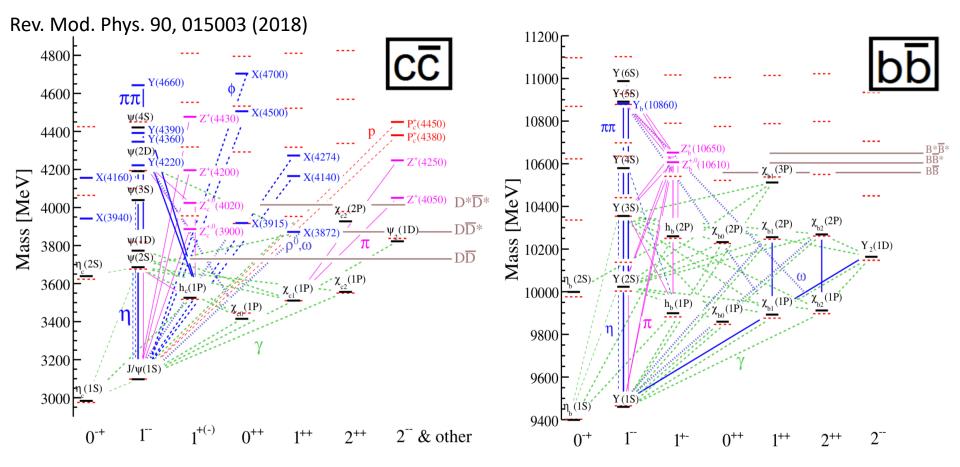


Heavy Quarknium at Belle II + DsDs1 from Belle

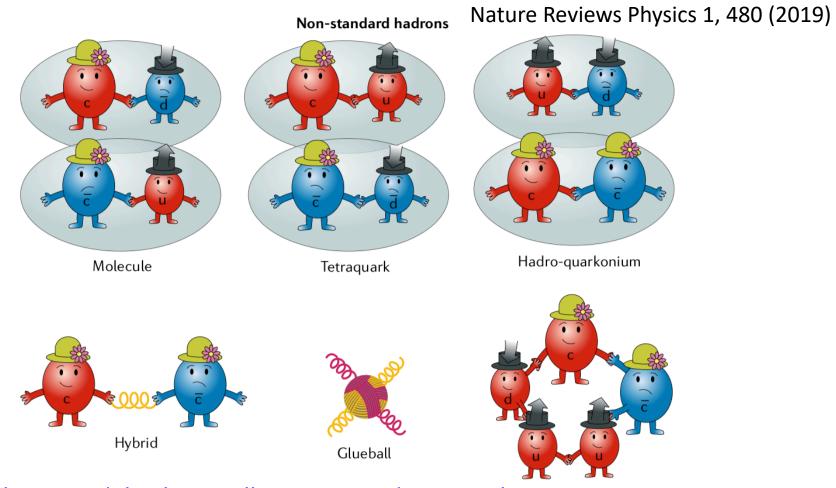


International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA 12 / ATHOS 7)

Sen Jia (jiasen@fudan.edu.cn)

Fudan University, Shanghai on behalf of the Belle and Belle II Collaborations

Quarknium



Observed States:

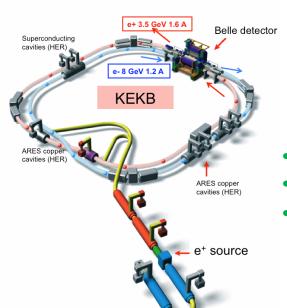
- Conventional Charmonium
- Unconventional neutral states
- Unconventional charged states
- Pentaquark candidates

- Below DD/BB thresholds both charmonium and bottomonium are successful stories of QCD.
- But there are many exotic states observed in the past decade, and they are hard to fit in the two families.

Various interpretations of the exotic states

Besides above models, there still are screened potential, Pentaquark cusps effect, final state interaction ...

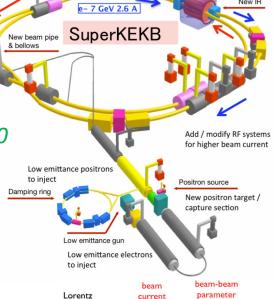
High Priority: Seek unique picture describing all XYZ states, not state-by-state


Overview

- SuperKEKB and Belle II detectors
- Analysis of $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$ at Belle
- Charmonium(-like) states at Belle II
- Bottomonium(-like) states at Belle II
- Summary

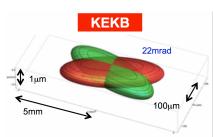
SuperKEKB

1st Vs. 2nd generation B-factory


$$\int^{\text{goal}} \mathcal{L} dt = 50 \text{ ab}^{-1} = 50 \times \mathcal{L}_{\text{Belle}}^{\text{int}}$$

Double beam currents

• Squeeze beams @IP by 1/20


Reduced CM boost

e+ 4 GeV 3.6 A

Belle II

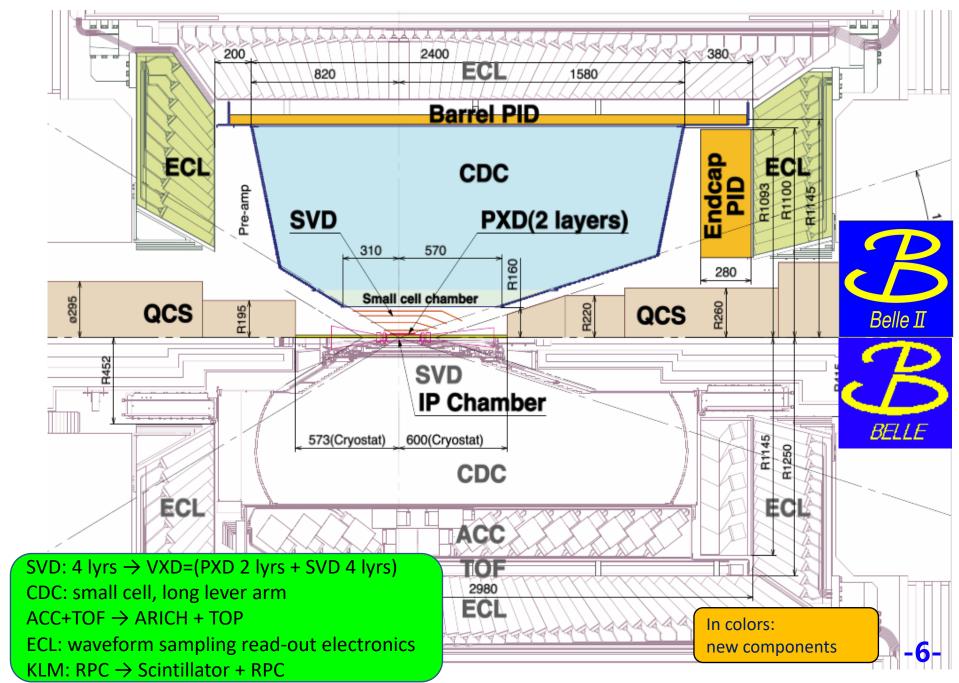
Nano-beam design (by P. Raimondi for SuperB)

SuperKEKB
Su
>3
83mrad
100
µm
7
5mm
750nm

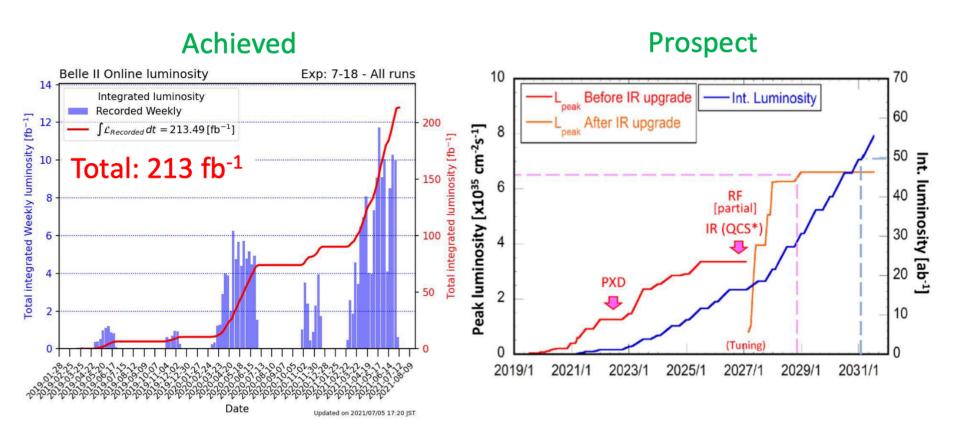
SuperKEKB goal:

>30x instantaneous KEKB luminosity

	beam	beam-bea	m
Lorentz	current	paramete	er
factor			
$L = \frac{\gamma_{\pm}}{2er_{e}}$	$1+\frac{\sigma_y^*}{\sigma_x^*}$	$\frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \underbrace{R_L}_{R_{\xi_y}}$	geometrical reduction factors
beam aspect ratio at the IP	vertic	al beta-function at the IP	

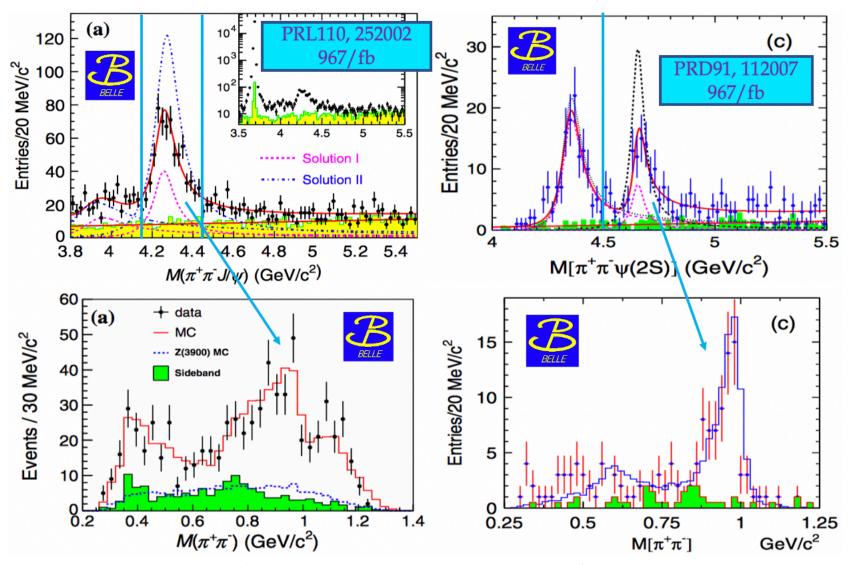

 $\times 2$

 E_{\pm} (GeV) Cross Angle I_{+} (A) β_{ν}^{*} (mm) LER/HER LER/HER LER/HER (mrad) **KEKB** 3.5/8.022 1.64/1.195.9/5.9SuperKEKB 4.0/7.03.60/2.600.27/0.31


 $\beta\gamma\sim 2/3$

20

Detector: Belle Vs. Belle II


Belle II integrated luminosity

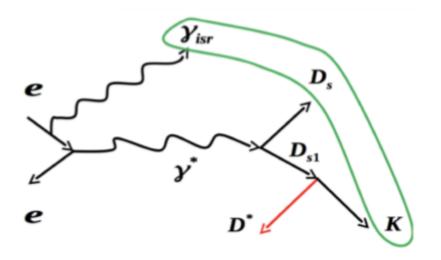
- Instantaneous luminosity already exceeded Belle
- Integrated luminosity will exceed Belle within a few years
- Goal: 50 ab⁻¹ around 2031

Analysis of $e^+e^- \rightarrow D_s^+D_{s1}(2536)^-$ at Belle [PRD 100, 111103(R) (2019)]

Motivation: Y(4260) and Y(4660) have a $c\bar{c}s\bar{s}$ component

- $Y(4260) \rightarrow f_0(980) (\rightarrow \pi^+\pi^-) J/\psi$, $Y(4660) \rightarrow f_0(980) (\rightarrow \pi^+\pi^-) \psi(2S)$ $f_0(980)$ has a $s\overline{s}$ component, and J/ψ has a $c\overline{c}$ component.
 - It is natural to search for such Y states with a quark component of $(c\overline{s})(\overline{c}s)$, e.g., $D_sD_{s1}(2536)$.

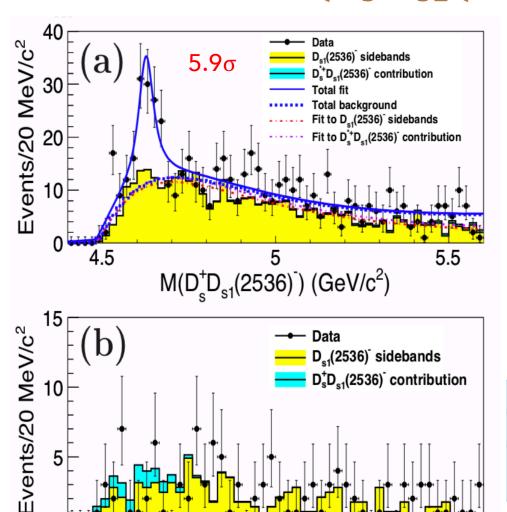
Analysis method


$$e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_S^0)$$

We require full reconstruction of the γ_{ISR} , D_s^+ , and K^-/K_S^0 .

- $D_s^+ \to \varphi \pi^+$, $\overline{K}^{*0} K^+$, $K_s^0 K^+$, $K^+ K^- \pi^+ \pi^0$, $K_s^0 \pi^0 K^+$, $K^{*+} K_s^0$, $\eta \pi^+$, and $\eta' \pi^+$
- For the signals, the spectrum of the mass recoiling against the $D_s^+K^-\gamma_{ISR}$ system should be accumulated at the \overline{D}^{*0}/D^{*-} nominal mass.

$$M_{rec}(\gamma_{ISR}D_s^+K^-/K_S^0) = \sqrt{(E_{c.m.}^* - E_{\gamma_{ISR}D_s^+K^-/K_S^0}^*)^2 - (p_{\gamma_{ISR}D_s^+K^-/K_S^0}^*)^2}$$


• To improve the $M_{rec}(\gamma_{ISR})$ resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-/K_S^0)$ is constrained to be the nominal mass of the \overline{D}^{*0}/D^{*-} .

Belle Data samples:

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)
10.52	89.5±1.3
10.58	711±10
10.867	121.4±1.7
Total	921.9±12.9

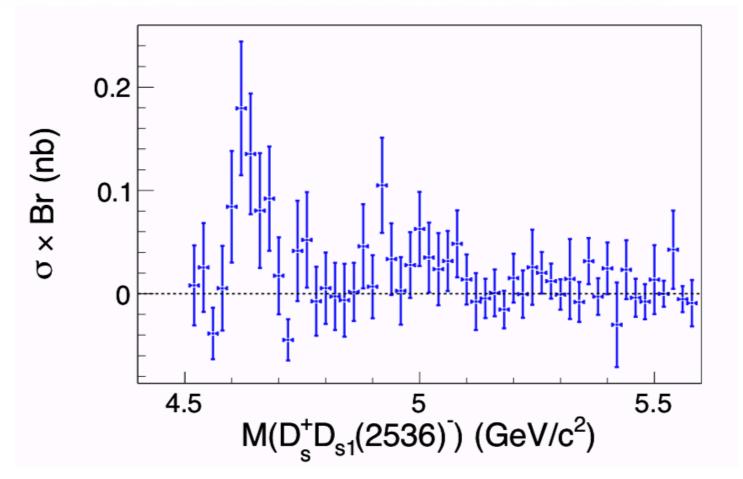
$M(D_s^+D_{s1}(2536)^-)$

 $M(D_s^{*+}D_{s1}(2536)^{-})$ (GeV/c²)

PRD 100, 111103(R) (2019)

An unbinned simultaneous likelihood fit:

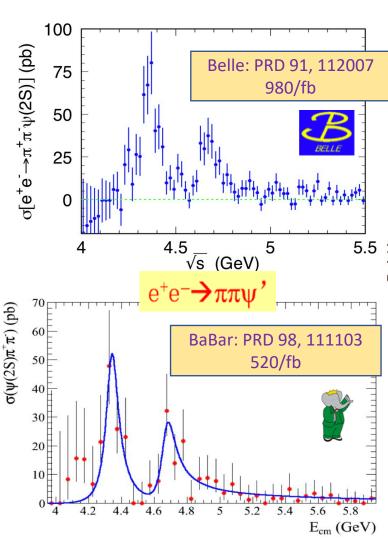
- Signal: a BW convolved with a Gaussian function, then multiplied by an efficiency function
- D_{s1}(2536)⁻ mass sidebands: a threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background contribution: a threshold function
- A non-resonant contribution: a twobody phase space form

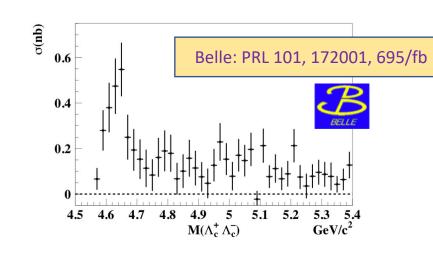

$$\begin{aligned} \mathsf{M=}&(4625.9^{+6.2}_{-6.0}(\mathrm{stat.}) \pm 0.4(\mathrm{syst.}) \, \mathsf{MeV/c^2} \\ \Gamma &= (49.8^{+13.9}_{-11.5}(\mathrm{stat.}) \pm 4.0(\mathrm{syst.}) \, \mathsf{MeV} \\ \Gamma_{\mathrm{ee}} &\times \mathcal{B}(\mathsf{Y} \to \mathsf{D_s^+D_{s1}}(2536)^-) \times \mathcal{B}(\mathsf{D_{s1}}(2536)^- \to \\ \bar{\mathsf{D}}^{*0}\mathsf{K}^-) &= (14.3^{+2.8}_{-2.6}(\mathrm{stat.}) \pm 1.5(\mathrm{syst.}) \, \mathsf{eV} \end{aligned}$$

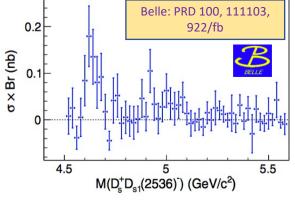
We call this charmonium-like state decaying into $D_s^+D_{s1}(2536)^-$ as Y(4630).

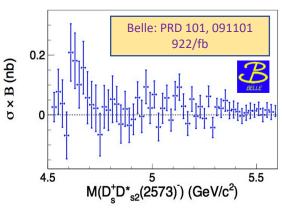
One possible background is from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$. No obvious structure is observed in the $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

Cross section:


$$\sigma(e^+e^- \to D_s^+ D_{s1}(2536)^-) \mathcal{B}(D_{s1}(2536)^- \to \bar{D}^{*0}K^-)$$

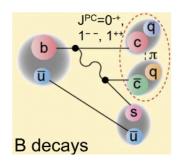

The peak value of the $\sigma \times$ Br at M(D_s⁺D_{s1}(2536)⁻) \sim 4.63 GeV/c² is about (0.18 \pm 0.06) nb.

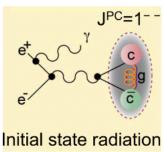

-12-

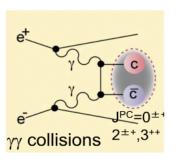

Y(4630) = Y(4660)?

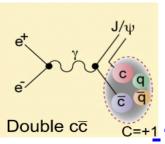
- These states may be the same.
- Need improved precision.

Experiment	Mass (MeV)	Width (MeV)
Belle, $\Lambda_c^+\Lambda_c^-$	$4634^{+8}_{-7}{}^{+5}_{-8}$	$92^{+40}_{-24}{}^{+10}_{-21}$
Belle, $\pi^+\pi^-\psi(2S)$	4652 <u>±</u> 10 <u>±</u> 8	68±11±1
BaBar, $\pi^+\pi^-\psi(2S)$	4669 <u>±</u> 21 <u>±</u> 3	104±48±10
Belle, $D_s^+D_{s1}(2536)^-$	$4626^{+7}_{-7}\pm1$	$49.8^{+14}_{-12} \pm 4$
Belle, $D_s^+ D_{s2}^* (2573)^-$	$4620^{+9}_{-8} \pm 3$	$47.0^{+32}_{-15} \pm 513$

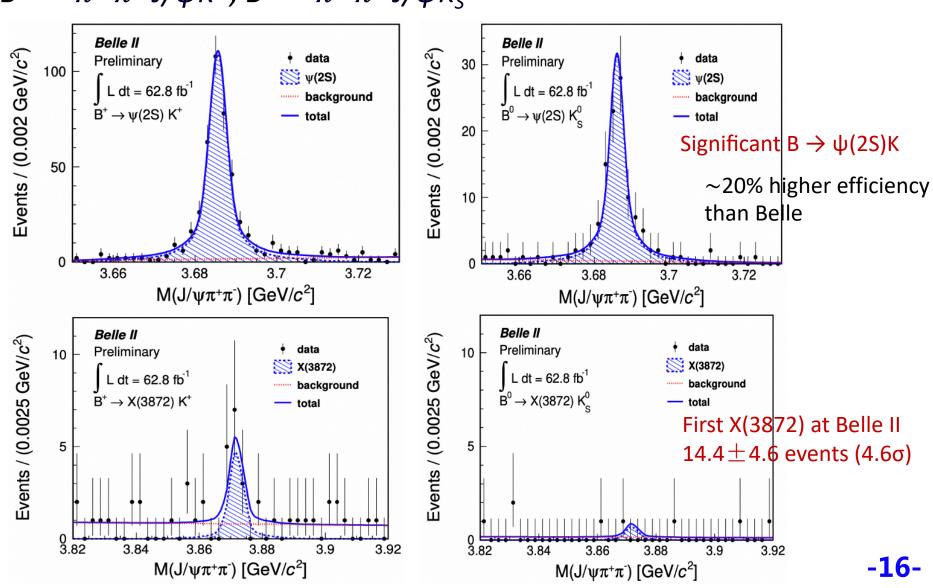

Charmonium(-like) and bottomonium(-like) states at Belle II


Charmonium(-like) prospects at Belle II

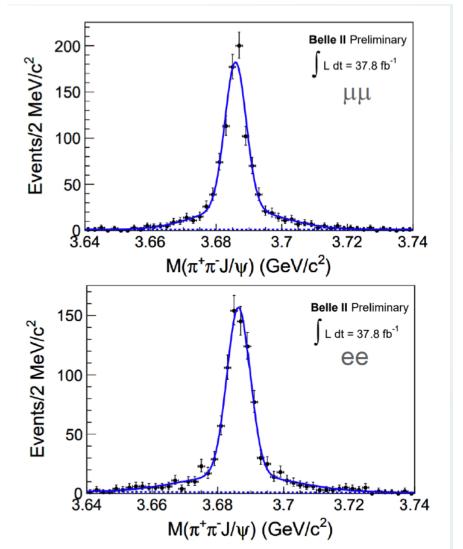

- B decay (B \rightarrow KX_{c \bar{c}})
 - CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$
 - Absolute branching fractions B → X(3872,3915)K
 - X(3872) width measurement with $D^0\overline{D}^0\pi^0$
 - Confirm Z_c states and search for neutral partners
- Initial-state radiation (ISR)
 - Continuous mass range > 4.7 GeV/c²
 - Y \rightarrow charmed baryon pairs $(\Lambda_c^+ \Sigma_c^-, \Sigma_c^+ \Sigma_c^-)$, charmed strange meson pairs $(D_s D_{s2}(2573), D_s^* D_{s0}(2317))$
 - Search for Z_{cs} states decaying into $K^{\pm}J/\psi$, $D_s^-D^{*0}+c.c.$
- Two-photon process
 - J^{PC} of $X(3915) \rightarrow \omega J/\psi$; confirm $X(4350) \rightarrow \phi J/\psi$
- Double charmonium
 - $e^+e^- \rightarrow (c\overline{c})_{J=1}(c\overline{c})_{J=0}$ production rule
 - JPC of X(3940)

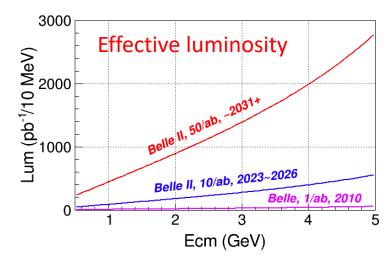

Expected statistics @50 ab⁻¹ of XYZ

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, $Y(4260) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 29600$
Z(4430)	$B \to K^{\mp} Z(4430), Z(4430) \to J/\psi \pi^{\pm}$	$\simeq 10200$



Rediscovery of X(3872)


$$B^{\pm} \to \pi^{+}\pi^{-}J/\psi K^{\pm}, B^{0} \to \pi^{+}\pi^{-}J/\psi K_{S}$$


BELLE2-NOTE-PL-2021-002

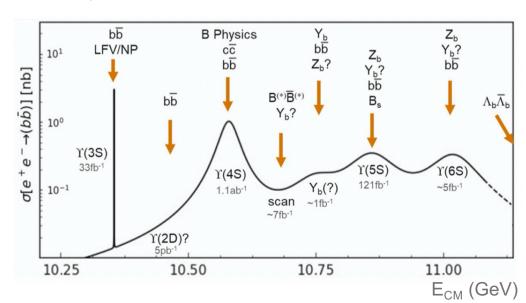
ISR preliminary studies

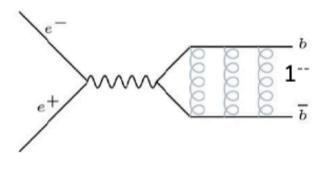
$e^+e^- \rightarrow \psi(2S) \rightarrow \pi^+\pi^- J/\psi$ via ISR:

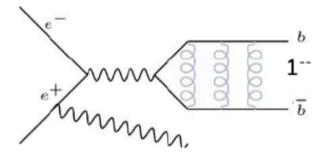
- ISR photon is not required (high efficiency), and $|M_{\rm recoil}^2(\pi^+\pi^-J/\psi)| < 2$ (GeV/c²)² is applied to select ISR events.
- Clear observation of ISR $\psi(2S)$ signals with low backgrounds.
 - Next step:
 "Y(4260)" rediscovery [expect about 60 events per 100 fb⁻¹]

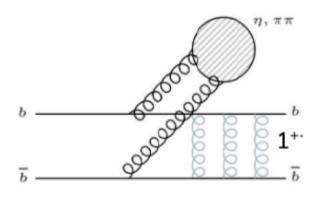
Bottomonium(-like) prospects at Belle II

Three ways to access bottomonia:

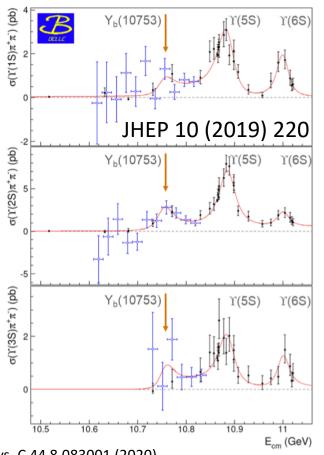

- Direct production from e⁺e⁻
- Production of 1⁻⁻ states via ISR
- Hadronic/Radiative transitions from Y(nS)

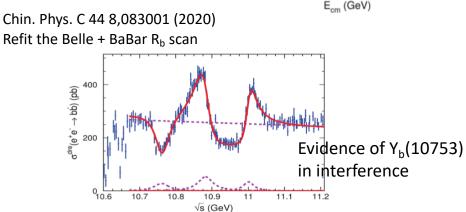

Run at Y(6S) and Y(5S) and high energy scan:


- Search for new missing bottomonia $h_b(3P)$, $\Upsilon(D)$, exotic states Y_b , Z_b , etc


Run at Y(3S) and Y(2S):

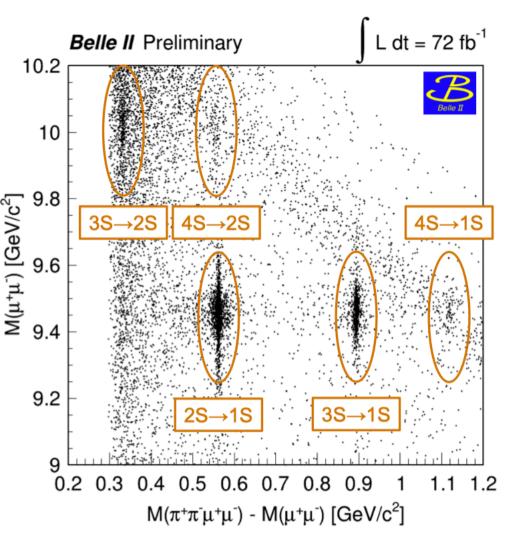
- Search for new physics: LFV, LFU
- 'sexaquark' search







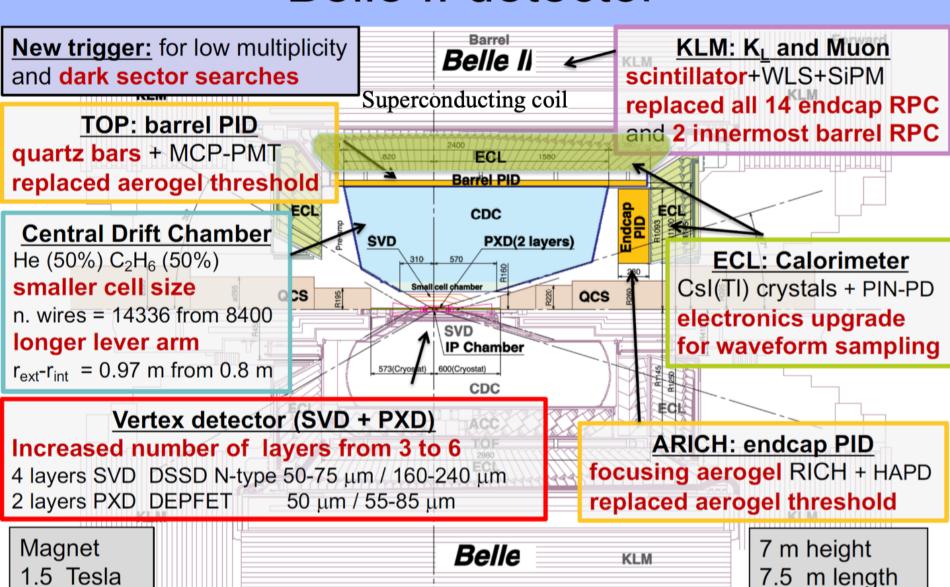
Belle II Potential – 10.75 GeV


- New structure observed in $\pi^+\pi^-\Upsilon(nS)$ transitions at Belle
- Belle II plans to conduct a limited higher statistics scan in Nov 2021
 - 10.571 GeV (10 fb⁻¹): study Y_b(10753) on-peak
 - 10.657, 10.706, 10.810 (1+2+3 fb⁻¹): additional points for $B\overline{B}$ decomposition
- Physics goal: understand the nature of Y_b(10753) energy region
 - Differing predictions for tetraquarks and bottomonium
 - Invariant mass distributions may hold clues

Belle II Progress – Dipion transitions

BELLE2-NOTE-PL-2021-001

- Initial State Radiation production: $\gamma_{ISR}\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$, $\gamma_{ISR}\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(1S, 2S)$
- Direct transitions: $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(1S, 2S)$
- Better than previous Belle result [PRD96 (2017)052005]; the 3S → 2S transition is seen
- Dalitz analysis of $\Upsilon(4S) \rightarrow \pi^+\pi^-\Upsilon(nS)$ is ongoing


Summary

- We report the first vector charmonium-like state decaying to the charmed-antistrange and anticharmed-strange meson pair $D_s^+D_{s1}(2536)^-$ using Belle data samples. The masses and widths are close to those of Y(4660).
- Charmonia@Belle II
- Rediscoveries of X(3872) $\to \pi^+\pi^- J/\psi$ and ISR $e^+e^- \to \psi(2S) \to \pi^+\pi^- J/\psi$
 - Higher efficiency than Belle
 - Other XYZ states will be rediscovered soon
- Bottomonia@Belle II
 - Good performance demonstrated in $\gamma_{ISR}\Upsilon(3S) \to \pi^+\pi^-\Upsilon(2S)$
 - Plan to take data around 10.75 GeV for Y_b(10753) in Nov 2021
- Explore missing bottomonia and exotic states $Y_{\rm b}$, $Z_{\rm b}$ in the near future

Thanks for your attention!

Backup slides

Belle II detector

