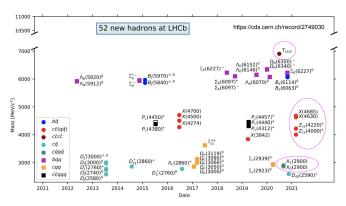
PWA/ATHOS 2021 LHCb: Exotic hadrons

N. Skidmore on behalf of LHCb

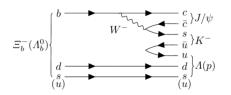
September 2021

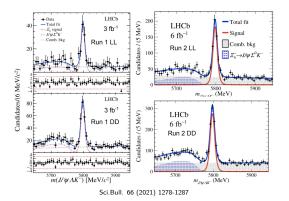


1/24

Results shown today...

- Try to cover LHCb exotic results since last PWA/ATHOS workshop (2019)
- All results use full run 1+2 LHCb dataset = 9 fb⁻¹

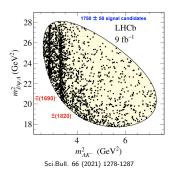


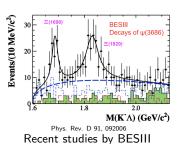

- P_{cs}^0 in $\Xi_h^- \to J/\psi \Lambda K^-$
- Exotic states in $B_s^0 \to J/\psi \, p\bar{p}$
- X and Z_{cs}^+ states in $B^+ \to J/\psi \phi K^+$

- $\bullet \ \mbox{Tetraquarks in} \ B^+ \to D^+ D^- K^+$
- $T_{cc\bar{c}\bar{c}}$ in prompt- $J\!/\psi$ pairs
- $T_{\rm cc}^+$ in $D^0D^0\pi^+$

Exotic states in $\Xi_b^- \to J/\psi \Lambda K^-$

- Change in spectator quark relative to P_c^+ discovery channel, $\Lambda_b^0 \to J/\psi \, p K^-$
- Search for strange counter-parts, P_{cs}^0

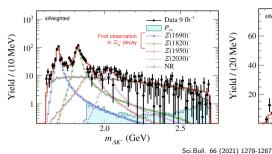


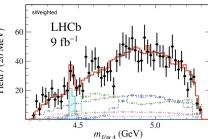


- Two reconstruction categories: long Λ (better resolution) and downstream Λ
- 1750 ± 50 candidates

Conventional $\Xi^{*-} \to \Lambda K^-$ decay chain

 $arnothing^{*-}$ spectrum poorly known - opportunity to study these resonances

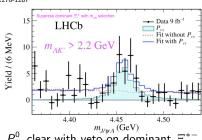




Initial amplitude model established with ΛK^- contributions only

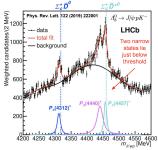
U 1						
of AK	State	$M_0 \text{ (MeV)}$	$\Gamma_0 \; (\text{MeV})$	LS coupli	ngs	J^P examined
description spectrum	Ξ(1690)-	1690 ± 10		ree 4 (6)	9	$(1/2, 3/2)^{\pm}$
scrip	$\Xi(1820)^{-}$	1823 ± 5	24^{+15}_{-10}	n fit 3 (6)	ons of ned	$3/2^{-}$
sp de	$\Xi(1950)^-$	1950 ± 15	60 ± 20	3 (6)	bination	$(1/2, 3/2, 5/2)^{\pm}$
Default	$\Xi(2030)^{-}$	2025 ± 5	20^{+15}_{-5}	3 (6)	Combinations examined	$5/2^{\pm}$
ă	NR ΛK^-	-		4 (4)	Ö	$1/2^{-}$

Exotic $P_{cs}^0 o J/\psi \Lambda$ decay chain

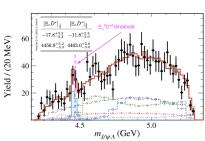


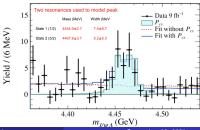
- P⁰_{cs} state added with $J^P = 1/2^{\pm} - 5/2^{\pm}$
- New $P_{cs}^0(4459)$ state observed at (3.1σ) (No J^P determination)

Mass (MeV)	Width (MeV)
$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5^{+8.0}_{-5.7}$


• $\Xi^-(1690)$, $\Xi^-(1820)$ consistent with PDG and BESIII results

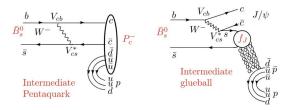
 P_{cs}^0 clear with veto on dominant Ξ

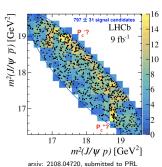

Exotic $P_{cs}^0 \to J/\psi \Lambda$ decay chain


 $P_{cs}^0(4459)$ is narrow and lies 19 MeV below $\varXi_c^0 \bar{D}^{*0}$ threshold where two P_c states are predicted [Phys. Rev. D 101, 034018] Recall $\Lambda_b^0 \to J/\psi \ pK^-$ discovery channel

Phys. Rev. Lett. 122 (2019) 222001

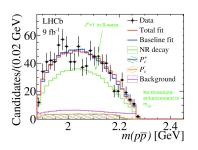
- Hypothesis of 2 peak structure with J^P values from $_{\rm [Phys.\ Rev.\ D\ 101,\ 034018]}$
- Cannot confirm or deny this description



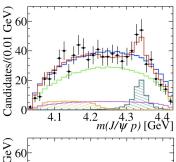

Exotic states in $B_s^0 o J/\psi \, p\bar{p}$

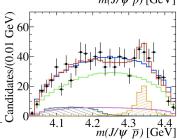
No conventional states in $B_s^0 \rightarrow J/\psi p\bar{p}$

• Sensitive to $P_c^+[c\bar{c}uud]$ discovered in $\Lambda_b^0 o J/\psi \, pK^-$ as well as glueballs



- ullet 797 \pm 31 candidates in run 1+2 data set
- Perform flavour untagged amplitude fit where B_s^0 , \overline{B}_s^0 analysed together


Exotic $P_c \rightarrow J/\psi p$ and $f \rightarrow p\bar{p}$ decay chains


Fit with non resonant contributions (green) gives poor description of data

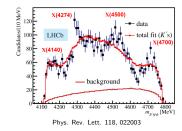
- Add new P_c^+ and P_c^- with shared, free mass/width, same couplings and $J^P = 1/2^\pm$ or $3/2^\pm$
- Evidence of new P_c state at $3.1 3.7\sigma$ depending on J^P assignment

Mass (MeV)	Width (MeV)	Fit fraction
$4337^{+7}_{-4}\pm 2$	$29^{+26}_{-12}\pm14$	$(22^{+8.5}_{-4.0}\pm 8.6)\%$

arxiv: 2108.04720, submitted to PRL

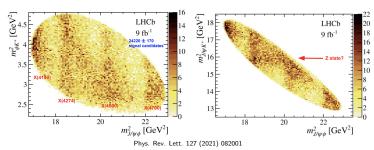
Exotic states in $B_s^0 o J/\psi \, p\bar{p}$

• New P_c^+ compatible with state predicted in $\bar{D}\Lambda_c - \bar{D}\Sigma_c$ coupled-channel interactions [Chin. Phys. C 42 (2018) 023106]

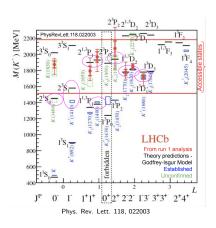

	A				
J^P	z_R [MeV]	Couplings $[10^{-3} \text{ MeV}^{-\frac{1}{2}}]$			
	wit [inter]	$g_{\bar{D}\Lambda_c}$	$g_{ar{D}\Sigma_c}$		
$\frac{1}{2}$	4295 - i 3.7	1.4+i0.2	13.2+i0.8		
1 + 2	4334 - i28	1.1 - i1.1	-1.9 + i 3.6		
3+	4325 - i54	0.3-i1.1	0.8-i4.5		
3 - 2	4380 - i147	0.5 - i1.9	-1.4 + i5.6		

- $P_c(4312)^+$ with fixed mass and width added to model No evidence for narrow $P_c(4312)^+$. Fit fraction < 2.86% at 90% CL
- Additional $f_J(2220)$ (glueball candidate) added with mass/width fixed no evidence of such a state
- No evidence of near-threshold enhancement in $m_{p\bar{p}}$

Exotic states in $B^+ \rightarrow J/\psi \phi K^+$


Run 1 amplitude analysis

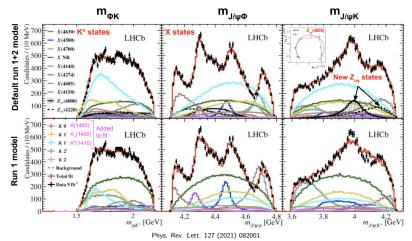
- Data not described by conventional K^{*+} states four $X \to J/\psi \phi$ states seen at $> 5\sigma$
- 3σ signal for $Z_{\rm cs}^+ \to J/\psi K^+$


10 / 24

Full run 1+2 analysis has 6x signal yield and 6x less combinatorial background

Conventional $K^{*+} \rightarrow \phi K^+$ decay chain

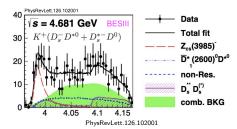
- Include tails of $K^*(1410), K(1460)$ and $K_1(1400)$ which peak below $m_{\phi K^+}$ threshold (additions to run 1 model)
- Nine K*+ states included in default model - unconfirmed states have floating mass/widths
- Seven more predicted by Godfrey-Isgur model [PRD 32 (1985) 189]] considered in systematic studies



- ullet Exotic X and $Z_{
 m cs}^+$ states added to amplitude model
- In total seven X states, two Z_{cs}^+ states and NR $J/\psi\phi$ added each at $>5\sigma$

Exotic Z_{cs}^+ and X states in $B^+ \rightarrow J/\psi \phi K^+$

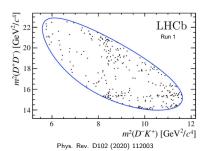
New Z_{cs}^+ states!

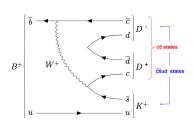

- 1⁺ $Z_{\rm cs}^+(4000)$ observed at high significance (15 σ) and resonant nature seen via quasi-model-independent method
- Broader $1^+/1^ Z_{\rm cs}^+(4220)$ state seen at 5.9σ

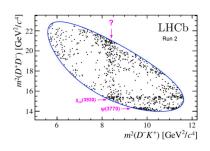
Exotic Z_{cs}^+ and X states in $B^+ \rightarrow J/\psi \phi K^+$

First observation of exotic states with $c\bar{c}u\bar{s}$ decaying to $J/\psi K^+$

- No evidence new narrow $Z_{\rm cs}^+(4000)$ is the $Z_{\rm cs}^+(3985)$ state reported by BESIII in $D_s^-D^{*0}+D_s^{*-}D^0$
- $Z_{\rm cs}^+(3985)$ has $\Gamma \approx 13 {\rm MeV}$ All reported states here are relatively wide

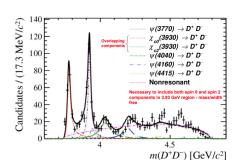


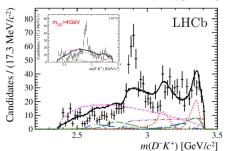

Four previous X states confirmed and additional X(4685) and X(4630) states seen at $>5\sigma$


State	Mass (MeV)	Width (MeV)	spin
$Z_{cs}^{+}(4000)$	$4003 \pm 6^{+4}_{-14}$	$131\pm15\pm26$	1^+
$Z_{\rm cs}^+(4220)$	$4216 \pm 24^{+43}_{-30}$	$233 \pm 52^{+97}_{-73}$	$1^{+}/1^{-}$
X(4685)	$4684 \pm 7^{+13}_{-16}$	$126\pm15^{+37}_{-41}$	1+
X(4630)	$4626\pm16^{+18}_{-110}$	$174 \pm 27^{+134}_{-73}$	$1^{-}(2^{-})$

Exotic states in $B^+ \to D^+ D^- K^+$

- Conventional charmonia contributions expected in D^+D^- system
- Any other contributions would be exotic with neutral c̄sud or doubly charged cdus

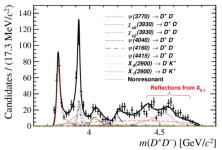


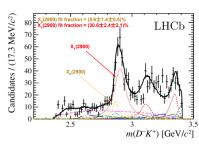

Conventional $[car{c}] ightarrow D^+D^-$ decay chain

Charmonia resonances considered

Partial wave (J^{PC})	Resonance	Mass (MeV/c^2)	Width (MeV)
S wave (0^{++})	$\chi_{c0}(3860)$	3862 ± 43	201 ± 145
	X(3915)	3918.4 ± 1.9	20 ± 5
P wave (1)	$\psi(3770)$	3778.1 ± 0.9	27.2 ± 1.0
	$\psi(4040)$	4039 ± 1	80 ± 10
	$\psi(4160)$	4191 ± 5	70 ± 10
	$\psi(4260)$	4230 ± 8	55 ± 19
	$\psi(4415)$	4421 ± 4	62 ± 20
D wave (2 ⁺⁺)	$\chi_{c2}(3930)$	3921.9 ± 0.6	36.6 ± 2.1
F wave (3)	X(3842)	3842.71 ± 0.20	2.79 ± 0.62

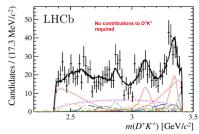
- Data supports additional spin 0 $\chi_{c0}(3930)$ that overlaps with $\chi_{c2}(3930)$
- Data cannot be described through conventional D⁺D⁻ contributions alone
- Supported by model-independent moments analysis [Phys. Rev. Lett. 125 (2020) 242001]



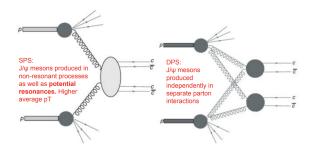


15 / 24

Exotic $[\bar{c}\bar{s}ud] \rightarrow D^-K^+$ decay chain


Add two $[\bar{c}\bar{s}ud] \rightarrow D^-K^+$ contributions to amplitude model

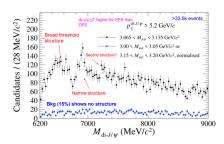
- Significant contributions from [c̄sud] states
 30% contribution from X₁(2900)
 - State
 Mass (GeV)
 Width (GeV)

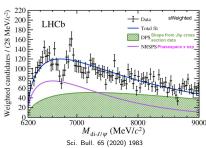

 $X_0(2900)$ $2.866 \pm 0.007 \pm 0.002$ $57 \pm 12 \pm 4$
 $X_1(2900)$ 2.904 + 0.005 + 0.001 110 + 11 + 4
- If interpreted as resonances first observation of exotics with open flavour
- No $[c\bar{d}u\bar{s}] \rightarrow D^+K^+$ contributions required

Phys. Rev. D102 (2020) 112003

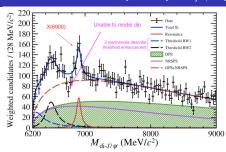
Exotic $T_{cc\bar{c}\bar{c}}$ in prompt- J/ψ pairs

- All hadrons observed so far contain at most 2 heavy quarks
- Theoretical predictions for tetraquarks consisting of only heavy quarks $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ where $Q_i=b/c$ in range 5.8 7.4 GeV
- LHCb has reported no evidence for $T_{bbar{b}ar{b}}$ [JHEP 10 (2018) 086]
- Search for a $T_{cc\bar{c}\bar{c}}$ tetraquark in prompt $J\!/\psi$ -pair invariant mass spectrum using full Run 1+2 dataset
- ullet Prompt J/ψ -pairs at LHCb produced through SPS or DPS

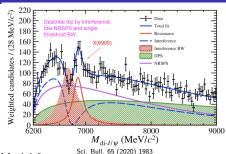

17 / 24


Exotic $T_{cc\bar{c}\bar{c}}$ in prompt- J/ψ pairs

Structures in di- $J\!/\psi$ spectrum


- "Threshold enhancement" broad structure just above di- J/ψ mass ranging from 6.2-6.8 GeV
- X(6900) narrow structure at 6.9 GeV
- Hint of structure at 7.2 GeV
- Note background shows no structure and efficiency variation is marginal

- SPS dominates at high di- J/ψ pT, DPS dominates at high $m_{di-J/\psi}$
- J/ψ-pair invariant mass spectrum inconsistent with non-resonant SPS and DPS continuum distribution



Exotic $T_{cc\bar{c}\bar{c}}$ in prompt- J/ψ pairs

- 2 BW model threshold enhancement
- Single BW models X(6900)
- Second structure of low significance $m(X(6900)) = 6905 \pm 11 \pm 7 \text{ MeV}$ $\Gamma(6900) = 80 \pm 19 \pm 33 \text{ MeV}$

Model 2:

- Allow wide BW at threshold to interfere with NRSPS
- Simplistic whole NRSPS interferes with a single threshold contribution with same J^P
- Improved fit quality

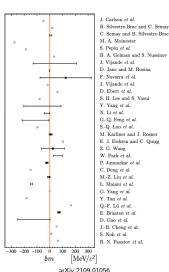
$$m(X(6900)) = 6886 \pm 11 \pm 11 \text{ MeV}$$

 $\Gamma(6900) = 168 \pm 33 \pm 69 \text{ MeV}$

19 / 24

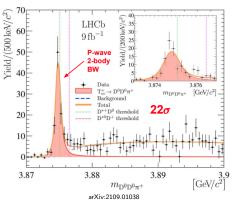
Narrow structure at 6.9 GeV consistent with BW lineshape and broad structure at di- J/ψ mass threshold with $>5\sigma$ significance

Exotic state near $D^{*+}D^0$ mass threshold: T_{cc}^+


Many, many models predict a hadron with two heavy quarks and two light anti-quarks $T_{Q_1Q_2\bar{q_3}\bar{q_4}}$ where $Q_i=b/c$

Predictions for an isoscalar $cc\bar{u}\bar{d}$ state with

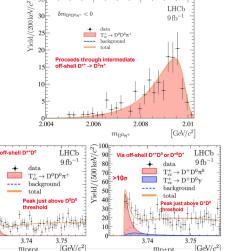
- Spin-parity assignment $J^P = 1^+$
- Mass relative to the $D^{*+}D^0$ mass threshold $-300 < \delta m < 300$ MeV


$$\delta m \equiv m_{T_{cc}^+} - (m_{D^{*+}} + m_{D^0})$$

Using mass measurement of $\Xi_{cc}^{++}[ccu]$ [JHEP 02 (2020) 049] infer that mass of $cc\bar{u}\bar{d}$ is close to $D^{*+}D^0$ threshold

Exotic state near $D^{*+}D^0$ mass threshold: T_{cc}^+

Can search for $T_{\rm cc}^+$ using prompt $D^0D^0\pi^+$ final state


- Very narrow peak near $D^{*+}D^0$ mass threshold
- Describe using P-wave BW motivated by J^P predictions
- Hypothesis that $\delta_m < 0$ is 4.3σ (hadronic molecule?)
- Mass/width consistent with expected isoscalar 1⁺ tetraquark ground state

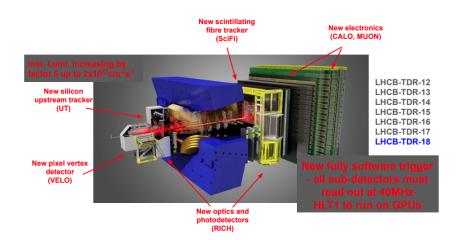
$$\frac{\delta m_{pole} \text{ (keV)} \quad \Gamma_{pole} \text{ (keV)}}{-360 \pm 40^{+4}_{-0} \quad 48 \pm 2^{+0}_{-14}}$$

- Measured width smallest of any exotic to date long lived with respect to strong decays
- Near threshold mass, narrow width and role in prompt hadroproduction shows genuine resonant nature

Exotic state near $D^{*+}D^0$ mass threshold: T_{cc}^+

- $D^0\pi^+$ spectrum consistent with hypothesis that $T_{cc}^+ \to D^0 D^0 \pi^+$ decays via intermediate off-shell D^{*+}
- ullet Favours the $T_{
 m cc}^+$ 1^+ assignment (would be S-wave decay)
- Due to small δm and small energy release in $D^{*+} \rightarrow D^0 \pi^+$ gives narrow peak just above D^0D^0 threshold
- This is replicated in $T_{cc}^+ \rightarrow D^+ D^0 \pi^0 / \gamma$ decays via

arXiv:2109.01056


 $\delta m_{\rm D^0 D^0 w^+} < 0$

Absence of signal in $D^0D^+\pi^+$ indicates isoscalar nature

3 73

 $9 \, \text{fb}^{-1}$

Looking forward to Run 3...

Removal of L0-trigger will provide increased efficiency and reduced systematic uncertainties to hadronic modes in particular!

23 / 24

Backup

LHCb LHCb: Exotic hadrons September 10, 2021 24 / 24