistic accelerator the situation is more complex:

o Magnets are not perfect (dipole and quadrupole magnets have unwanted
deviation from the ideal field shapes)

o Magnets are not “exactly” where they are supposed to be (alignment errors)
o Particles do not have all exactly the same energy (typical relative spread ~10-3)
= Need of “chromatic corrections” using sextupole magnets

—> A realistic machine has unavoidable non-linearities

Sextupole magnet




Particle tracking

In the presence of these effects, the particle motion gets much more complex:

o The envelope equation is not anymore enough

o Depending on the initial conditions particles can be lost after a certain

number of turns

We need to numerically simulate the motion of the particle in the accelerator:

o We are interested in quantifying how many particles will be lost over a
realistic time = for the LHC we need to simulate “millions of turns!

Survived turns

1

1
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700000
600000
500000
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100000
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y Tracking simulations

N7 e Simulations on such long time scales are subject to particular issues, which we
will illustrate using a simple example:

* We assume uniform focusing force

XA

F(z) = —kx




Tracking simulations

* Simulations on such long time scales are subject to particular issues, which we
will illustrate using a simple example:

* We assume uniform focusing force

* Insuch a field the particle oscillate around the axisx =0

XA
F(z) = —kx
~— | T —
YYVYYVYYY YYVVYVYYYVYVYYYYVYYYYYYY AAAAAAAAA AR A
AAAAAAAAAAA \AAAAAAAAAAA’A AAAAAAAAAAAAAAAAAA
— "

Equations of motion

dvz _ _k
dt  m
dx

:’Um

dt



Eqg. of motion

Tracking simulations

>

~/_~
F(z) = —kx
dvy  k uy L ]|
7;—-—-———1? MAAAAAAAAnAAAAAAAAAAAAAAAAAAAAALS ZaADAAAAAAAAADR AN
(; m AMAMAMMMPAAMAMAMAAALATAAMAMAMAMAAAA
x B ]
_— = U:B
dt

Such a system preserves the initial
energy of the particle, defined as:

Proof:

dE
dt

1

E = —mv2 +

2

/

1
—kxz? = const.

2
AN

Kinetic energy

Potential energy

mu d& +kmd—m
T dt dt

mu d&—l—ﬁw
T\ dt m

)

=0

S



y Tracking simulations
XA

~/_~
F(z) = —kx

c
i) d k — ol T—
S d_ = ——Z \AAAAARAAMAAAAAAAAAAAAAAAAAAAAL ) ZaARAAAAAAAAATA o SN
£ m AMAMAMMMPAAMAMAMAAALATAAMAMAMAMAAAA
5 dx i I
. - =
g od "

We compare two numerical methods to compute x(t):

Method 1: We use a numerical integration method to find an approximated solution to the
exact problem

Runge-Kutta scheme:

Eqg. of motion We introduce a 1
in vector form discrete time-step At Zpil = Zp + 5 (k1 + 2ks + 2ks3 + ky)
dz
= f(z) with: k; = At f(z,),
dt Kk
ko = At £z, + —
with: z(t) = ( £® ? (z " 2)
vz (1)

kngt f(Zn‘i'%)

k4 = At f(Zn + k3)

S
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Eqg. of motion
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Tracking simulations
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We compare two numerical methods to compute x(t):
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Method 2: We find an approximated problem for which we are able to compute the exact

solution

We concentrate our focusing force at discrete locations (“lenses”)
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In between lenses the
particle simple moves
along a straight line

This is an example of
“symplectic scheme”



y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
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y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval
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y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans ...

100

Energy

| —  Symplectic : : .

Turn



y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans ...
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y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
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* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans ...

— Symplectic
— Runge-Kutta

Turn



y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
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y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
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y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
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* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans ...
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Tracking simulations: a numerical experiment

We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans ...

Energy
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Tracking simulations: a numerical experiment

We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans the Runge-Kutta method slowly “consumes” the
energy of the particles

Energy

100
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20 |

— Symplectic
— Runge-Kutta

Turn
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Tracking simulations: a numerical experiment

We perform a numerical experiment to compare the two methods:

* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans the Runge-Kutta method slowly “consumes” the
energy of the particles

Energy
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— Runge-Kutta

5000 10000 15000 20000 25000



y Tracking simulations: a numerical experiment

<7\ We perform a numerical experiment to compare the two methods:
* The Runge-Kutta method is more accurate on a short time interval

* On very long time-spans the Runge-Kutta method slowly “consumes” the
energy of the particles

o “Fake” physical phenomena are introduced
o Runge-Kutta cannot be used to predict slow effects on the beam

* In spite of being less accurate on short times, the symplectic scheme does not
suffer from this issues

T T T T T
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y Tracking simulations: a numerical experiment

* In general, for long-term tracking we do need to use symplectic algorithms:

- The numerical solution needs to preserve fundamental properties of the
physical system such as energy conservation
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y Which hardware?

~/_~

In accelerator studies we are interested tracking a large number of particles
(~100 000) to probe different initial conditions:

e Simulation of each particle is independent

* We are facing an “embarrassingly parallel problem”

—> Particularly suited for GPU acceleration

Survived turns

; 1 1000000
900000
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700000
1600000
500000
400000
300000
200000
100000
0
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y GPU computing

NS * Graphics Processing Units (GPUs) are chips developed since the 80s to perform
graphics calculations (video rendering), typically installed on a video-card

o Main applications are gaming and computer graphics in general

e Since the early 2000s GPU vendors provide tools to use the GPUs also for general-
purpose parallel computing:

o Libraries and tools to exploit these resources have flourished

o Cards dedicated to high performance computing have been commercialized

Gami d
aming car HPC GPU card GPU accelerated server




GPUs vs CPUs

CPU

Optimized for
Serial Tasks

* Has a small number of complex

GPU Accelerator

Optimized for
Parallel Tasks
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Has a large number of simpler computing

computing cores (up to 8) cores (>1000)
e \Very fast clock rates e Slower clock rates
e (Can access large memory (> 100 GB) e Can access relatively small memory (~16 GB)

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro to HPC gpu computing.pdf



https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf

B y GPU vs CPU

~/_~
Resources allocation:

* A GPU has more resources dedicated to Arithmetic-Logic operations (ALUs)
compared to a covariational CPU

* A GPU has less resources dedicated to control and cache memory

CPU GPU

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro to HPC gpu computing.pdf



https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf

y GPU vs CPU: a simplified summary

CPU GPU
optimized for speed optimized for capacity
(but reduced capacity) (but reduced speed)

Which is better depends on your needs...

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro to HPC gpu computing.pdf
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GPU vs CPU: a real life example

~/_~
The sixtracklib tracking library (recently developed at CERN) allows performing
tracking simulations both on CPU and on GPU
3 For a small number of particles the CPU
10 T CPU a ‘ r") | outperforms the GPU by almost a factor of 10
? core — Single core speed is much larger for the CPU CPU
— 2 1 A Y A S —
®
S, ,
’
o) I
£ 10
5 o
s 10 ¢
-]
o -
S 10"}
O

1b6turns !

0y . LHCmachine
10° 100 10° 10° 10° 10> 10°

Number of particles
https://qgithub.com/SixTrack/sixtracklib



https://github.com/SixTrack/sixtracklib

GPU vs CPU: a real life example

The sixtracklib tracking library (recently developed at CERN) allows performing
tracking simulations both on CPU and on GPU
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y GPU vs CPU: a real life example

The sixtracklib tracking library (recently developed at CERN) allows performing
tracking simulations both on CPU and on GPU

For a large number of particles the GPU outperforms
the CPU by a factor of 500 (1 day vs 1 year!)
3 - We need to track many particles to make

‘ efficient use the GPU parallel resources
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y GPU vs CPU: a real life example

The sixtracklib tracking library (recently developed at CERN) allows performing
tracking simulations both on CPU and on GPU

Above a certain number of particles also the
resources on the GPU become saturated and
the computing time increases linearly with the
number of particles
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y GPU vs CPU: a real life example

~/_~
The sixtracklib tracking library (recently developed at CERN) allows performing
tracking simulations both on CPU and on GPU
When tracking a large number of particles GPUs become very attractive (still the
price of the device can be more expensive...)
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Summary

A particle accelerator uses electromagnetic field to accelerate and manipulate
charged particles

o Accelerating structures are used to increase the energy of the particles
o Dipole magnets are used to keep the beams on a closed trajectory

o Quadrupole magnets are used to confine (focus) the particles

In the presence of linear forces alone it is possible to compute the beam envelope
(optics) without computing the single particle trajectories

o Quadrupole strengths can be used to shape the particle beam envelope (in
the same way in which lenses can be used to shape a beam of light)

o Numerical optimizers (like the gradient method) need to be used to identify
suitable quadrupole strengths as a function of given constraints on the beam
envelope

Particle tracking is the simulation of individual particles in the accelerator over a
very large number of turns:

* Symplectic algorithms are required in order to preserve fundamental
properties of the physical system

* GPU computers are particularly suited for this kind of simulations



y Next

* So far we have studied “single-particle” methods, which neglect the interactions
among circulating particles

* Inthe second part we will focus on methods for “collective effects”, which are
particularly relevant when the beam is very intense (large number of particles)



Thanks for your attention!



