The ComPWA Project

Facilitating and automating amplitude analysis with modern Python tools and transparent, interactive documentation

Remco de Boer Ruhr University Bochum

8 September 2021 PWA 12 / ATHOS 7 held at the University of Bristol

What is the ComPWA project?

github.com/ComPWA

- "Common Partial Wave Analysis"
- Open-source GitHub organization
- Originally a C++ framework (<u>ComPWA</u>)
- Now maintains a collection of Python tools for amplitude analysis
- Developer group at Ruhr University Bochum, JGU Mainz, and GSI
- So far developed in the context of BESIII and PANDA analyses

What does ComPWA aim for?

- Academic continuity:
 long-term, collaboration-independent
 PWA software development
- Provide an easy starting point for researchers new to the field of PWA
- Build up modern, interlinked, and interactive PWA knowledge-bases
- Maintain libraries that facilitate and automate common procedures in amplitude analysis
- ⇒ Narrow the gap between theory and code
- ⇒ Bring usage and development closer together

bliography

API

dvnamics

builder

kmatrix

data

kinematics

sympy

Changelog 🛂

Upcoming features 🗷

lelp developing 2

RELATED PROJECTS

Rules Z

TensorWaves 🗷

PWA Pages 🗹

OMPWA ORGANIZATION

Website 🗷

GitHub Repositories 12

class CoupledWidth(s: Symbol, mass0: Symbol, gamma0: Symbol, m_a: Symbol, m_b: Symbol, angular_momentum: Symbol, meson_radius: Symbol, phsp_factor: Optional[PhaseSpaceFactorProtocol] = None, name: Optional[str] = None, evaluate: bool = False) | Isourcel

Bases: ampform.sympy.UnevaluatedExpression

Mass-dependent width, coupled to the pole position of the resonance.

See PDG2020, §Resonances, p.6 and [11], equation (6). Default value for phsp_factor is PhaseSpaceFactor().

Note that the <code>BlattWeisskopfSquared</code> of AmpForm is normalized in the sense that equal powers of z appear in the nominator and the denominator, while the definition in the PDG (as well as some other sources), always have 1 in the nominator of the Blatt-Weisskopf. In that case, one needs an additional factor $\left(q/q_0\right)^{2L}$ in the definition for $\Gamma(m)$.

With that in mind, the "mass-dependent" width in a relativistic_breit_wigner_with_ff becomes:

$$\Gamma_{0}\left(s
ight)=rac{\Gamma_{0}B_{L}^{2}\left(q^{2}\left(s
ight)
ight)
ho\left(s
ight)}{B_{L}^{2}\left(q^{2}\left(m_{0}^{2}
ight)
ight)
ho\left(m_{0}^{2}
ight)}$$
 (3)

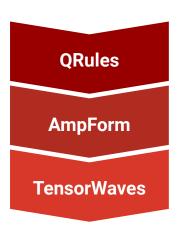
where B_L^2 is defined by (1), q is defined by (2), and ρ is (by default) defined by (4).

phsp_factor

Screenshot from the API of one of ComPWA's packages

What do we provide?

Three main Python packages that together cover a full amplitude analysis:



Automated quantum number conservation rules

Formulate symbolic model templates

Fit models to data and generate data samples with multiple computational back-ends

All are designed as **libraries**, so they can be used by other packages

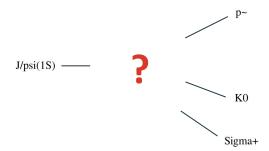
Automated quantum number conservation rules

Aim: compute which particle reactions are allowed between a given initial and final state

Automated quantum number conservation rules

Aim: compute which particle reactions are allowed between a given initial and final state

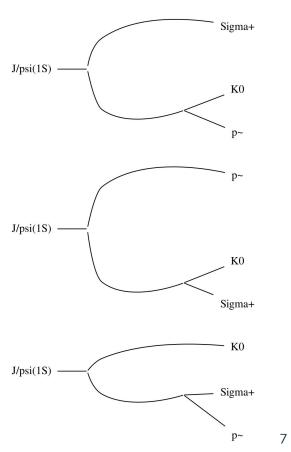
User specifies some boundary conditions
 (particle names, allowed interactions, isobar model, etc.)



Automated quantum number conservation rules

Aim: compute which particle reactions are allowed between a given initial and final state

- User specifies some boundary conditions
 (particle names, allowed interactions, isobar model, etc.)
- 2. QRules then:
 - gets corresponding particle properties from the PDG (or any custom definitions),
 - o determines all possible decay topologies,

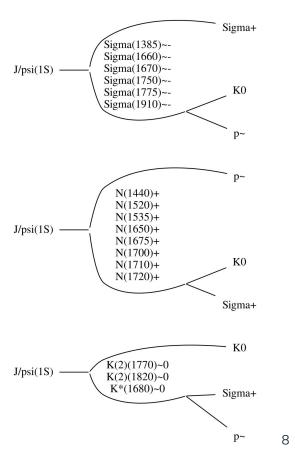


Automated quantum number conservation rules

Aim: compute which particle reactions are allowed between a given initial and final state

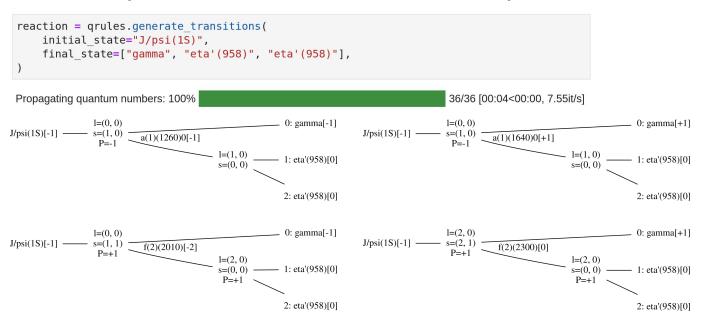
- User specifies some boundary conditions
 (particle names, allowed interactions, isobar model, etc.)
- 2. QRules then:
 - gets corresponding particle properties from the PDG (or any custom definitions),
 - determines all possible decay topologies,
 - o propagates quantum numbers through intermediate edges,
 - o and selects all allowed transitions with its conservation laws

Generalized approach: the constraints 'span' quantum number space



Automated quantum number conservation rules

The returned objects contain all information to build an amplitude model!



Automated quantum number conservation rules

The library also provides several related features:

Check which conservation rules are violated:

```
qrules.check_reaction_violations(
   initial_state="pi0",
   final_state=["gamma", "gamma", "gamma"],
)
```

```
{frozenset({'c_parity_conservation'})}
```

Find particles by selecting quantum numbers:

```
selection = PDG.filter(lambda p: p.spin > 0 and p.charmness and p.mass > 2.82)
selection.names
```

```
['Lambda(c)(2880)~-', 'Lambda(c)(2880)+', 'Xi(c)(2815)0', 'Xi(c)(2815)~0']
```

Get particle properties:*

```
PDG = qrules.load_pdg()
PDG.find("f(0)(980)")

Particle(
   name='f(0)(980)',
   pid=9010221,
   latex='f_{0}(980)',
   spin=0.0,
   mass=0.99,
   width=0.06,
   isospin=Spin(0, 0),
   parity=+1,
   c_parity=+1,
   g_parity=+1,
}
*PDG info computed from the scikit-hep particle package
```


Symbolic amplitude model formulation

- Implements spin formalisms and dynamics
- Can express QRules' state transitions as an amplitude model
- Amplitude models are formulated as algebraic expressions (SymPy CAS)
- User can further modify the expressions
- The models serve as a mathematical template for fitter packages

```
n = Symbol("n_R")
matrix = RelativisticKMatrix.formulate(
    n_channels=1,
    n_poles=n,
)
matrix[0, 0]
```

$$\frac{\rho(s) \sum_{R=1}^{n_R} \frac{\Gamma(s) \gamma_{R,0}^2 m_R}{-s + m_R^2}}{-i \rho(s) \sum_{R=1}^{n_R} \frac{\Gamma(s) \gamma_{R,0}^2 m_R}{-s + m_R^2} + 1}$$

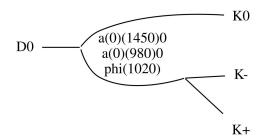
```
matrix = NonRelativisticKMatrix.formulate(
    n_poles=1,
    n_channels=2,
).doit()
matrix[0, 0].simplify()
```

$$-\frac{\Gamma_{1,0}\gamma_{1,0}^2 m_1}{s + i\Gamma_{1,0}\gamma_{1,0}^2 m_1 + i\Gamma_{1,1}\gamma_{1,1}^2 m_1 - m_1^2}$$

Symbolic amplitude model formulation

Example

Building an amplitude model for $D \rightarrow K^0 K^- K^+$ with three resonances



```
builder = ampform.get_builder(reaction)
for p in reaction.get_intermediate_particles():
    builder.set_dynamics(p.name, create_relativistic_breit_wigner_with_ff)
model = builder.formulate()
```

$$\left|A_{D_0^0 \to K_0^0 \phi(1020)_0; \phi(1020)_0 \to K_0^+ K_0^-} + A_{D_0^0 \to K_0^0 a_0(1450)_0^0; a_0(1450)_0^0 \to K_0^+ K_0^-} + A_{D_0^0 \to K_0^0 a_0(980)_0^0; a_0(980)_0^0 \to K_0^+ K_0^-}\right|$$

- User selects Breit-Wigner to parametrize each resonance
- AmpForm takes care of spin (helicity formalism)
- Resulting amplitude model expressed symbolically

LaTeX generated by the code!

Symbolic amplitude model formulation

Expression for the amplitude model can be further inspected:

$$\begin{split} & \text{some_amplitude} = \text{model.components}[\\ & \text{R"A_{D^{0}_{0}_{0}} \setminus \text{to K^{0}_{0}} = \text{d}(980)^{0}] - \text{d}(980)^{0}] -$$

Symbolic amplitude model formulation

Expression for the amplitude model can be further inspected:

Symbolic amplitude model formulation

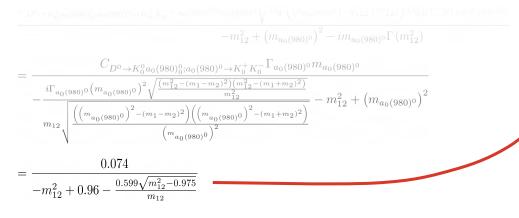
Expression for the amplitude model can be further inspected:

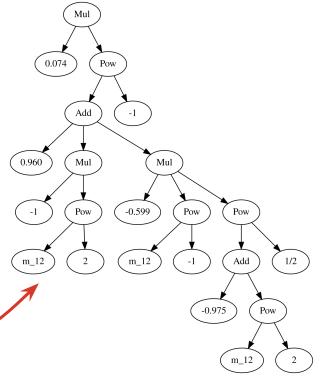
$$\begin{split} & \text{some_amplitude} = \text{model.components}[\\ & \text{R"A_{D^{0}}_{0}}_{0} = \text{0} \text{ to K^{0}}_{0} = \text{0} \text{ to K^{0}}_{0} = \text{0} \text{0} \text{ to K^{0}}_{0} = \text{0} \text{0} \text{ to K^{0}}_{0} = \text{0} \text{0} \text{ to K^{0}}_{0} = \text{0} \text{ to$$

Symbolic amplitude model formulation

Original motivation: these expressions are actually **trees that represent fundamental mathematical operations!**

⇒ Can serve as template for faster computational software





TensorWaves

Fit and generate data with multiple computational back-ends

- General fitter package
- Express amplitude templates in a computational back-end
- Generate (deterministic) amplitude-based Monte Carlo samples
- Perform unbinned fits with different back-ends (TensorFlow, NumPy, JAX, ...)
- Also integrates different optimizers (Minuit2, SciPy, ...)

```
intensity = LambdifiedFunction(template, backend="jax") # numpy, tensorflow
estimator = UnbinnedNLL(intensity, data_sample, phsp_sample)
optimizer = Minuit2() # Scipy
fit_result = optimizer.optimize(estimator, initial_parameters)
```

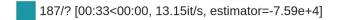

TensorWaves

Fit and generate data with multiple computational back-ends

Why is this nice?

- Heavy computations outsourced to specialized packages from the machine learning and data science community
- Get support for GPUs, multithreading, etc. for free
- Very small code-base easy to maintain
- More time for physics!

```
intensity = LambdifiedFunction(template, backend="jax") # numpy, tensorflow
estimator = UnbinnedNLL(intensity, data_sample, phsp_sample)
optimizer = Minuit2() # Scipy
fit_result = optimizer.optimize(estimator, initial_parameters)
```



TensorWaves

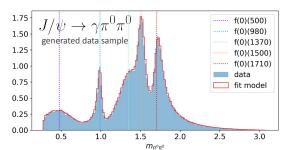
Fit and generate data with multiple computational back-ends

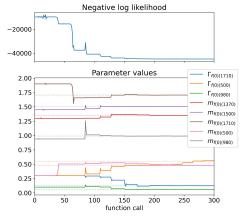
Why is this nice?

- Heavy computations outsourced to specialized packages from the machine learning and data science community
- Get support for GPUs, multithreading, etc. for free
- Very small code-base easy to maintain
- More time for physics!

Some JAX+Minuit2 performance numbers on a single machine:

	data	phsp	params.	expr. complexity	duration
mini-demo on the right	10 ⁵	10 ⁶	8	2,187 nodes	~1 minute
benchmark fit $J/\psi{ o}K^0\Sigma^*\overline{p}$	1.2×10 ⁵	2.3×10 ⁵	84	176,023 nodes	3 hours





Physics

Partial wave expansion

Transition operator

Ensuring unitarity

Lorentzinvariance

> Production processes

Pole parametrization

Implementation

Interactive visualization

Launch interactive examples

Pole parametrization

PWA Software Pages

Interactive knowledge-base for PWA theory and software on for the elements of the software of

All packages come with well-maintained websites:

- Extensive explanations of implemented physics
- Run demos directly from the browser
- Easily navigate to library interface

 $K_{ij} = \sum_{R} rac{g_{R,i}g_{R,j}}{m_R^2 - s} + c_{ij}$ $\hat{K}_{ij} = \sum_{R} rac{g_{R,i}(s)g_{R,j}(s)}{(m_{D}^{2} - s)\sqrt{
ho_{i}
ho_{i}}} + \hat{c}_{ij}$ (14)

 \boldsymbol{K} and P that accurately describes the resonances we

observe.[3] There are several choices, but a common

one is the following summation over the **poles** R:[4]

with c_{ij}, \hat{c}_{ij} some optional background characterization and $q_{R,i}$ the residue functions. The

- Kind of an interactive book (see <u>Executable Book Project</u>) functions are often further expressed as:
- Continuously tested: links and code examples won't break

$$g_{R,i}=\gamma_{R,i}\sqrt{m_R\Gamma_{R,i}^0}$$
 $g_{R,i}(s)=\gamma_{R,i}\sqrt{m_R\Gamma_{R,i}(s)}$ (15)

[4] Eqs. (75-78)

Narrow the gap between code and theory!

with $\gamma_{R,i}$ some *real* constants and $\Gamma^0_{R,i}$ the **partial** width of each pole. In the Lorentz-invariant form, the fixed width Γ^0 is replaced by an "energy dependent" CoupledWidth $\Gamma(s)$. [5] The width for each pole can be computed as $\Gamma_R^0 = \sum_i \Gamma_{R_i}^0$.

The production vector P is commonly parameterized

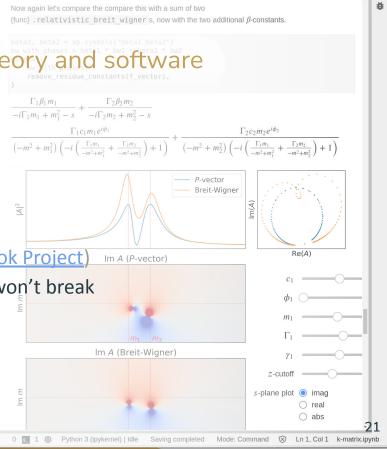
PWA Software Pages

Interactive knowledge-base for PWA theory and software

All packages come with well-maintained websites:

- Extensive explanations of implemented physics
- Run demos directly from the browser
- Easily navigate to library interface
- Kind of an interactive book (see <u>Executable Book Project</u>)
- Continuously tested: links and code examples won't break

Narrow the gap between code and theory!



Python 3 (ipykernel) O #

PWA Software Pages

Interactive knowledge-base for PWA theory and software

- ⇒ Spin-off project: PWA Pages (<u>pwa.rtfd.io</u>)
 - Intended as a guide through the main ingredients of Partial Wave Analysis
 - Readers can easily navigate to literature or existing PWA software
 - Currently skeletal, but infrastructure is there and easy contribute to
 - No need to know HTML, CSS, etc.

Happy to include or reference your PWA project!

PWA Software Pages

Interactive knowledge-base for PWA theory and software

- ⇒ Spin-off project: PWA Pages (<u>pwa.rtfd.io</u>)
 - Intended as a guide through the main ingredients of Partial Wave Analysis
 - Readers can easily navigate to literature or existing PWA software
 - Currently skeletal, but infrastructure is there and easy contribute to
 - No need to know HTML, CSS, etc.

Happy to include or reference your PWA project!

Thank you for your attention!