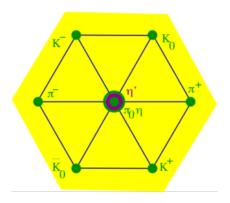
The η and η' physics at JLab

Liping Gan University of North Carolina Wilmington (for the GlueX Collaboration)


Outline

- 1. Overview of η and η' physics
- 2. Two experiments in Hall D at JLab
 - PrimEx-eta experiment
 - JLab Eta Factory (JEF) experiment

3. Summary

Why η is a unique probe for QCD and BSM physics?

 A Goldstone boson due to spontaneous breaking of chiral symmetry in QCD
 η plays important role in bridging our understanding of low-energy hadron dynamics and underlying QCD

All its possible strong and EM decays are forbidden in the lowest order so that η has narrow decay width (Γ_η =1.3KeV compared to Γ_ω=8.5 MeV)
 Enhanced sensitivity to the higher order contributions (by a factor of ~7000 compared to ω decays) for new physics search

Eigenstate of P, C, CP, and G: I^GJ^{PC}=0⁺0⁻⁺
 tests for C, CP

All its additive quantum numbers are zero and its decays are flavor-conserving

Rich n and n' Physics

Standard Model Tests:

- Chiral symmetry and anomalies •
- Extract η - η ' mixing angle and quark • mass ratio
- Theory inputs to HLbL for $(g-2)_{\mu}$ ٠
- Scalar dynamics in ChPT ٠

Fundamental Symmetry Tests:

- C, CP violations
- P, CP violations •

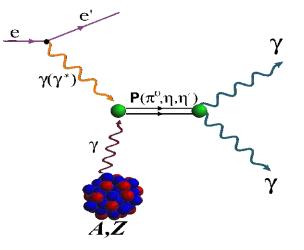
BSM Physic Searches:

Vector bosons (B boson, dark ٠ photon and X boson)

- Dark scalars •
- Pseudoscalars (ALPs) ٠
- BSM weak decays ٠

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η - η' mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta o \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars
$\eta \to \pi^0 \pi^0 \gamma \gamma$	$<1.2\times10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [54]
$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars
$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation
$\eta \to \pi^+ \pi^- \gamma \gamma'$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic X boson
$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$, dark photon
$\eta ightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays
$\eta ightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation
$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs
$\eta ightarrow \pi^+ \pi^- e^{+} e^{-}$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs
$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs
$\eta \rightarrow e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [55]	<i>P</i> / <i>CP</i> violation
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation arXiv:2007.00664
$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P</i> / <i>CP</i> violation

Primakoff Program at JLab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma) @ 6 \text{ GeV}$
- 2) Γ(η→γγ)
- 3) Γ(η′→γγ)

Input to Physics:

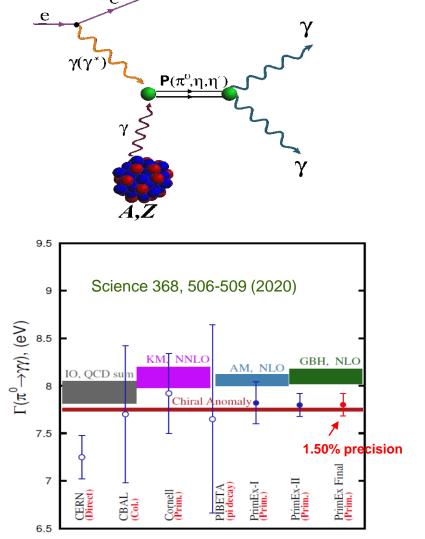
- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ

b) Transition Form Factors at Q² of 0.001-0.5 GeV²/c²: $F(\gamma\gamma^* \rightarrow \pi^0), F(\gamma\gamma^* \rightarrow \eta), F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:

- π⁰,η and η' electromagnetic interaction radii
- is the η' an approximate
 Goldstone boson?
- \succ input to calculate HLbL in (g-2)_µ

Primakoff Program at JLab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

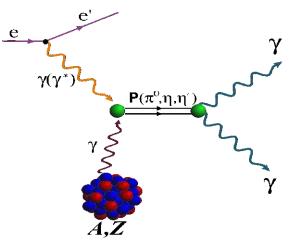
a) Two-Photon Decay Widths:

- 1) $\Gamma(\pi^0 \rightarrow \gamma\gamma) @ 6 \text{ GeV}$ 2) $\Gamma(\eta \rightarrow \gamma\gamma)$
- 3) Γ(η'→γγ)

Input to Physics:

- precision tests of chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ

Primakoff Program at JLab 6 & 12 GeV

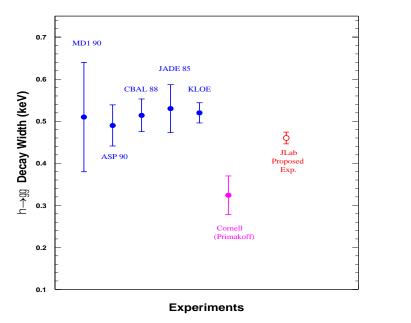

Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect

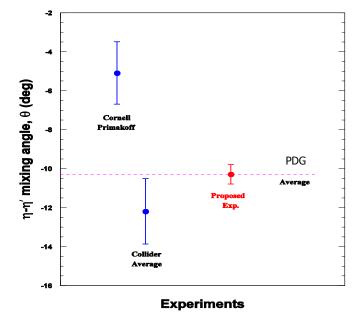
a) Two-Photon Decay Widths:

- 1) Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$ (PrimEx-eta)
- 3) Γ(η′→γγ)

Input to Physics:

- precision tests of Chiral symmetry and anomalies
- determination of light quark mass ratio
- η-η' mixing angle
- \succ input to calculate HLbL in (g-2)_µ


b) Transition Form Factors at Q² of 0.001-0.5 GeV²/c²: $F(\gamma\gamma^* \rightarrow \pi^0), F(\gamma\gamma^* \rightarrow \eta), F(\gamma\gamma^* \rightarrow \eta')$

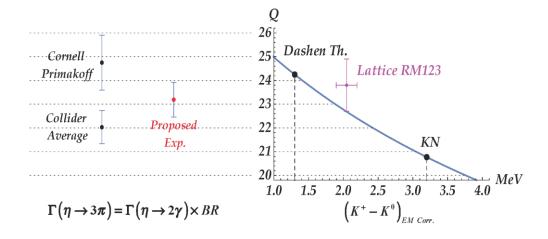

Input to Physics:

- π⁰,η and η' electromagnetic interaction radii
- is the η' an approximate
 Goldstone boson?
- \succ input to calculate HLbL in (g-2)_µ

Physics for $\Gamma(\eta \rightarrow \gamma \gamma)$ Measurement

1. Resolve long standing discrepancy between collider and Primakoff measurements: **2. Extract** η - η 'mixing angle:

Improve calculation of the η-pole contribution to Hadronic Light-by-Light (HLbL) scattering in (g-2)_μ

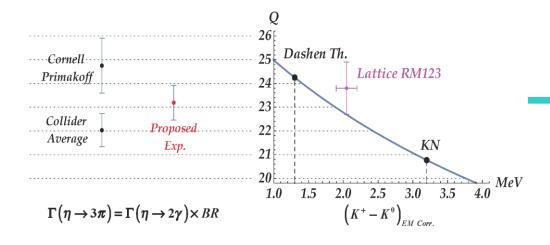

4. Improve all partial decay widths in the η-sector

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

- $\triangleright \ \partial_{em}$ is small

> Amplitude:
$$A(h \to 3p) = \frac{1}{Q^2} \frac{m_K^2}{m_p^2} (m_p^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_p^2}$$

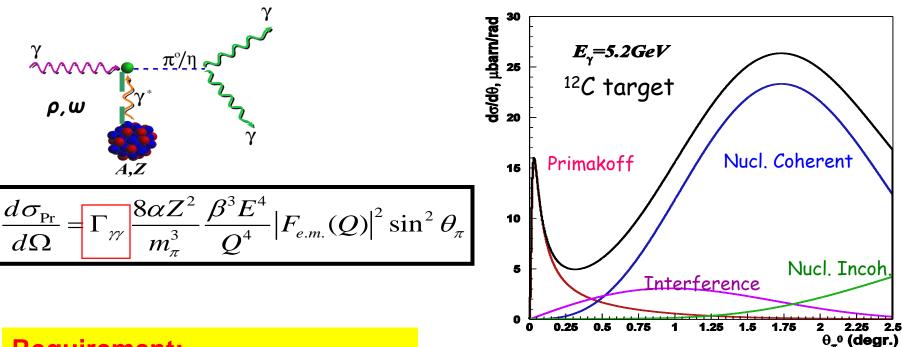

arXiv:2007.00664

Precision Determination Light Quark Mass Ratio

A clean probe for quark mass ratio: $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

 $\triangleright \ \partial_{em}$ is small

> Amplitude:
$$A(h \rightarrow 3\rho) = \frac{1}{Q^2} \frac{m_K^2}{m_\rho^2} (m_\rho^2 - m_K^2) \frac{M(s, t, u)}{3\sqrt{3}F_\rho^2}$$


• Critical input to extract Cabibbo Angle, $V_{us} = \sin(q_c)$ from kaon or hyperon decays.

 V_{us} is a cornerstone for test of CKM unitarity:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

arXiv:2007.00664

Primakoff Method

Requirement:

- Photon flux
- Tagged photon beam
- Beam energy
- Compact nuclear target

• Peaked at very small forward angle

$$\left< heta_{
m Pr} \right>_{peak} \propto rac{m^2}{2E^2}$$

- Beam energy sensitive: $\left\langle \frac{d\sigma_{\rm Pr}}{d\Omega} \right\rangle_{peak} \propto E^4, \ \int d\sigma_{\rm Pr} \propto Z^2 \log(E)$
- Coherent process

Experimental Challenges

Compared to π^0 :

- \$\eta\$ mass is a factor of 4 larger
 \$\exists smaller Primakoff cross section
 \$\larger \frac{dS_{\mathbf{Pr}}}{dW} \rangle_{peak} \mathbf{\beta} \frac{E^4}{m^3}\$
- larger overlap between
 Primakoff and hadronic
 processes;

$$\left\langle q_{\mathrm{Pr}} \right\rangle_{peak} \mu rac{m^2}{2E^2} \quad \left\langle q_{\scriptscriptstyle NC} \right\rangle_{peak} \mu rac{2}{E \cdot A^{1/3}}$$

 larger momentum transfer (coherency, form factors, FSI,...)

Experimental Challenges

Compared to π^0 :

 \succ η mass is a factor of 4 larger smaller Primakoff cross section $\left\langle \frac{dS_{\rm Pr}}{dW} \right\rangle_{\rm mark} \mu \frac{E^4}{m^3}$ Iarger overlap between Primakoff and hadronic processes $\left\langle \mathcal{Q}_{\mathrm{Pr}} \right\rangle_{peak} \mu \frac{m^2}{2E^2} \quad \left\langle \mathcal{Q}_{NC} \right\rangle_{peak} \mu \frac{2}{E \cdot \mathcal{A}^{1/3}}$ larger momentum transfer (coherency, form factors,

FSI,...)

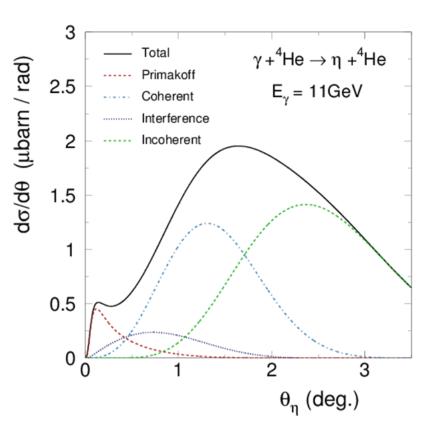
2. Light targets

Advantage of Light Targets

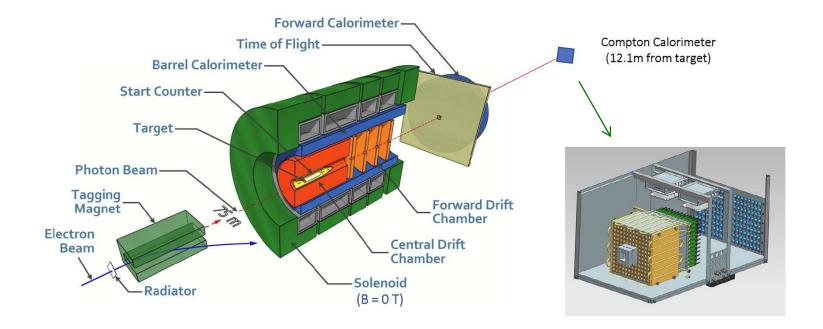
Low A targets to control:

- Coherency: compact nucleus
- Separate background

$$\left\langle q_{
m Pr}
ight
angle_{peak} \mu rac{m^2}{2E^2} \qquad \left\langle q_{\scriptscriptstyle NC}
ight
angle_{peak} \mu rac{2}{E \cdot A^{1/3}}$$


Well known form factors

Hydrogen:

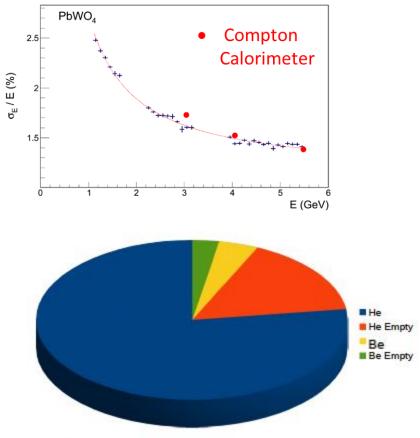

- No inelastic hadronic contribution
- No nuclear final state interactions

⁴He:

Higher Primakoff cross section: $\sigma_{\rm Pr} \propto Z^2$

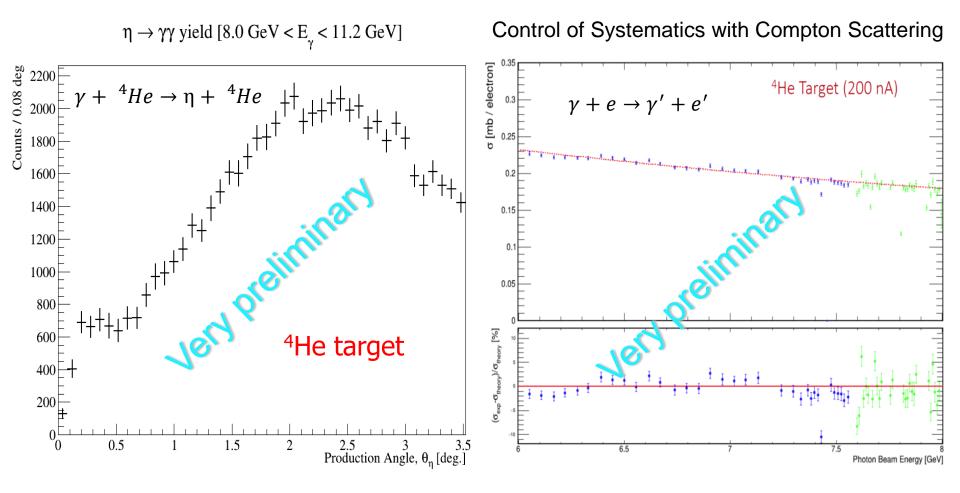
PrimEx-eta Experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D

- Tagged photon beam (~8.0-11.7 GeV)
- > Pair spectrometer and a TAC detector for the photon flux control
- Liquid Hydrogen (3.5% R.L.) and ⁴He targets (~4% R.L.)
- > Forward Calorimeter (FCAL) detects the $\eta \rightarrow \gamma \gamma$ decay photons
- CompCal and FCAL to measure electron Compton scattering for control of overall systematics.

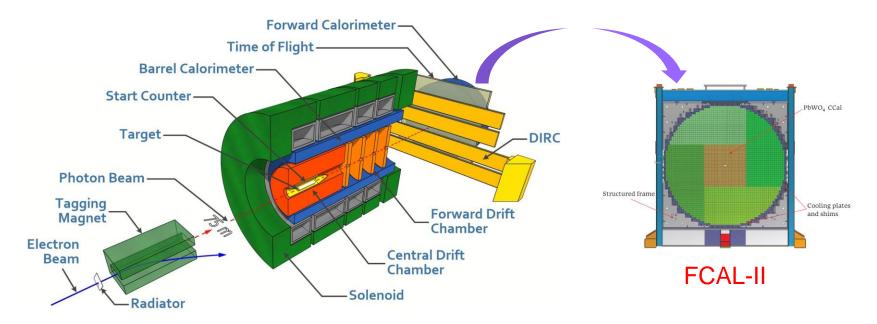

Status of PrimEx-eta

 A engineering run with a new CompCal in fall 2018

 The first production run (Feb 22 - April 15, 2019)


~50% ⁴He data was collected

- Second run will start in a week
- Third run is scheduled for 2022


Time Spent on each Target during Spring-2019

Preliminary Result from the First Run

(By D. Smith)

JLab Eta Factory (JEF) Experiment

Simultaneously measure η/η' decays: $\eta \rightarrow \pi^0 \gamma \gamma, \eta \rightarrow 3\gamma$, and ...

- η/η' produced on LH₂ target with 8.4-11.7 GeV tagged photon beam: $\gamma+p \rightarrow \eta/\eta'+p$
- Reduce non-coplanar backgrounds by detecting recoil protons with GlueX detector
- Upgraded Forward Calorimeter with High resolution, high granularity PWO insertion (FCAL-II) to detect multi-photons from the η/η' decays

Production Rate

JEF for 100 days of beam:

	η	η
Tagged mesons	6.5x10 ⁷	4.9×10^{7}

Previous Experiments:

Experiment	Total η	Total η′
CB at AGS	10 ⁷	-
CB MAMI-B	2x10 ⁷	-
CB MAMI-C	6x10 ⁷	10 ⁶
WASA-COSY	~3x10 ⁷ (p+d), ~5x10 ⁸ (p+p)	-
KLOE-II	3x10 ⁸	5x10 ⁵
BESIII	~107	~5x10 ⁷

JEF offers a competitive η/η' factory

Uniqueness of JEF Experiment

Highly suppressed background in decay channels:
 a) η/η' energy boost; b) an upgraded calorimeter (FCAL-II)

A2 at MAMI: $\gamma p \rightarrow \eta p$ (E_v=1.5 GeV) **JEF:** γp→ηp (E_v=8.4-11.7 GeV) (P.R. C90, 025206) N(PWO) > 2Events / 5 MeV -Signal+backgrounds (C) $__\eta \rightarrow \pi^0 \gamma \gamma$ signal other backgrounds ----- $\eta \rightarrow \pi^0 \pi^0 \pi^0$ background $\rightarrow \pi^0 \pi^0 \pi^0$ -other backgrounds 2.5 40 1 day's running 1.5 20 0.5 0.5 0.40.6 $m(\pi^0\gamma\gamma)$ [GeV/c²] 0.56 0.58 0.5 0.52 0.54 0.6 0.62 $M(4\gamma)$ (GeV)

 Simultaneously produce tagged η and η' with similar rates (~5x10⁷ per 100 beam days)

Main JEF Physics Objectives

1. Search for sub-GeV hidden bosons

vector:

• Leptophobic vector B'

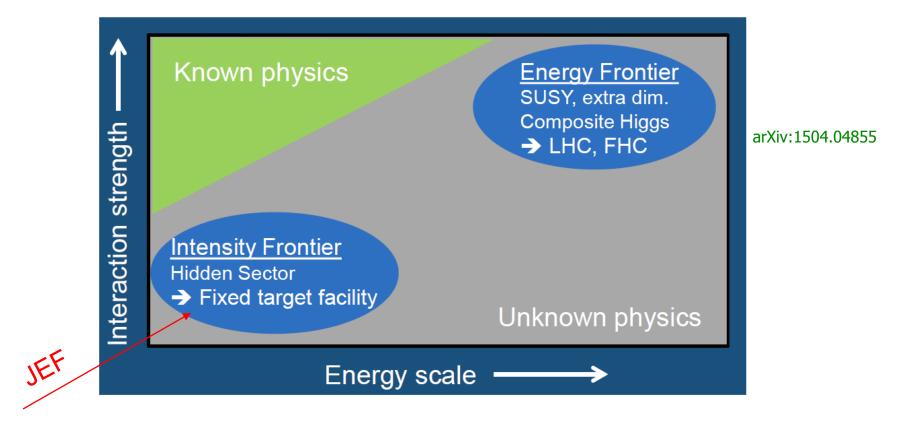
 $\eta, \eta' \to B' \gamma \to \pi^0 \gamma \gamma, \ (0.14 < m_{B'} < 0.62 \text{ GeV});$ $\eta' \to B' \gamma \to \pi^+ \pi^- \pi^0 \gamma, \ (0.62 < m_{B'} < 1 \text{ GeV}).$

• Hidden or dark photon: $\eta, \eta' \to X\gamma \to e^+e^-\gamma$.

scalar S:
$$\eta \to \pi^0 S \to \pi^0 \gamma \gamma, \ \pi^0 e^+ e^-, \ (10 \text{ MeV} < m_S < 2m_\pi);$$

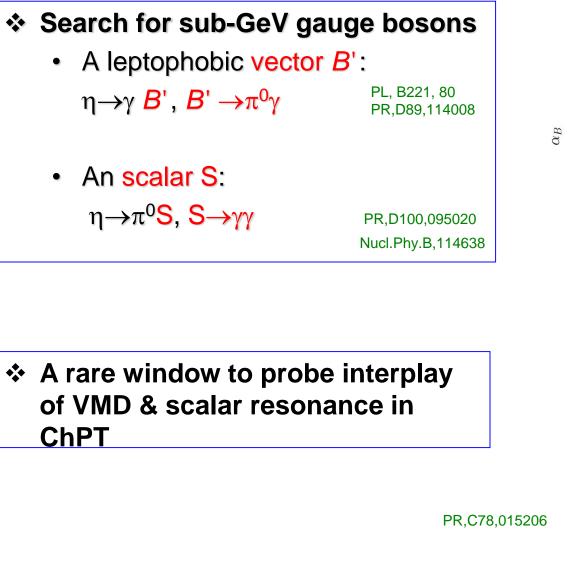
 $\eta, \eta' \to \pi^0 S \to 3\pi, \ \eta' \to \eta S \to \eta \pi \pi, \ (m_S > 2m_\pi).$

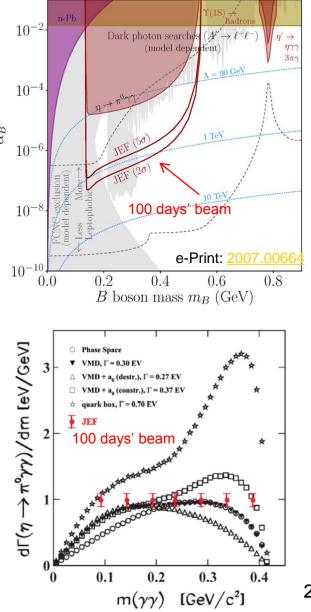
Axion-Like Particles (ALP): $\eta, \eta' \to \pi \pi a \to \pi \pi \gamma \gamma, \ \pi \pi e^+ e^-$


2. Directly constrain CVPC new physics: $\eta^{(\prime)} \rightarrow 3\gamma$, $\eta^{(\prime)} \rightarrow 2\pi^{0}\gamma$, $\eta^{(\prime)} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

3. Precision tests of low-energy QCD:

- Interplay of VMD & scalar dynamics in ChPT: $\eta \rightarrow \pi^0 \gamma \gamma$ $\eta' \rightarrow \pi^0 \gamma \gamma$
- Transition Form Factors of $\eta^{(\prime)}: \eta^{(\prime)} \rightarrow e^+ e^- \gamma$

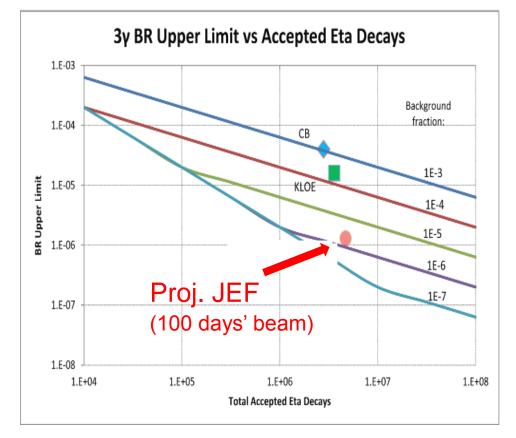

4. Improve the quark mass ratio via Dalitz distributions of $\eta \rightarrow 3\pi$


Landscape of BSM Physics Search

Complementary to other types of experiments, η/η' decays in JEF offer unique sensitivity for new physics that are flavor-conserving, light quark-coupling, PC-conserving.

A Key Channel: $\eta \rightarrow \pi^0 \gamma \gamma$

22


Search for CVPC Interaction via $\eta \rightarrow 3\gamma$

- SM contribution: BR(η→3γ) <10⁻¹⁹ via P-violating weak interaction.
- A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, Feinberg and Lee

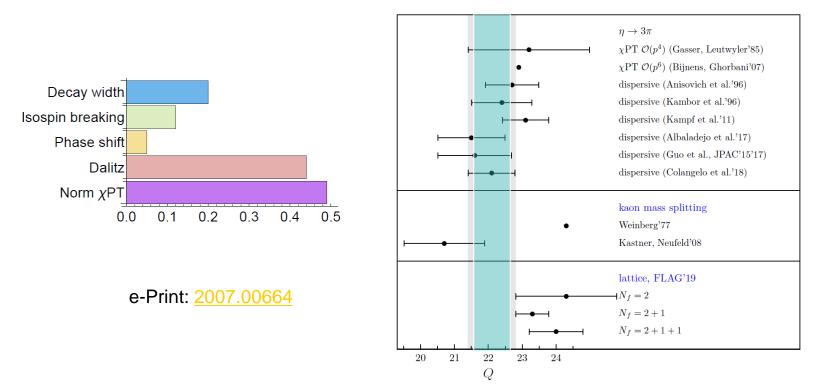
Phys. Rev., 139, B1650 (1965)

 A calculation due to such new physics by Tarasov suggests: BR(η→3γ)< 10⁻²

Sov.J.Nucl.Phys.,5,445 (1967)

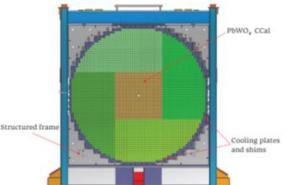
Improve BR upper limit by one order of magnitude to directly tighten the constraint on CVPC new physics

Improve Quark-Mass Ratio via $\eta \rightarrow 3\pi$ Dalitz Distributions

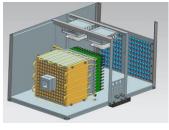

A clean probe for quark mass ratio: $Q^2 =$

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
 $\hat{m} = \frac{m_u + m_d}{2}$

- ➢ decays through isospin violation: $A = (m_u m_d)A_1 + ∂_{em}A_2$
- $\succ a_{em}$ is small


Amplitude:
$$A(s,t,u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s,t,u)}{3\sqrt{3}F_\pi^2}$$

Uncertainties in quark mass ratio

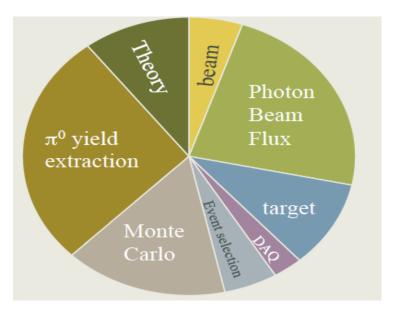


Status of JEF

- 1. JEF was approved by PAC in 2017 to run concurrently with GlueX-II, and it passed PAC jeopardy review on Sept 25, 2020.
- 2. Development of a 40x40 array of PWO insert for FCAL-II is in progress:
 - Constructed a 12x12 array of PWO prototype calorimeter and successful tested and used for the PrimEx-eta experiment in 2019.
 - Engineering design for calorimeter frame is finalized
 - PWO module (2x2x20 cm³) mechanical design is complete and mass production is in progress
 - Installation is anticipated in 2023
- 3. Data taking is expected in 2024

prototype calorimeter

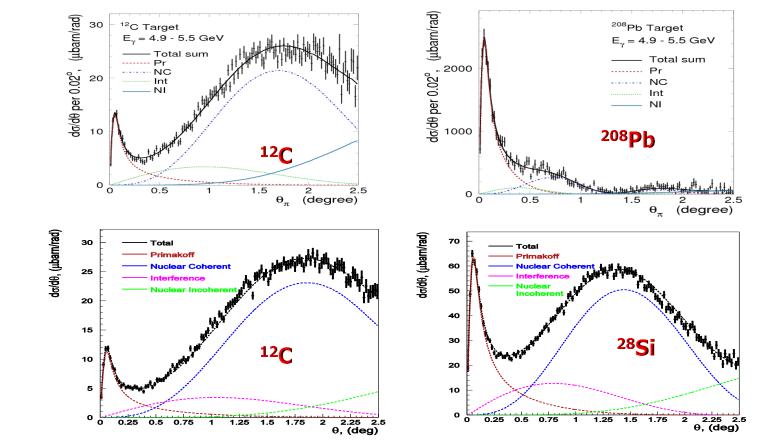
PWO modules


Summary

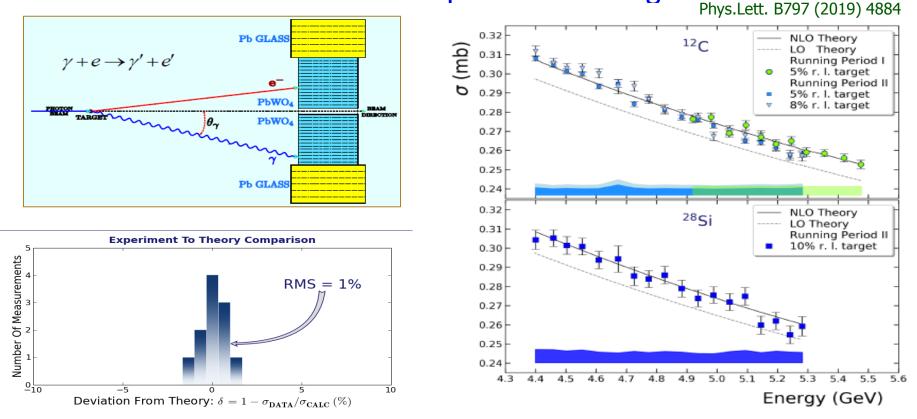
• The JLab η/η' decay measurements offer a rich physics program:

- Precision tests of Standard Model: Chiral symmetry and anomalies; inputs to HLbL in (g-2)_μ calculation; improve the light quark mass and η-η' mixing angle; scalar dynamics in ChPT
- Search for sub-GeV hidden bosons: vectors, scalars, and ALPs
- Fundamental symmetries tests: directly constrain CVPC new physics
- The PrimEx-eta experiment on $\Gamma(\eta \rightarrow \gamma \gamma)$ is on-going.
- The JEF experiment will measure η and η' decays simultaneously, with two orders of magnitude background reduction in the rare neutral modes compared to other facilities. Upgrade of Forward calorimeter with a PWO insert is currently under construction. JEF run will be expected in 2024.

Uncertainties of on $\Gamma(\pi^0 \rightarrow \gamma \gamma)$


Item	PrimEx-II
Beam parameters	0.2%
Photon flux	0.8%
Target	0.3%
DAQ	0.1%
Event selection	0.2%
Monte-Carlo simulation	0.6%
Yield extraction	1.0%
Photoproduction theory parameters	0.4%
Systematics	1.5%
Statistical	0.7%
Total	1.6%

Differential Cross Sections


PrimEx I:

PrimEx II:

Fitting data with new theoretical calculations to extract $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Phys.Rev. C80, 055201 (2009); Phys.Part.Nucl.Lett.,9,3 (2012)

Verification of Overall Experimental Systematics with Compton Scattering

Systematic uncertainties of measured cross section are controlled at 1.5%