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Introduction

A particle accelerator is a machine used to accelerate particles (electrons, 
protons, ions, etc…) using electromagnetic fields

 There are many accelerators in the word used for a variety of applications 
(industrial, medical, research)

Example of industrial application:

• Ion implantation in the fabrication of integrated circuits 



Introduction

Example of medical application:

• Accelerator for cancer treatment

MEDAUSTRON, Austria 



Largest and most powerful particle accelerator ever built (27 km circumference)

It is designed to: 
• store 450 GeV protons (in two counter rotating beams) 
• accelerate  them up to 7 TeV
• collide the two beams in four points of the ring (for high energy physics experiments)

Introduction

Example of research application:

• Large Hadron Collider (LHC) for high-energy physics research 
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The Large Hadron Collider (LHC)

8-fold symmetric structure:

• 8 Long Straight Sections (LSS) to host 
experiments and other equipment 

• 8 Arcs (2.45 km each - Periodic magnet 
lattice to bend and focus the beams)

Main magnets
(superconducting)

Superconducting coils 
(1.9 K)

Section of a main dipole

Beam pipes

8.33 T dipoles
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Accelerating 
structure

E

Accelerating structures

• To manipulate and accelerate charged particles we use electromagnetic fields

o The Lorentz force acts on the particles 

• The magnetic field force does not change 
the energy of the particles

• The acceleration itself needs to be done 
by an electric field in specifically designed 
accelerating structures

Accelerating structures can be concatenated 
to form a linear accelerator (“linac”):

 Acceleration is very fast (single passage)

 But achievable energy is quite limited

LINAC 4 at CERN



Bending magnets

B field

B

• Magnetic fields do not change the 
energy of the particles but can be used 
very effectively to guide them

• “Dipole magnets” are used to bend 
the particles’ trajectory 

• To manipulate and accelerate charged particles we use electromagnetic fields

o The Lorentz force acts on the particles 



The synchrotron

• We can use a set of dipole magnets to keep 
the particles on a closed trajectory



The synchrotron

• We can use a set of dipole magnets to keep 
the particles on a closed trajectory

o Allows to accumulate “re-use” for 
many turns the energy gain from the 
same accelerating structure (RF cavity)

• In the Large Hadron Collider (LHC):

o We want to increase the proton energy 
by ~6000 GeV

o Accelerating cavities provide only 
~500 keV/turn (in average)

o Acceleration is done in about 
~15million turns (20 minutes)



Need for focusing 

• Due to the way they are produced, particle beams always have a small divergence
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Quadrupole magnets
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• Due to the way they are produced, particle beams always have a small divergence

o Over time particles would be inevitably lost on the walls of the beam-pipe

• To keep the particles close to the center of the beam-pipe we use quadrupole 
magnets 

o In a quadrupole, the magnetic force is linearly proportional to the distance 
from the center of the magnet (Fx = - k x)  it acts like a focusing lens

o Quadrupole magnets focus the beam in one direction but defocus on the 
orthogonal one  quadrupoles with opposite polarity are alternated to 
confine the beams in both planes

Quadrupole magnets
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Beam envelope

• In the presence of dipole and quadrupole magnets alone (linear regime) it is 
possible to compute the envelope of the beam without having to evaluate the 
trajectories of the single particles

o Courant-Snyder formalism based on the Floquet theorem

• These calculations are called in general “linear optics” calculations



Shaping the “beam optics”

Before putting the beams in collisions, 
the beam-size at the interaction 
point needs to be reduced (squeezed) 
to maximize the collision rate

• Quadrupole strengths can be used to shape the particle beam envelope (in the 
same way in which lenses can be used to shape a beam of light)

Example: LHC betatron squeeze



Shaping the “beam optics”

Quadrupoles changing strength are marked in red

Example: LHC betatron squeeze

• Quadrupole strengths can be used to shape the particle beam envelope (in the 
same way in which lenses can be used to shape a beam of light)
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Shaping the “beam optics”

• The relation between the quadrupole strengths and the beam size is non-trivial

o Several technical constraints also need to be taken into account (e.g. 
maximum quadrupole strength, current sign, size of the beam pipes, 
magnets in series that must have the same current)

o Numerical optimizers need to be used to identify suitable quadrupole 
strengths as a function of given constraints on the beam envelope

CERN’s workhorse code for these calculations is the MAD-X code. 

http://mad.web.cern.ch/mad/

http://mad.web.cern.ch/mad/


Strength Q1 Strength Q2

Shaping the “beam optics”

• To illustrate how an optimization algorithm works we consider a simple problem
with 2 constraints and 2 degrees of freedom:

o We want the maximum and the minimum of the beam envelope s(s) to 
assume specified values sA andsB (marked by the red lines in figure)

o We can change the strength of two families of quadrupoles (kQ1 and kQ2)

We define a suitable “cost function”:  

To solve our problem we need to search the 
minimum of this quantity as function of kQ1 and kQ2

This is called an “optimization problem”



Shaping the “beam optics”

Strength Q1 Strength Q2

We define a suitable “cost function”:  

To solve our problem we need to search the minimum of this quantity as 
function of kQ1 and kQ2

• With only two degrees of freedom we can visualize the function as surface

• With more than two degrees of freedom it can become too expensive to map the 
whole parameter space  we need to search for the minimum “blindly”



Gradient method

A simple optimization technique is the “gradient method”. It is based on the 
following iteration (starting from an arbitrary “guess” of the solution) :
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Gradient method

1. At the given point we evaluate the gradient of the cost function, 
tells us the direction in which our surface is the steepest

2. We take a new point in that direction and we go back to 1.

After a certain number of iterations the algorithm will converge to a minimum of the cost function

A simple optimization technique is the “gradient method”. It is based on the 
following iteration (starting from an arbitrary “guess” of the solution) :

Strength Q1 Strength Q2



Beam crossing scheme

Orbit design

Similar techniques are user to shape the beam trajectories (closed orbit)



Orbit correction

Iterative methods are used also to correct the beam trajectory (with respect to a known 
reference) due to daily small fluctuations  done online on the circulating beams

Before correction

After correction
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Non-linearities

• Dipolar and quadrupolar fields are in principle sufficient to keep the particles on a 
closed trajectory and keep them focused.

• Nevertheless in a realistic accelerator the situation is more complex:

o Magnets are not perfect (dipole and quadrupole magnets have unwanted 
deviation from the ideal field shapes)

o Magnets are not “exactly” where they are supposed to be (alignment errors)

o Particles do not have all exactly the same energy (typical relative spread ~10-3)

 Need of “chromatic corrections” using sextupole magnets

 A realistic machine has unavoidable non-linearities

Sextupole magnet



Particle tracking

• In the presence of these effects, the particle motion gets much more complex:

o The envelope equation is not anymore enough

o Depending on the initial conditions particles can be lost after a certain 
number of turns

• We need to numerically simulate the motion of the particle in the accelerator:

o We are interested in quantifying how many particles will be lost over a 
realistic time  for the LHC we need to simulate ~millions of turns!
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Tracking simulations

• Simulations on such long time scales are subject to particular issues, which we 
will illustrate using a simple example:

• We assume uniform focusing force

x

s



Tracking simulations

• Simulations on such long time scales are subject to particular issues, which we 
will illustrate using a simple example:

• We assume uniform focusing force

• In such a field the particle oscillate around the axis x = 0

x

s

Equations of motion



Such a system preserves the initial 
energy of the particle, defined as:

Kinetic energy Potential energy

Proof:
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Tracking simulations
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Method 1: We use a numerical integration method to find an approximated solution to the 
exact problem

We compare two numerical methods to compute x(t):

Eq. of motion
in vector form

with:

We introduce a 
discrete time-step Dt 

with:

Runge-Kutta scheme:

Tracking simulations
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Method 2: We find an approximated problem for which we are able to compute the exact 
solution

We compare two numerical methods to compute x(t):

We concentrate our focusing force at discrete locations (“lenses”)

In between lenses the 
particle simple moves 
along a straight line 

This is an example of 
“symplectic scheme”

Tracking simulations



We perform a numerical experiment to compare the two methods:

Tracking simulations: a numerical experiment
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We perform a numerical experiment to compare the two methods:

• The Runge-Kutta method is more accurate on a short time interval

• On very long time-spans the Runge-Kutta method slowly “consumes” the 
energy of the particles

o “Fake” physical phenomena are introduced

o Runge-Kutta cannot be used to predict slow effects on the beam

• In spite of being less accurate on short times, the symplectic scheme does not 
suffer from this issues 

Tracking simulations: a numerical experiment



• In general, for long-term tracking we do need to use symplectic algorithms:

 The numerical solution needs to preserve fundamental properties of the 
physical system such as energy conservation

Tracking simulations: a numerical experiment
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Which hardware?

In accelerator studies we are interested tracking a large number of particles
(~100 000) to probe different initial conditions:

• Simulation of each particle is independent

• We are facing an “embarrassingly parallel problem”

Particularly suited for GPU acceleration



GPU computing

• Graphics Processing Units (GPUs) are chips developed since the 80s to perform 
graphics calculations (video rendering), typically installed on a video-card

o Main applications are gaming and computer graphics in general

• Since the early 2000s GPU vendors provide tools to use the GPUs also for general-
purpose parallel computing:

o Libraries and tools to exploit these resources have flourished 

o Cards dedicated to high performance computing have been commercialized

Gaming card GPU accelerated server HPC GPU card



GPUs vs CPUs

• Has a small number of complex 
computing cores (up to 8) 

• Very fast clock rates 
• Can access large memory (> 100 GB)

• Has a large number of simpler computing 
cores (>1000)

• Slower clock rates
• Can access relatively small memory (~16 GB)

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf


GPU vs CPU

Resources allocation:

• A GPU has more resources dedicated to Arithmetic-Logic operations (ALUs) 
compared to a covariational CPU

• A GPU has less resources dedicated to control and cache memory

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf


GPU vs CPU: a simplified summary

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf

CPU
optimized for speed

(but reduced capacity)

GPU
optimized for capacity
(but reduced speed)

Which is better depends on your needs... 

https://www.olcf.ornl.gov/wp-content/uploads/2018/06/intro_to_HPC_gpu_computing.pdf


The sixtracklib tracking library (recently developed at CERN) allows performing 
tracking simulations both on CPU and on GPU 

106 turns

LHC machine

For a small number of particles the CPU 
outperforms the GPU by almost a factor of 10
 Single core speed is much larger for the CPU

GPU vs CPU: a real life example

GPU

CPU

https://github.com/SixTrack/sixtracklib

https://github.com/SixTrack/sixtracklib


106 turns

LHC machine

When increasing the number of 
particles the CPU computing 
time increases linearly: particles 
are tracked  sequentially one 
after the other

The GPU computing time remains constant: 
particles are tracked in parallel on using 
thousands of independent cores

GPU vs CPU: a real life example

GPU

CPU

The sixtracklib tracking library (recently developed at CERN) allows performing 
tracking simulations both on CPU and on GPU 

https://github.com/SixTrack/sixtracklib

https://github.com/SixTrack/sixtracklib


106 turns

LHC machine

For a large number of particles the GPU outperforms 
the CPU by a factor of 500 (1 day vs 1 year!)
 We need to track many particles to make 

efficient use the GPU parallel resources

GPU vs CPU: a real life example

GPU

CPU

The sixtracklib tracking library (recently developed at CERN) allows performing 
tracking simulations both on CPU and on GPU 

https://github.com/SixTrack/sixtracklib

https://github.com/SixTrack/sixtracklib


106 turns

LHC machine

Above a certain number of particles also the 
resources on the GPU become saturated and 
the computing time increases linearly with the 
number of particles

GPU vs CPU: a real life example

GPU

CPU

The sixtracklib tracking library (recently developed at CERN) allows performing 
tracking simulations both on CPU and on GPU 

https://github.com/SixTrack/sixtracklib

https://github.com/SixTrack/sixtracklib


106 turns

LHC machine

GPU vs CPU: a real life example

GPU

CPU

The sixtracklib tracking library (recently developed at CERN) allows performing 
tracking simulations both on CPU and on GPU 

When tracking a large number of particles GPUs become very attractive (still the 
price of the device can be more expensive…)

https://github.com/SixTrack/sixtracklib

https://github.com/SixTrack/sixtracklib


Summary

• A particle accelerator uses electromagnetic field to accelerate and manipulate 
charged particles

o Accelerating structures are used to increase the energy of the particles

o Dipole magnets are used to keep the beams on a closed trajectory

o Quadrupole magnets are used to confine (focus) the particles

• In the presence of linear forces alone it is possible to compute the beam envelope 
(optics) without computing the single particle trajectories

o Quadrupole strengths can be used to shape the particle beam envelope (in 
the same way in which lenses can be used to shape a beam of light)

o Numerical optimizers (like the gradient method) need to be used to identify 
suitable quadrupole strengths as a function of given constraints on the beam 
envelope

• Particle tracking is the simulation of individual particles in the accelerator over a 
very large number of turns:

• Symplectic algorithms are required in order to preserve fundamental 
properties of the physical system

• GPU computers are particularly suited for this kind of simulations



Next

• So far we have studied “single-particle” methods, which neglect the interactions 
among circulating particles

• In the second part we will focus on methods for “collective effects”, which are 
particularly relevant when the beam is very intense (large number of particles)



Thanks for your attention!


