Freed-isobar technique on Dalitz plots

News since last time

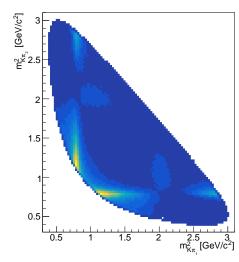
~	wig 1	

Fabian Krinner

Max Planck Institut für Physik

PWA12/ATHOS7

$$D^+ - K^- + \pi^+ + \pi^+$$



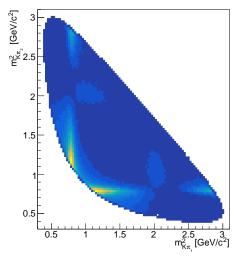
 Understand the processes leading to the final state

> Inspired by CLEO: Phys. Rev.**D78** 052001 (2008)

$$D^+ - K^- + \pi^+ + \pi^+$$

- Understand the processes leading to the final state
- Amplitude analysis: Describe the complex-valued amplitude of the process:

$$\sum_{i}^{\text{waves}} \mathcal{T}_{i} \mathcal{A}_{i} \left(\vec{ heta}
ight)$$



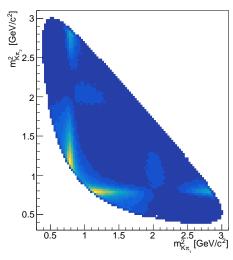
Inspired by CLEO: Phys. Rev.**D78** 052001 (2008).

$$D^+ - K^- + \pi^+ + \pi^+$$

- Understand the processes leading to the final state
- Amplitude analysis: Describe the complex-valued amplitude of the process:

$$\mathcal{I}\left(\vec{\theta}\right) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(\vec{\theta}\right)\right|^{2}$$

Measure only intensity distribution



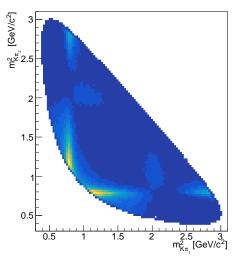
Inspired by CLEO: Phys. Rev.**D78** 052001 (2008).

$$D^+ -> K^- + \pi^+ + \pi^+$$

- Understand the processes leading to the final state
- Amplitude analysis: Describe the complex-valued amplitude of the process:

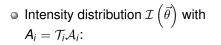
$$\mathcal{I}\left(\vec{\theta}\right) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(\vec{\theta}\right)\right|^{2}$$

- Measure only intensity distribution
- Goal: Learn about the amplitude
- Fit intensity distribution to the data (extended unbinned log-likelihood)



Inspired by CLEO: Phys. Rev.**D78** 052001 (2008)

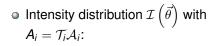
$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$



$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$

• Production amplitudes T_i :

- Encode strengths and relative phases of the single partial waves i
- Free parameters in the analysis
- Independent of $\vec{\theta}$



$$\mathcal{I}\left(\vec{\theta}\right) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(\vec{\theta}\right)\right|^{2}$$

• Production amplitudes T_i :

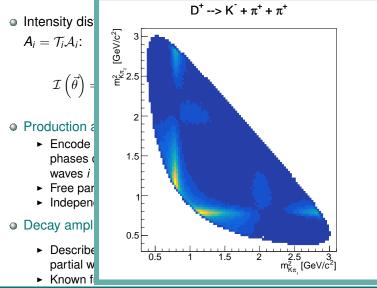
- Encode strengths and relative phases of the single partial waves i
- Free parameters in the analysis
- Independent of $\vec{\theta}$

• Decay amplitudes $A_i(\vec{\theta})$:

- ► Describe $\vec{\theta}$ distributions of single partial waves
- Known functions

Partial-Wave Analysis (PWA)

Modelling the amplitude



Fabian Krinner (MPP)

$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\theta}$
- Decay amplitudes $\mathcal{A}_i(\vec{\theta})$:
 - ► Describe $\vec{\theta}$ distributions of single partial waves
 - Known functions

 Factorize decay amplitudes (Isobar model):

$$\mathcal{A}_{i}\left(ec{ heta}
ight)=\psi_{i}\left(ec{ heta}
ight)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}
ight)$$

$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\theta}$
- Decay amplitudes $A_i(\vec{\theta})$:
 - Describe $\vec{\theta}$ distributions of single partial waves
 - Known functions

 Factorize decay amplitudes (Isobar model):

$$\mathcal{A}_{i}\left(\vec{\theta}\right)=\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$$

• Angular amplitudes $\psi_i(\vec{\theta})$: Fully given by angular momentum and spin quantum numbers of the waves

$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\theta}$
- Decay amplitudes $\mathcal{A}_i(\vec{\theta})$:
 - Describe $\vec{\theta}$ distributions of single partial waves
 - Known functions

Fabian Krinner (MPP)

 Factorize decay amplitudes (Isobar model):

$$\mathcal{A}_{i}\left(\vec{\theta}\right)=\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$$

- Angular amplitudes $\psi_i(\vec{\theta})$: Fully given by angular momentum and spin quantum numbers of the waves
- Dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$: Model input
 - Intermediate state: Isobar ξ
 - Example: K*(892)with fixed mass m₀, width Γ₀ and quantum numbers J^{PC}_ξ = 1⁻⁻

$$\mathcal{I}\left(ec{ heta}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ heta}
ight)
ight|^{2}$$

• Production amplitudes T_i :

- Encode strengths and relative phases of the single partial waves i
- Free parameters in the analysis
- Independent of $\vec{\theta}$

• Decay amplitudes $\mathcal{A}_i(\vec{\theta})$:

- ► Describe $\vec{\theta}$ distributions of single partial waves
- Known functions
- Fabian Krinner (MPP)

 Factorize decay amplitudes (Isobar model):

$$\mathcal{A}_{i}\left(\vec{\theta}\right)=\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$$

- Angular amplitudes $\psi_i(\vec{\theta})$: Fully given by angular momentum and spin quantum numbers of the waves
- Dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$: Model input
 - Intermediate state: Isobar ξ
 - Example: K*(892)with fixed mass m₀, width Γ₀ and quantum numbers J^{PC}_ξ = 1⁻⁻
 - Not given by first principles
 - Have to be known beforehand

• Conventional PWA: Use fixed, known dynamic isobar amplitudes

- Conventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma_0}$$

- Conventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

Freed-isobar method

- Onventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

- A priori not clear:
 - Which resonances contribute
 - Exact parameters

Freed-isobar method

- Conventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

- A priori not clear:
 - Which resonances contribute
 - Exact parameters
 - Common: PDG
 - Model selection

- Onventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

- A priori not clear:
 - Which resonances contribute
 - Exact parameters
 - Common: PDG
 - Model selection
- Deviations from Breit-Wigner:
 - ▶ Thresholds (e.g. *f*₀(980))

- Onventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

- A priori not clear:
 - Which resonances contribute
 - Exact parameters
 - Common: PDG
 - Model selection
- Deviations from Breit-Wigner:
 - ▶ Thresholds (e.g. *f*₀(980))
 - Re-scattering with 3rd particle

- Conventional PWA: Use fixed, known dynamic isobar amplitudes
 - Most common: Variations of the Breit-Wigner amplitude

$$\Delta(m) = \frac{m_0 \Gamma_0}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

- A priori not clear:
 - Which resonances contribute
 - Exact parameters
 - Common: PDG
 - Model selection
- Deviations from Breit-Wigner:
 - ▶ Thresholds (e.g. *f*₀(980))
 - Re-scattering with 3rd particle
- Effects neglected or falsely attributed
 - "Leakage"

• Total intensity as function of phase-space variables $\vec{\theta}$:

$$\mathcal{I}(\vec{\theta}) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\left[\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(\textit{m}_{\text{isob}}\right) + \text{Bose sym.}\right]\right|^{2}$$

Fit parameters: Production amplitudes T_i

Fixed: Angular amplitudes $\psi_i\left(\vec{\theta}\right)$, dynamic isobar amplitudes $\Delta_i\left(m_{isob}\right)$

• Total intensity as function of phase-space variables $\vec{\theta}$:

$$\mathcal{I}(\vec{\theta}) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\left[\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(\textit{m}_{\text{isob}}\right) + \text{Bose sym.}\right]\right|^{2}$$

Fit parameters: Production amplitudes T_i Fixed: Angular amplitudes $\psi_i(\vec{\theta})$, dynamic isobar amplitudes $\Delta_i(m_{isob})$

• Fixed isobar amplitudes \rightarrow Sets of m_{isob} bins: (MIPWA)

$$\Delta_i (m_{isob})
ightarrow \sum_{bins} \mathscr{T}_i^{bin} \Delta_i^{bin} (m_{isob}) \equiv [K\pi]_{J^{PC}}$$

 $\Delta_i^{bin} (m_{isob}) = \begin{cases} 1, & \text{if } m_{isob} \text{ in the bin.} \\ 0, & \text{otherwise.} \end{cases}$

• Total intensity as function of phase-space variables $\vec{\theta}$:

$$\mathcal{I}(\vec{\theta}) = \left|\sum_{i}^{\text{waves}} \mathcal{T}_{i}\left[\psi_{i}\left(\vec{\theta}\right)\Delta_{i}\left(m_{\text{isob}}\right) + \text{Bose sym.}\right]\right|^{2}$$

Fit parameters: Production amplitudes T_i Fixed: Angular amplitudes $\psi_i(\vec{\theta})$, dynamic isobar amplitudes $\Delta_i(m_{isob})$

• Fixed isobar amplitudes \rightarrow Sets of m_{isob} bins: (MIPWA)

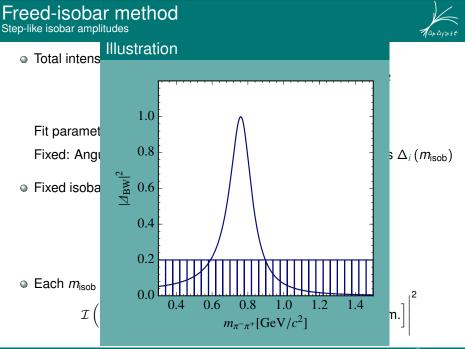
$$\Delta_i (m_{isob}) \rightarrow \sum_{bins} \mathscr{T}_i^{bin} \Delta_i^{bin} (m_{isob}) \equiv [K\pi]_{J^{PO}}$$

 $\Delta_i^{bin} (m_{isob}) = \begin{cases} 1, & \text{if } m_{isob} \text{ in the bin.} \\ 0, & \text{otherwise.} \end{cases}$

• Each m_{isob} bin: independent partial wave with $T_i^{bin} = T_i \mathscr{T}_i^{bin}$:

$$\mathcal{I}\left(\vec{\theta}\right) = \left|\sum_{i}^{\text{waves bins}} \mathcal{T}_{i}^{\text{bin}}\left[\psi_{i}\left(\vec{\theta}\right) \Delta_{i}^{\text{bin}}\left(m_{\text{isob}}\right) + \text{Bose sym.}\right]\right|$$

.2

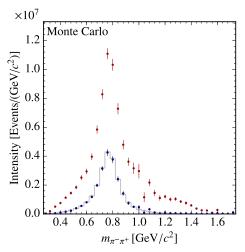


Freed-isobar method Step-like isobar amplitudes Illustration Total intens 1.0Fit paramet 0.8 Fixed: Ang $\Delta_i(m_{isob})$ 3 $\Delta_{\rm BW}|^2$ Fixed isoba 0.6 0.4 0.2 • Each m_{isob} 0.02 0.40.6 0.8 1.01.21.4 \mathcal{I} n. $m_{\pi^{-}\pi^{+}}[\text{GeV}/c^{2}]$

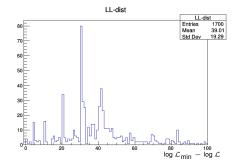
Status last time

Status last time

- Often: Used for singlemost interesting of complicated waves
- Several waves simultaneously: Fit gets crazy
- $\bullet \rightarrow \text{Zero modes present:}$
 - Freed waves can take specific shapes
 - Complete cancellation everywhere in phase-space
 - Complex-valued ambiguity
- Resolve with minimal assumptions
- n_{bins} 1 degrees of freedom remain



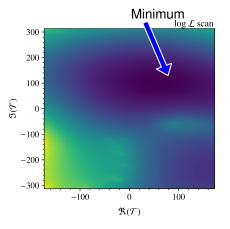
- Fully freed fit of [Kπ]_S, [Kπ]_P, [Kπ]_D
- Random start values
- Many fit attempts
- Likelihood function is multimodal
- How to find best minimum?



 Start values for all bins independent

Fully free fit

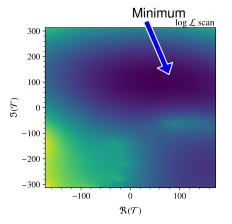
- Most of the fits end up in local minima
- Plot $-\log \mathcal{L}$ around minimum



Start values for all bins independent

Fully free fit Multimodality

- Most of the fits end up in local minima
- Plot $-\log \mathcal{L}$ around minimum
- Second minimum roughly at $\mathcal{T} \to \mathcal{T}^*$



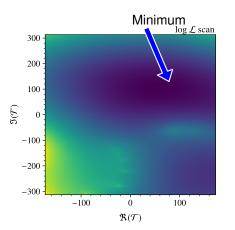
September 8th 2021

9/22

Start values for all bins independent

Fully free fit Multimodality

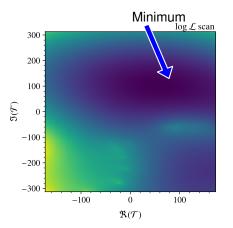
- Most of the fits end up in local minima
- Plot $-\log \mathcal{L}$ around minimum
- Second minimum roughly at $\mathcal{T} \to \mathcal{T}^*$
- Intensity $\propto |\mathcal{T}|^2$ unchanged
- Only interference terms change



Start values for all bins independent

Fully free fit Multimodality

- Most of the fits end up in local minima
- Plot $-\log \mathcal{L}$ around minimum
- Second minimum roughly at $\mathcal{T} \to \mathcal{T}^*$
- Intensity $\propto |\mathcal{T}|^2$ unchanged
- Only interference terms change
- Region of attraction of similar size



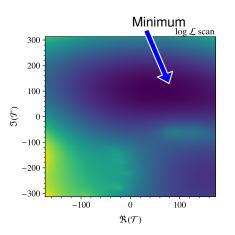
Freed-isobar on Dalitz

9/22

Start values for all bins independent

Fully free fit Multimodality

- Most of the fits end up in local minima
- Plot $-\log \mathcal{L}$ around minimum
- Second minimum roughly at $\mathcal{T} \to \mathcal{T}^*$
- Intensity $\propto |\mathcal{T}|^2$ unchanged
- Only interference terms change
- Region of attraction of similar size
- Similar for other bins
- Approximately 2^{n_{bins}} local minima



News

Discussed up to now: Step-like functions

Advantages:

- Fit parameters directly interpretable
- Easy to implement

Disadvantages:

• Discontinuous description of the amplitudes

In principle any function basis could be used to approximate amplitudes

Idea 1: Global functions

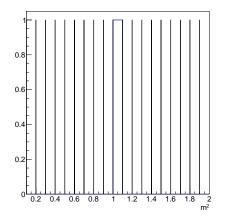
- Theory: Amplitudes are analytical
- $\bullet \rightarrow$ Binned functions are not
- Use global function basis instead
 - ► Fourier-basis, polynomial basis

Problems:

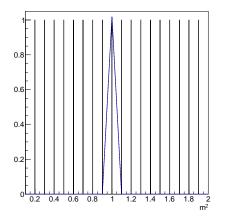
- Large overlap of basis functions:
 - Parameters not directly interpretable
 - Very multimodal
 - Suffer from artifacts
- Hard to adjust to narrow regions



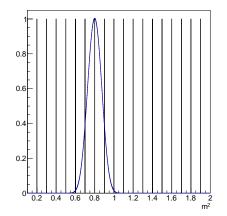
- Degree $n \to \mathbb{C}^{n-1}$
- Optimize computing time: Sum only non-zero functions
- Linear splines "spikes" suffice
 - Degree = 1
 - Fit parameters directly interpretable
- Artefacts for higher degrees (> 2)



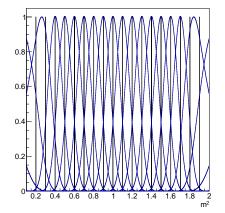
- Degree $n \to \mathbb{C}^{n-1}$
- Optimize computing time: Sum only non-zero functions
- Linear splines "spikes" suffice
 - Degree = 1
 - Fit parameters directly interpretable
- Artefacts for higher degrees (> 2)



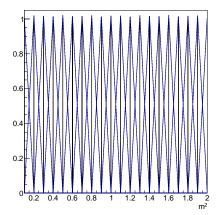
- Degree $n \to \mathbb{C}^{n-1}$
- Optimize computing time: Sum only non-zero functions
- Linear splines "spikes" suffice
 - Degree = 1
 - Fit parameters directly interpretable
- Artefacts for higher degrees (> 2)



- Degree $n \to \mathbb{C}^{n-1}$
- Optimize computing time: Sum only non-zero functions
- Linear splines "spikes" suffice
 - Degree = 1
 - Fit parameters directly interpretable
- Artefacts for higher degrees (> 2)



- Degree $n \to \mathbb{C}^{n-1}$
- Optimize computing time: Sum only non-zero functions
- Linear splines "spikes" suffice
 - Degree = 1
 - Fit parameters directly interpretable
- Artefacts for higher degrees (> 2)



- Usual approach:
 - Equidistant binning
 - Maybe finer binned regions with known narrow resonances

- However: Large regions with no/broad resonances
 - Unnecessary degrees of freedom

- Often: rough resonance content known
 - Deviations and small signals of interest
 - Adapt binning to estimated resonance content

- Goal: best resolution with least number of bins
 - Multimodality
 - Fitting time

- Goal: best resolution with least number of bins
 - Multimodality
 - Fitting time
- Optimize binning for best approximation of estimated resonance content
 - Upper and lower bounds for bin-width
 - Knowledge of dominant resonances: κ, K*(892).

- Goal: best resolution with least number of bins
 - Multimodality
 - Fitting time
- Optimize binning for best approximation of estimated resonance content
 - Upper and lower bounds for bin-width
 - Knowledge of dominant resonances: κ , K^{*}(892).
 - Adjust bin borders to minimize:

$$\int_{m_{\min}^2}^{m_{\max}^2} \mathrm{d}m^2 \left| \Delta_{\mathrm{BW}}(m^2) - \Delta_{\mathrm{approx}}\left(m^2\right) \right|^2$$

coefficients in $\Delta_{\rm approx}$ optimized analytically

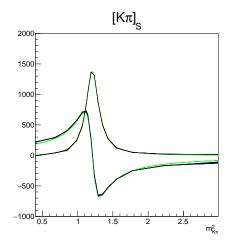
- Goal: best resolution with least number of bins
 - Multimodality
 - Fitting time
- Optimize binning for best approximation of estimated resonance content
 - Upper and lower bounds for bin-width
 - Knowledge of dominant resonances: κ, K*(892).
 - Adjust bin borders to minimize:

$$\int_{m_{\min}^2}^{m_{\max}^2} \mathrm{d}m^2 \left| \Delta_{\mathrm{BW}}(m^2) - \Delta_{\mathrm{approx}}\left(m^2\right) \right|^2$$

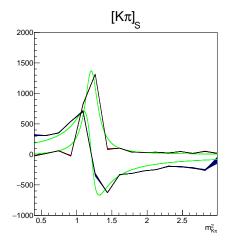
coefficients in $\Delta_{\rm approx}$ optimized analytically

- Avoid over-fitting: number of bins from MC studies
 - Compare fit quality with input model
 - $\blacktriangleright~\sim$ 20 bins suffice

- Optimize binning for the [Kπ]_S wave
- Fit generated MC data
- Compare to fit with equidistant binning
 - Mismatch over the whole range
 - Event actually finer binned regions



- Optimize binning for the [Kπ]_S wave
- Fit generated MC data
- Compare to fit with equidistant binning
 - Mismatch over the whole range
 - Event actually finer binned regions

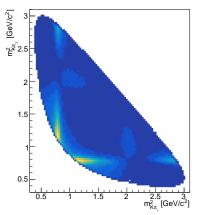


Test case study

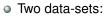
Two data-sets:

- ► Only ground-states: K^{*}₀(700), K^{*}(892), K^{*}₂(1430)
- Ground-states plus K₀^{*}(1430) and K^{*}(1410)
- Optimize binning to ground states only
- Perform freed fits of S and P waves

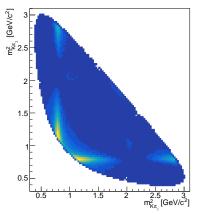
 $D^+ -> K^- + \pi^+ + \pi^+$

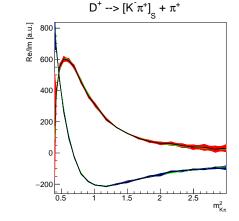


Test case study



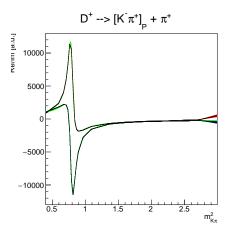
- ► Only ground-states: K^{*}₀(700), K^{*}(892), K^{*}₂(1430)
- Ground-states plus K₀^{*}(1430) and K^{*}(1410)
- Optimize binning to ground states only
- Perform freed fits of S and P waves



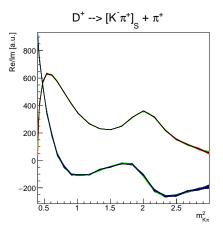


- Both waves reproduced nicely
- Works as expected
- However: Non-freed waves described perfectly

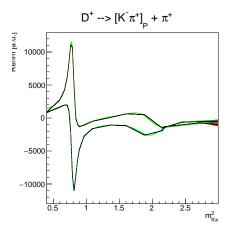
- Both waves reproduced nicely
- Works as expected
- However: Non-freed waves described perfectly



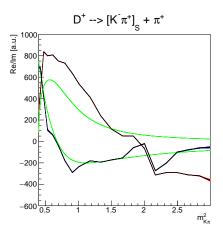
- Use data-set with excited states
- Allow also excited states in fixed waves
- Optimized binning can accomodate for new resonances

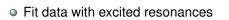


- Use data-set with excited states
- Allow also excited states in fixed waves
- Optimized binning can accomodate for new resonances

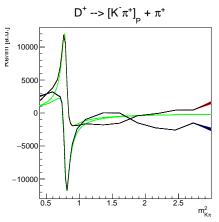


- Fit data with excited resonances
- Model fixed waves with ground-states only
- Freed fits are way off
- Leakage from other waves

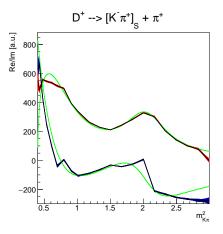




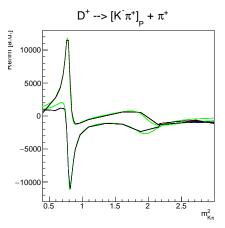
- Model fixed waves with ground-states only
- Freed fits are way off
- Leakage from other waves



- Simultaneous freed fit recovers excited resonances
- No zero mode effects visible
 - Broader binning in some regions suppress zero mode



- Simultaneous freed fit recovers excited resonances
- No zero mode effects visible
 - Broader binning in some regions suppress zero mode



Freed-isobar PWA

- Versatile tool-set for detailed PWA
 - Adjust depending on analysis goals
- Function basis
 - Spike-functions most suitable
 - Better approximation than step-like functions
 - Higher orders: more overlap \rightarrow artifacts
- Adaptive binning
 - Lower fit-complexity
 - Suppress zero-modes
 - Still resolve resonances
- Test case looks good (however not perfect)
- Freed-isobar method applicable to many cases
 - Diffractive hadron production
 - Dalitz plot decays
 - ► Hadronic τ decays

Freed-isobar PWA

- Versatile tool-set for detailed PWA
 - Adjust depending on analysis goals
- Function basis
 - Spike-functions most suitable
 - Better approximation than step-like functions
 - Higher orders: more overlap \rightarrow artifacts
- Adaptive binning
 - Lower fit-complexity
 - Suppress zero-modes
 - Still resolve resonances
- Test case looks good (however not perfect)
- Freed-isobar method applicable to many cases
 - Diffractive hadron production
 - Dalitz plot decays
 - Hadronic \(\tau\) decays

Bad news

- Fully freed fit still not possible
- No *out-of-the-box* solution