#### Light-Meson spectroscopy at COMPASS — Studies of the $\pi^-\pi^-\pi^+$ Background in $K^-\pi^-\pi^+$ Data —

Stefan Wallner (stefan.wallner@tum.de)

Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich

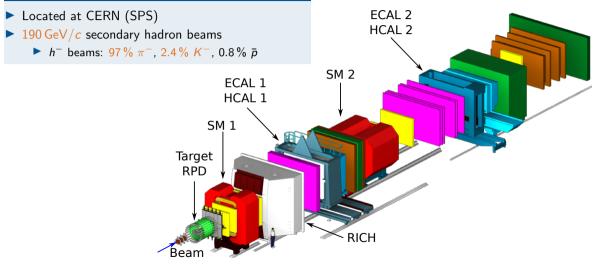
International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA12/ATHOS7) September 9, 2021



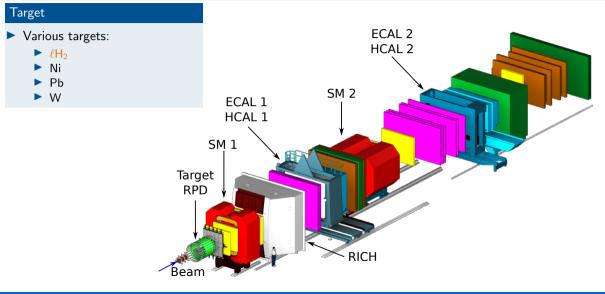
# COMPASS Setup for Hadron Beams

#### [COMPASS, Nucl. Instrum. Methods 779 (2015) 69]

#### M2 beam line

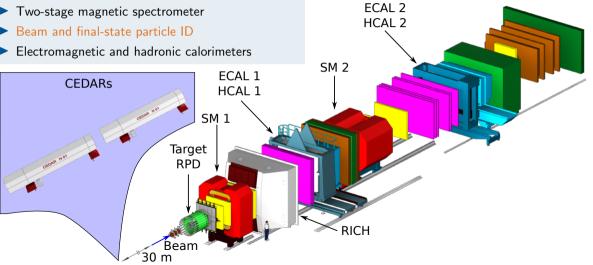


# COMPASS Setup for Hadron Beams



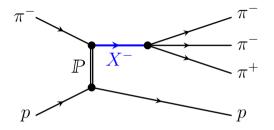
# COMPASS Setup for Hadron Beams

#### COMPASS spectrometer



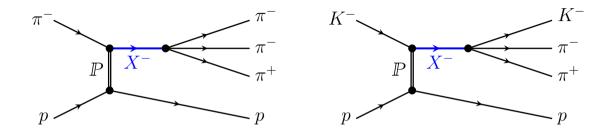
S. Wallner

#### **Diffractive Production**



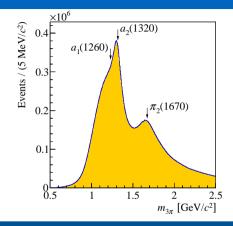
- Diffractive production in high-energy scattering
- Light mesons appear as intermediate states X<sup>-</sup>
- Observed in decays into quasi-stable particles:
  - $\pi^{-}\pi^{-}\pi^{+}$  final state: Access to  $a_{J}$  and  $\pi_{J}$  states
  - $K^-\pi^-\pi^+$  final state: Access to  $K_J$  and  $K_J^*$  states

#### **Diffractive Production**

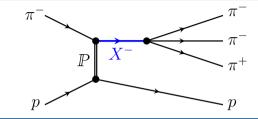


- Diffractive production in high-energy scattering
- Light mesons appear as intermediate states X<sup>-</sup>
- Observed in decays into quasi-stable particles:
  - $\pi^{-}\pi^{-}\pi^{+}$  final state: Access to  $a_{J}$  and  $\pi_{J}$  states
  - $K^-\pi^-\pi^+$  final state: Access to  $K_J$  and  $K_J^*$  states

#### The $\pi^-\pi^-\pi^+$ Final State from COMPASS



- Largest data set of about 50 M events
- Rich spectrum of overlapping and interfering X<sup>-</sup>



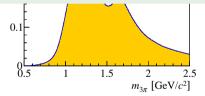
#### Most comprehensive study of $\pi^-\pi^-\pi^+$

- Sophisticated partial-wave decomposition [COMPASS, Phys. Rev. D 95 (2015) 032004]
- Extensive resonance-model fit [COMPASS, Phys. Rev. D 98 (2018) 092003]
- Fit of triangle amplitude to COMPASS data [COMPASS, arXiv:2006.05342 (2021)]
- Study of spin-exotic π<sub>1</sub>(1600)
   [COMPASS, arXiv:2108.01744 (2021)]

# The $\pi^-\pi^-\pi^+$ Final State from COMPASS



#### Extended analysis ongoing

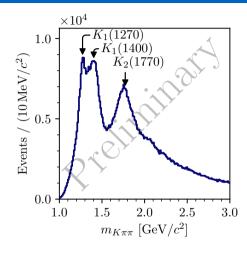


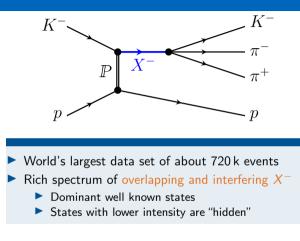
- Largest data set of about 50 M events
- Rich spectrum of overlapping and interfering X<sup>-</sup>

#### Most comprehensive study of $\pi^-\pi^-\pi^+$

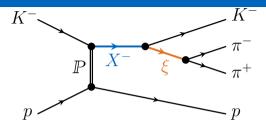
- Sophisticated partial-wave decomposition [COMPASS, Phys. Rev. D 95 (2015) 032004]
- Extensive resonance-model fit [COMPASS, Phys. Rev. D 98 (2018) 092003]
- Fit of triangle amplitude to COMPASS data [COMPASS, arXiv:2006.05342 (2021)]
- Study of spin-exotic π<sub>1</sub>(1600)
   [COMPASS, arXiv:2108.01744 (2021)]

# The $K^-\pi^-\pi^+$ Final State from COMPASS





Isobar Model

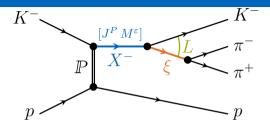


Partial wave  $a = J^{P(C)} M^{e} \xi^{0} b^{-} L$  at fixed invariant mass of  $X^{-}$  system Calculate 5D decay phase-space distribution  $\Psi(\tau)$  of final state Total intensity distribution: Coherent sum of partial-wave amplitudes  $|waves|^{2}$ 

Perform maximum-likelihood fit in cells of  $(m_{K\pi\pi}, t')$ 

ightarrow Extract mass and t' dependence of transition amplitudes  $\mathcal{T}_{i}$ 

Isobar Model



• Partial wave  $a = J^{P(C)} M^{\varepsilon} \xi^0 b^- L$  at fixed invariant mass of  $X^-$  system

 $\blacktriangleright$  Calculate 5D decay phase-space distribution  $\Psi(\tau)$  of final state

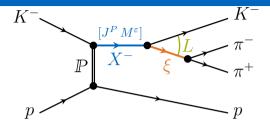
Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}( au) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \varPsi_{a}( au) \right|^{2}$$

Perform maximum-likelihood fit in cells of  $(m_{K\pi\pi}, t')$ 

 $\blacktriangleright$  Extract mass and t' dependence of transition amplitudes  $\mathcal{T}_a$ 

Isobar Model



• Partial wave  $a = J^{P(C)} M^{\varepsilon} \xi^0 b^- L$  at fixed invariant mass of  $X^-$  system

 $\blacktriangleright$  Calculate 5D decay phase-space distribution  $\Psi(\tau)$  of final state

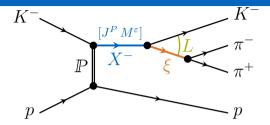
Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(\tau) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \Psi_{a}(\tau)\right|^{2}$$

Perform maximum-likelihood fit in cells of  $(m_{K\pi\pi}, t')$ 

 $\blacktriangleright$  Extract mass and t' dependence of transition amplitudes  $\mathcal{T}_a$ 

Isobar Model



► Partial wave  $a = J^{P(C)} M^{\varepsilon} \xi^{0} b^{-} L$  at fixed invariant mass of  $X^{-}$  system

• Calculate 5D decay phase-space distribution  $\Psi(\tau)$  of final state

Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(\tau) = \left| \sum_{a}^{\text{waves}} \mathcal{T}_{a} \Psi_{a}(\tau) \right|^{2}$$

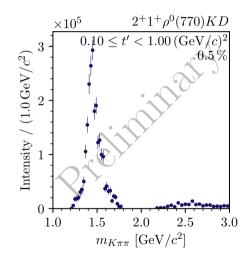
- Perform maximum-likelihood fit in cells of  $(m_{K\pi\pi}, t')$ 
  - $\blacktriangleright$  Extract mass and t' dependence of transition amplitudes  $\mathcal{T}_a$

#### Selected Results from the $K^-\pi^-\pi^+$ Final state

#### Partial waves with $J^P = 2^+$

- Signal in K<sup>\*</sup><sub>2</sub>(1430) mass region
- In Different decays
  - ρ(770) K D
  - K\*(892) π D

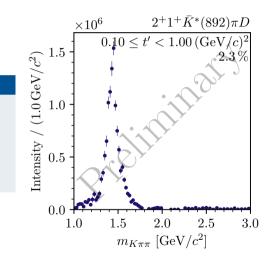
In agreement with previous measurement



#### Selected Results from the $K^-\pi^-\pi^+$ Final state

#### Partial waves with $J^P = 2^+$

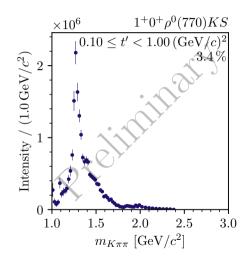
- ▶ Signal in  $K_2^*(1430)$  mass region
- In Different decays
  - ρ(770) K D
  - K\*(892) π D
- In agreement with previous measurement



#### Selected Results from the $K^-\pi^-\pi^+$ Final state

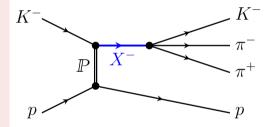
#### $1^+ \, 0^+ \, ho$ (770) K S partial wave

- Dominated by  $K_1(1270)$
- Small potential signal from  $K_1(1650)$
- Consistent with previous observations



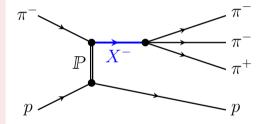
#### • $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

- Distinguishable only by
  - Beam particle identification
  - Final-state particle identification
- Excellent beam PID: Mis-ID  $\pi^- \rightarrow K^-$  about 1 %
- But, about 35 times more  $\pi^-$  in beam
- Final-state PID does not suppress π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background
  - ▶ Non-negligible  $\pi^-\pi^-\pi^+$  background in  $K^-\pi^-\pi^+$  sample of about 7 %
  - $\blacktriangleright$  Dominant background in  $K^-\pi^-\pi^+$  sample



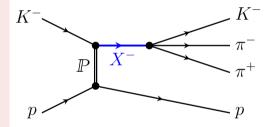
#### • $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

- Distinguishable only by
  - Beam particle identification
  - Final-state particle identification
- Excellent beam PID: Mis-ID  $\pi^- \rightarrow K^-$  about 1 %
- But, about 35 times more  $\pi^-$  in beam
- Final-state PID does not suppress π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background
  - ▶ Non-negligible  $\pi^-\pi^-\pi^+$  background in  $K^-\pi^-\pi^+$  sample of about 7 %
  - ⇒ Dominant background in  $K^-\pi^-\pi^+$  sample

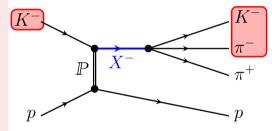


#### • $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint

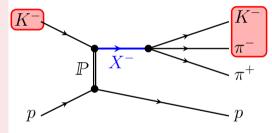
- Distinguishable only by
  - Beam particle identification
  - Final-state particle identification
- Excellent beam PID: Mis-ID  $\pi^- \rightarrow K^-$  about 1 %
- But, about 35 times more  $\pi^-$  in beam
- Final-state PID does not suppress π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background
  - ▶ Non-negligible  $\pi^-\pi^-\pi^+$  background in  $K^-\pi^-\pi^+$  sample of about 7 %
  - $\blacktriangleright$  Dominant background in  $K^-\pi^-\pi^+$  sample



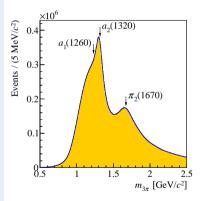
- $K^-\pi^-\pi^+$  and  $\pi^-\pi^-\pi^+$  similar experimental footprint
- Distinguishable only by
  - Beam particle identification
  - Final-state particle identification
- Excellent beam PID: Mis-ID  $\pi^- \rightarrow K^-$  about 1 %
- But, about 35 times more  $\pi^-$  in beam
- Final-state PID does not suppress π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background
  - ⇒ Non-negligible  $\pi^{-}\pi^{-}\pi^{+}$  background in  $K^{-}\pi^{-}\pi^{+}$  sample of about 7 %
  - $\blacktriangleright$  Dominant background in  $K^-\pi^-\pi^+$  sample



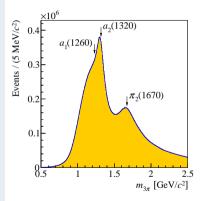
- $K^-\pi^-\pi^+$  and  $\pi^-\pi^-\pi^+$  similar experimental footprint
- Distinguishable only by
  - Beam particle identification
  - Final-state particle identification
- Excellent beam PID: Mis-ID  $\pi^- \rightarrow K^-$  about 1 %
- But, about 35 times more  $\pi^-$  in beam
- Final-state PID does not suppress π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background
  - → Non-negligible  $\pi^{-}\pi^{-}\pi^{+}$  background in  $K^{-}\pi^{-}\pi^{+}$  sample of about 7 %
  - ➡ Dominant background in  $K^-\pi^-\pi^+$  sample



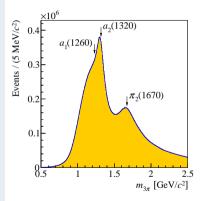
- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate  $\pi^-\pi^-\pi^+$  Monte Carlo sample
- Mis-interpret  $\pi^-\pi^-\pi^+$  Monte Carlo events as  $K^-\pi^-\pi^-$ 
  - Apply wrong mass assumption
  - Same event reconstruction
  - Same event selection
- Perform partial-wave decomposition of mis-interpreted π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> Monte Carlo sample
  - Using the same PWA model as for measured  $K^-\pi^-\pi^+$  sample



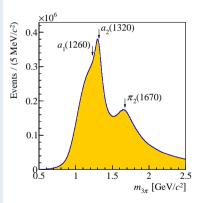
- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate  $\pi^-\pi^-\pi^+$  Monte Carlo sample
- Mis-interpret  $\pi^-\pi^-\pi^+$  Monte Carlo events as  $K^-\pi^-\pi^+$ 
  - Apply wrong mass assumption
  - Same event reconstruction
  - Same event selection
- Perform partial-wave decomposition of mis-interpreted π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> Monte Carlo sample
  - Using the same PWA model as for measured  $K^-\pi^-\pi^+$  sample

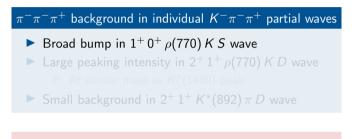


- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate  $\pi^-\pi^-\pi^+$  Monte Carlo sample
- Mis-interpret  $\pi^-\pi^-\pi^+$  Monte Carlo events as  $K^-\pi^-\pi^+$ 
  - Apply wrong mass assumption
  - Same event reconstruction
  - Same event selection
- Perform partial-wave decomposition of mis-interpreted  $\pi^-\pi^-\pi^+$ Monte Carlo sample
  - Using the same PWA model as for measured  $K^-\pi^-\pi^+$  sample

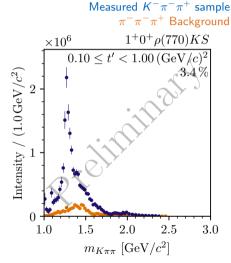


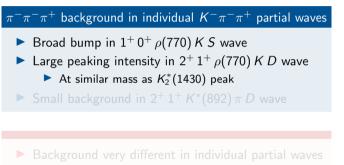
- From very same data set
- Measured with high precision
- Acceptance corrected
- Generate  $\pi^-\pi^-\pi^+$  Monte Carlo sample
- Mis-interpret  $\pi^-\pi^-\pi^+$  Monte Carlo events as  $K^-\pi^-\pi^+$ 
  - Apply wrong mass assumption
  - Same event reconstruction
  - Same event selection
- Perform partial-wave decomposition of mis-interpreted π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> Monte Carlo sample
  - Using the same PWA model as for measured  $K^-\pi^-\pi^+$  sample
  - Study  $\pi^{-}\pi^{-}\pi^{+}$  background in individual  $K^{-}\pi^{-}\pi^{+}$  partial waves



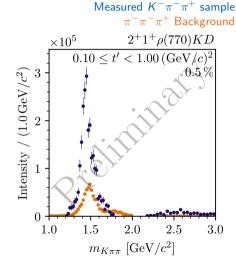


Background very different in individual partial waves
 May produce peaking structures



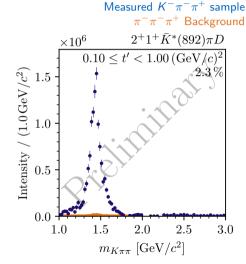


May produce peaking structures



# π<sup>-</sup>π<sup>-</sup>π<sup>+</sup> background in individual K<sup>-</sup>π<sup>-</sup>π<sup>+</sup> partial waves Broad bump in 1<sup>+</sup>0<sup>+</sup>ρ(770) K S wave Large peaking intensity in 2<sup>+</sup>1<sup>+</sup>ρ(770) K D wave At similar mass as K<sub>2</sub>\*(1430) peak Small background in 2<sup>+</sup>1<sup>+</sup> K\*(892) π D wave

Background very different in individual partial waves
 May produce peaking structures



#### $\pi^-\pi^-\pi^+$ background in individual $K^-\pi^-\pi^+$ partial waves

- Broad bump in  $1^+ 0^+ \rho(770) KS$  wave
- Large peaking intensity in  $2^+ 1^+ \rho(770) K D$  wave
  - At similar mass as  $K_2^*(1430)$  peak
- Small background in  $2^+ 1^+ K^*(892) \pi D$  wave

Background very different in individual partial waves
 May produce peaking structures



In the Partial-Wave Decomposition

# True physics intensity distributionExperimentally measured intensity distribution $\mathcal{I}(\tau) = \left| \sum_{a}^{waves} \mathcal{T}_{a} \Psi_{a}(\tau) \right|^{2}$ $\mathcal{I}_{measured}(\tau) = \eta(\tau) \mathcal{I}(\tau)$

- Take into account different processes p
  - Different model intensities *I*<sup>p</sup>
  - **b** Different experimental acceptance  $\eta^{\mathfrak{p}}$
  - Formulated in terms of different phase-space variables  $au^p$ 
    - $\blacktriangleright$  Jacobian terms  $J( au^{K\pi\pi} o au^{\mathfrak{p}})$  from variable transformation

In the Partial-Wave Decomposition

- Take into account different processes p
  - Different model intensities *I*<sup>p</sup>
  - Different experimental acceptance η<sup>p</sup>
  - Formulated in terms of different phase-space variables  $\tau^{\mathfrak{p}}$ 
    - ▶ Jacobian terms  $J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$  from variable transformation

In the Partial-Wave Decomposition

- Take into account different processes p
  - Different model intensities  $\mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
  - Different experimental acceptance  $\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}})$
  - Formulated in terms of different phase-space variables  $\tau^{\mathfrak{p}}$ 
    - Jacobian terms  $J(\tau^{K\pi\pi} \rightarrow \tau^{\mathfrak{p}})$  from variable transformation

In the Partial-Wave Decomposition

| True physics intensity distribution for process $\mathfrak{p}$                                                                                                  | Experimentally measured intensity distribution                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{I}^{\mathfrak{p}}(	au^{\mathfrak{p}}) = \left \sum_{a}^{waves} \mathcal{T}^{\mathfrak{p}}_{a}  \Psi^{\mathfrak{p}}_{a}(	au^{\mathfrak{p}}) ight ^{2}$ | $\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$ |

•  $\mathcal{I}^{\pi\pi\pi}$  known by COMPASS analysis

•  $\eta^{\pi\pi\pi}$  from detector simulation

- $\eta^{\pi\pi\pi}$  computationally expensive
- ▶ Different  $m_{3\pi}$  bins enter one  $m_{K\pi\pi}$  bin
- ▶ Other background channels:  $K^-K^-K^+$ , ...
  - I unknown
  - Unknown background channels

In the Partial-Wave Decomposition

| $\mathcal{I}^{\mathfrak{p}}(	au^{\mathfrak{p}}) = \left \sum_{a}^{waves} \mathcal{T}^{\mathfrak{p}}_{a} \varPsi^{\mathfrak{p}}_{a}(	au^{\mathfrak{p}}) ight ^{2}$ |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

a

True physics intensity distribution for process p

#### Experimentally measured intensity distribution

$$\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \, J(\tau^{K\pi\pi} \to \tau^{\mathfrak{p}})$$

•  $\mathcal{I}^{\pi\pi\pi}$  known by COMPASS analysis

•  $\eta^{\pi\pi\pi}$  from detector simulation

- $\eta^{\pi\pi\pi}$  computationally expensive
- Different  $m_{3\pi}$  bins enter one  $m_{K\pi\pi}$  bin
- Other background channels:  $K^-K^-K^+$ , ...
  - I<sup>p</sup> unknown
  - Unknown background channels

In the Partial-Wave Decomposition

| $\mathcal{I}^{\mathfrak{p}}(	au^{\mathfrak{p}}) = \begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix}$ | $\sum_{a}^{\text{vaves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \Big ^{2}$ |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                           | а                                                                                                               |

True physics intensity distribution for process p

#### Experimentally measured intensity distribution

$$\mathcal{I}_{\text{measured}}(\tau^{\kappa\pi\pi}) = \sum_{\mathfrak{p}} \eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \mathcal{I}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) J(\tau^{\kappa\pi\pi} \to \tau^{\mathfrak{p}})$$

•  $\mathcal{I}^{\pi\pi\pi}$  known by COMPASS analysis

•  $\eta^{\pi\pi\pi}$  from detector simulation

- $\eta^{\pi\pi\pi}$  computationally expensive
- Different  $m_{3\pi}$  bins enter one  $m_{K\pi\pi}$  bin
- Other background channels:  $K^-K^-K^+$ , ...
  - I<sup>p</sup> unknown
  - Unknown background channels

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$

Experimentally measured intensity distribution

$$\mathcal{L}( au^{K\pi\pi}) = \sum_{\mathbf{p}} \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}^{\mathbf{p}}_{a} \, \Psi^{K\pi\pi}_{a}( au^{K\pi\pi}) 
ight|^{2}$$

$$\mathcal{I}_{ ext{measured}}( au^{K\pi\pi}) = \eta^{K\pi\pi}( au^{K\pi\pi})\mathcal{I}( au^{K\pi\pi})$$

▶ How well can  $K^-\pi^-\pi^+$  partial waves approximate the distribution of process p

- ls the set of  $K^-\pi^-\pi^+$  partial waves sufficient?
  - ➡ Automatic wave-set selection using model-selection techniques

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$



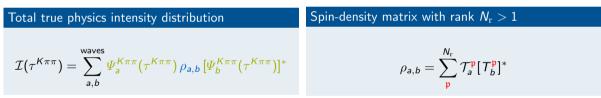
▶ How well can  $K^-\pi^-\pi^+$  partial waves approximate the distribution of process p

- ls the set of  $K^-\pi^-\pi^+$  partial waves sufficient?
  - ➡ Automatic wave-set selection using model-selection techniques

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$



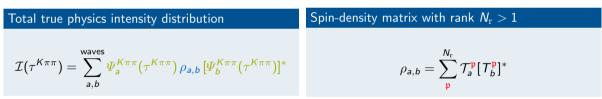
▶ How well can  $K^-\pi^-\pi^+$  partial waves approximate the distribution of process p

- ls the set of  $K^-\pi^-\pi^+$  partial waves sufficient?
  - ➡ Automatic wave-set selection using model-selection techniques

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$



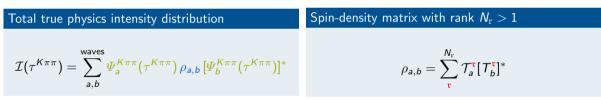
▶ How well can  $K^-\pi^-\pi^+$  partial waves approximate the distribution of process p

- ▶ Is the set of  $K^-\pi^-\pi^+$  partial waves sufficient?
  - ➡ Automatic wave-set selection using model-selection techniques

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$



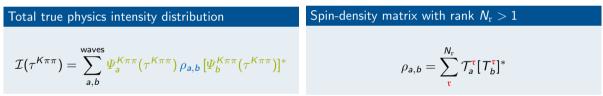
Experimentally measurable quantities are spin-density matrix elements

- Transition amplitudes  $\mathcal{T}^{p}_{a}$  are only effective parameters
- $\blacktriangleright$  Cannot determine  $\mathcal{T}^{\mathfrak{p}}_{a}$  of individual processes
- Cannot separate different processes

In the Partial-Wave Decomposition

#### Approximate model for process $\mathfrak{p}$ by $K^-\pi^-\pi^+$ partial waves

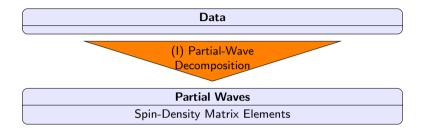
$$\eta^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a}^{\mathfrak{p}} \Psi_{a}^{\mathfrak{p}}(\tau^{\mathfrak{p}}) \right|^{2} \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_{a}^{\mathsf{waves}} \tilde{\mathcal{T}}_{a}^{\mathfrak{p}} \Psi_{a}^{K\pi\pi}(\tau^{K\pi\pi}) \right|^{2}$$



• Large number of fit parameters:  $N_{\text{para}} = N_{\text{r}}(2N_{\text{waves}} - N_{\text{r}})$ 

- Sufficient rank of spin-density matrix must be determined
  - ▶ Rank two needed to describe pure  $\pi^-\pi^-\pi^+$  Monte Carlo sample using  $K^-\pi^-\pi^+$  partial waves
  - Used rank three to model  $K^-\pi^-\pi^+$  sample

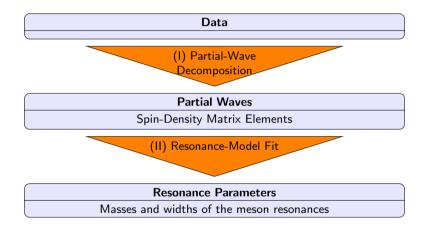
Modeling Background Components in the Resonance-Model Fit



#### **Resonance Parameters**

Masses and widths of the meson resonances

Modeling Background Components in the Resonance-Model Fit



Modeling Background Components in the Resonance-Model Fit

#### Resonance-Model Fit

### $\hat{\rho}_{a,b}(m_{K\pi\pi}) = \hat{\rho}_{a,b}^{K\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\pi\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\text{eff}}(m_{K\pi\pi})$

### ▶ Model the $m_{K\pi\pi}$ dependence of spin-density matrix elements

• Model for  $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ 

Sum of Breit-Wigner plus non-resonant processes Coherent:  $\hat{
ho}_{a,b}^{A,B}$  has rank one

#### • Model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$

- Potentially largest background
- Explicitly modeled using  $\pi^-\pi^-\pi^+$  Monte Carlo sample
- $\triangleright \hat{\rho}_{a,b}^{\pi\pi\pi}$  has rank two
- Model for further background processes
  - Phenomenological mode
  - $\hat{
    ho}_{a,b}^{_{
    m eff}}$  has rank one

Modeling Background Components in the Resonance-Model Fit

#### Resonance-Model Fit

$$\hat{\rho}_{a,b}(m_{K\pi\pi}) = \hat{\rho}_{a,b}^{K\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\pi\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\text{eff}}(m_{K\pi\pi})$$

- ▶ Model the  $m_{K\pi\pi}$  dependence of spin-density matrix elements
- ▶ Model for  $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ 
  - Sum of Breit-Wigner plus non-resonant processes
  - Coherent:  $\hat{\rho}_{a,b}^{K\pi\pi}$  has rank one
- ▶ Model for  $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$ 
  - Potentially largest background
  - Explicitly modeled using  $\pi^-\pi^-\pi^+$  Monte Carlo sample
  - $\triangleright \hat{
    ho}_{a,b}^{\pi\pi\pi}$  has rank two
- Model for further background processes
  - Phenomenological mode
  - $\hat{
    ho}_{a,b}^{ ext{eff}}$  has rank one

Modeling Background Components in the Resonance-Model Fit

#### Resonance-Model Fit

$$\hat{\rho}_{a,b}(m_{K\pi\pi}) = \hat{\rho}_{a,b}^{K\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\pi\pi\pi}(m_{K\pi\pi}) + \hat{\rho}_{a,b}^{\text{eff}}(m_{K\pi\pi})$$

- ▶ Model the  $m_{K\pi\pi}$  dependence of spin-density matrix elements
- ▶ Model for  $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ 
  - Sum of Breit-Wigner plus non-resonant processes
  - Coherent:  $\hat{\rho}_{a,b}^{K\pi\pi}$  has rank one
- ▶ Model for  $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$ 
  - Potentially largest background
  - Explicitly modeled using  $\pi^{-}\pi^{-}\pi^{+}$  Monte Carlo sample
  - $\hat{\rho}_{a,b}^{\pi\pi\pi}$  has rank two
- Model for further background processes
  - Phenomenological mode
  - $\hat{
    ho}_{a,b}^{\text{eff}}$  has rank one

Modeling Background Components in the Resonance-Model Fit

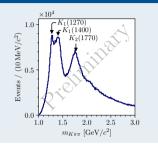
#### Resonance-Model Fit

$$\hat{
ho}_{a,b}(m_{K\pi\pi})=\hat{
ho}_{a,b}^{K\pi\pi}(m_{K\pi\pi})+\hat{
ho}_{a,b}^{\pi\pi\pi}(m_{K\pi\pi})+\hat{
ho}_{a,b}^{ ext{eff}}(m_{K\pi\pi})$$

- ▶ Model the  $m_{K\pi\pi}$  dependence of spin-density matrix elements
- ▶ Model for  $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ 
  - Sum of Breit-Wigner plus non-resonant processes
  - Coherent:  $\hat{\rho}_{a,b}^{K\pi\pi}$  has rank one
- ▶ Model for  $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$ 
  - Potentially largest background
  - Explicitly modeled using  $\pi^-\pi^-\pi^+$  Monte Carlo sample
  - $\triangleright \hat{\rho}_{a,b}^{\pi\pi\pi}$  has rank two
- Model for further background processes
  - Phenomenological model
  - $\hat{\rho}_{a,b}^{\text{eff}}$  has rank one

#### • World's largest sample on $K^-\pi^-\pi^+$

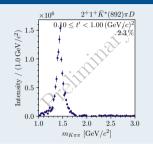
- Clear signals of well known states
- Interesting potential signals of excited states
- Non-negligible incoherent background
  - Treatment at the resonance-model fit



#### Further challanges and solutions

- Improved uncertainty estimates for spin-density matrix elements
  - Bootstrapping starting at the event sample level
- Extensive Monte Carlo studies (input-output studies) to verify our approach
- Automatic wave-set selection

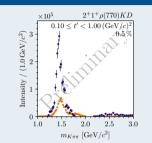
- World's largest sample on  $K^-\pi^-\pi^+$
- Clear signals of well known states
- Interesting potential signals of excited states
- Non-negligible incoherent background
  - I reatment at the resonance-model fit



#### Further challanges and solutions

- Improved uncertainty estimates for spin-density matrix elements
  - Bootstrapping starting at the event sample level
- Extensive Monte Carlo studies (input-output studies) to verify our approach
- Automatic wave-set selection

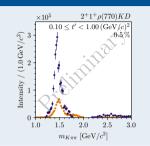
- World's largest sample on  $K^-\pi^-\pi^+$
- Clear signals of well known states
- Interesting potential signals of excited states
- Non-negligible incoherent background
  - Treatment at the resonance-model fit



#### Further challanges and solutions

- Improved uncertainty estimates for spin-density matrix elements
  - Bootstrapping starting at the event sample level
- Extensive Monte Carlo studies (input-output studies) to verify our approach
- Automatic wave-set selection

- World's largest sample on  $K^-\pi^-\pi^+$
- Clear signals of well known states
- Interesting potential signals of excited states
- Non-negligible incoherent background
  - Treatment at the resonance-model fit.



#### Further challanges and solutions

- Improved uncertainty estimates for spin-density matrix elements
  - Bootstrapping starting at the event sample level
- Extensive Monte Carlo studies (input-output studies) to verify our approach
- Automatic wave-set selection

...