FSI and CPV in B->hhh decays

Tobias Frederico

Instituto Tecnológico de Aeronáutica, Brazil
tobias@ita.br
tobfrederico@yahoo.com.br
arXiv:2109.01625 [hep-ph]
Collaborators:
P. C. Magalhães (ITA), I. Bediaga (CBPF), D. Torres Machado (CBPF)

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy, PWA I 2/ATHOS7, Sept. 7, 202 I

CPV Dalitz plot data: CP Asymmetry

- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+} \quad A_{C P}=\frac{\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})}{\Gamma(M \rightarrow f)+\Gamma(\bar{M} \rightarrow \bar{f})}$

CPV in integrated yields

KKK

LHCb PRD90 (2014) II 2004

Rescattering $\boldsymbol{\Pi} \Pi \rightarrow$ K K

s-wave Pelaez, Yndurain PRD7I (2005) 074016

- $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right] \quad \sigma_{l}^{\mathrm{el}}=\frac{1}{2}\left\{\frac{1+\eta_{l}^{2}}{2}-\eta \cos 2 \delta_{l}\right\}$,
$\pi \pi \rightarrow K ~ K$

\rightarrow there is a new parametrisation Pelaez, Rodas, Elvira EPJ C 79 (2019) 12, 1008

$$
\left.\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)
$$

- condition for CPV:
$2 \neq$ amplitudes, SAME final state with \neq strong (δ_{i}) and weak (ϕ_{i}) phase
- CPV at quark level: BSS model Bander siverman \& Soni PRL 43 (1979) 242

Not enough to explain CPV below ccbar threshold
hadronic interactions as source of strong phase?

Theory CPV B \rightarrow hhh

- Final State Interactions \rightarrow strong phase

Wolfenstein PRD43 (1991) I5I
Frederico, Bediaga, Lourenço PRD89(2014)0940।3

$$
\begin{gathered}
\left.\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right) \\
\text { Lifetime } \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }} \\
\Gamma_{\text {total }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \\
\bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots
\end{gathered}
$$

- CPT: CPV in one channel should be compensated by another one with opposite sign
- $\pi \pi \rightarrow K K$ can explain CPV pattern
$\rightarrow B^{ \pm} \rightarrow h^{ \pm} \pi^{-} \pi^{+}$and $B^{ \pm} \rightarrow h^{ \pm} K^{-} K^{+}$
at low-energy[1-1.6] GeV

FSI \& CPV at low -mass region

Bediaga, Frederico, Lourenço PRD89(2014)0940I3

FIG. 1: Estimate (grey band) of Eq. (15) as a function of the subsystem mass compared to experimental data of (a) the asymmetry of $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$decay (circles), and of (b) the asymmetry of $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$decay (squares). Data extracted from Ref. [5].

$$
\begin{gathered}
\Delta \Gamma_{K K}^{\mathrm{comp}} \approx \mathcal{C} \sqrt{1-\eta^{2}} \cos \left(\delta_{K K}+\delta_{\pi \pi}+\Phi_{K K}\right) F\left(M_{K K}^{2}\right) \\
\mathcal{C}=4|K|(\sin \gamma)
\end{gathered}
$$

FSI \& CPV at low -mass region inclusion of ressonances

Alvarenga Nogueira etal PRD 92 (2015) 054010
LHCb PRD 90, 112004 (2014)

$$
\begin{aligned}
\mathcal{A}_{L O}^{ \pm} & =\sum_{J R}\left(a_{0 \lambda}^{R}+e^{ \pm i \gamma} b_{0}^{R}\right) F_{R \lambda}^{B W} P_{J}(\cos \theta) \\
& +\sum_{J}\left(A_{0 \lambda N R}^{J}+e^{ \pm i \gamma} B_{0 \lambda N R}^{J}\right) \\
& +i \sum_{\lambda^{\prime}, J} t_{\lambda^{\prime}, \lambda}^{J}\left(A_{0 \lambda^{\prime} N R}^{J}+e^{ \pm i \gamma} B_{0 \lambda^{\prime} N R}^{J}\right)
\end{aligned}
$$

$\rho(770) \& f_{0}(980)$

FIG. 1. $B^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$decay with π^{+}being the bachelor particle. (a): $\cos \theta<0\left(\theta>\frac{\pi}{2}\right)$. (b) $: \cos \theta>0\left(\theta<\frac{\pi}{2}\right)$.

- confirmed in Amp Analysis

FIG. 8. (Color online) CP asymmetry of the $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$ decay, integrated Eq. (44), compared with the experimental values (blue points) taken from Ref. [9]. Results for $\cos \theta>0$ for (a) total and (b) individual contributions.

FIG. 11. (Color online) CP asymmetry of the $B^{ \pm} \rightarrow$ $K^{ \pm} \pi^{+} \pi^{-}$decay, integrated Eq. (44), compared with the experimental values (blue points) taken from Fig. 5c of Ref. [9]. Results for $\cos \theta<0$ for (a) total and (b) individual contributions.

FIG. 10. (Color online) CP asymmetry of the $B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$decay, Eq. (60), compared with experimental data (blue points) taken from Fig. 7b of Ref. [9].

FIG. 12. CP asymmetry of the $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$decay compared with experimental values (blue points) taken from the sum of Figs. 6c and 6d of Ref. [9].

- rescattering $\pi \pi \rightarrow K K$ contribution in LHCb

$$
\left\{\begin{array}{l}
B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm} \\
B^{ \pm} \rightarrow K^{-} K^{+} \pi^{ \pm}
\end{array}\right.
$$

PRL [arXiv:1909.052II] PRD [arXiv:1909.052I2]

CPV high-mass

- $B^{+} \rightarrow K^{-} K^{+} K^{+}$
- $\mathcal{A}_{c p}$ change sign $\sim D \bar{D}$ open channel

LHCb PRD90 (20|4) I I 2004
https://cds.cern.ch/record/I75I5I7/files/.

I. Bediaga, P.Magalhães, TF. PLB 780 (2018) 357

$$
\begin{aligned}
\Delta \Gamma_{C P}\left(h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) & =\Gamma\left(B^{-} \rightarrow h_{1}^{-} h_{2}^{+} h_{3}^{-}\right)-\Gamma\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{-} h_{3}^{+}\right) \\
& =A_{C P}\left(B^{ \pm} \rightarrow h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) \mathcal{B}\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{+} h_{3}^{-}\right) / \tau\left(B^{+}\right)
\end{aligned}
$$

PDG Prog. Theor. Exp. Phys. 2020 (2020) 083C01

Decay channel	$\Delta \Gamma_{C P}\left(10^{6} \mathrm{~s}^{-1}\right)$
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$+0.84 \pm 0.25$
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	-0.68 ± 0.17
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$+0.53 \pm 0.13$
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	-0.39 ± 0.07

Table 2: Total charge asymmetries $A_{C P}^{a l l}$ and partial ones $A_{C P}^{P a r}$ in the re-scattering region $\pi \pi \rightarrow K K$ from 1.0 up to $1.5 \mathrm{GeV} / \mathrm{c}^{2}$. Uncertainties are only statistical [1].

Decay	$A_{C P}^{a l l}$	$A_{C P}^{\text {par }}$
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$+0.025 \pm 0.004$	$+0.123 \pm 0.012$
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	-0.036 ± 0.004	-0.209 ± 0.011
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$+0.058 \pm 0.008$	$+0.173 \pm 0.021$
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	-0.123 ± 0.017	-0.326 ± 0.028

U-spin: $\quad \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-0.46 \pm 0.16$ and $\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}=-0.77 \pm 0.27$
U-spin symmetry: Bhattacharya, Gronau, Rosner, PLB 726 (2013) 337

U-spin \& FSI ? $\frac{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=1.59 \pm 0.62$ and $\frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}=1.77 \pm 0.55$

Global CPV, U-spin and FSI

strong phase from FSI Wolfenstein PRD43 (1991) I5I

$$
\begin{aligned}
A\left(B^{u} \rightarrow f^{q}\right) & =\left\langle f_{o u t}^{q}\right| \mathcal{H}_{\mathrm{w}}\left|B^{u}\right\rangle=V_{u b} V_{u q}^{*}\left\langle f_{o u t}^{q}\right| U^{q}\left|B^{u}\right\rangle+V_{c b} V_{c q}^{*}\left\langle f_{o u t}^{q}\right| C^{q}\left|B^{u}\right\rangle \\
A\left(\bar{B}^{u} \rightarrow \bar{f}^{q}\right) & =\left\langle\bar{f}_{o u t}^{q}\right| \mathcal{H}_{\mathrm{w}}\left|\bar{B}^{u}\right\rangle=V_{u b}^{*} V_{u q}\left\langle\bar{f}_{o u t}^{q}\right| \bar{U}^{q}\left|\overline{B^{u}}\right\rangle+V_{c b}^{*} V_{c q}\left\langle\bar{f}_{o u t}^{q}\right| \bar{C}^{q}\left|\overline{B^{u}}\right\rangle
\end{aligned}
$$

$$
\mathcal{U}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| U^{q}\left|B^{u}\right\rangle \quad \text { and } \quad \mathcal{C}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| C^{q}\left|B^{u}\right\rangle
$$

$$
\Delta \Gamma_{C P}\left(q_{i}\right)=4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \sum_{j, k} \operatorname{Im}\left[S_{j, i} S_{k, i}^{*} \mathcal{U}_{q_{j}}^{*} \mathcal{C}_{q_{k}}\right] \quad q=d \operatorname{or} s
$$

S-matrix unitarity and CPT invariance of the weak and strong Hamiltonians

Global CPV, U-spin and FSI

$q=d$ or s

$$
\begin{aligned}
\Delta \Gamma_{C P}\left(f^{q}\right) & =\left|A\left(B^{u} \rightarrow f^{q}\right)\right|^{2}-\left|A\left(\overline{B^{u}} \rightarrow \bar{f}^{q}\right)\right|^{2} \\
& =4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \operatorname{Im}\left[\mathcal{U}_{f^{q}} \mathcal{C}_{f^{q}}^{*}\right], \\
& =4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \sum_{j, k} \operatorname{Im}\left[S_{j, i} S_{k, i}^{*} \mathcal{U}_{q_{j}}^{*} \mathcal{C}_{q_{k}}\right]
\end{aligned}
$$

CPT symm:

$$
\sum_{f^{q}} \Delta \Gamma_{C P}\left(f^{q}\right)=4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \sum_{f^{q}} \operatorname{Im}\left[\mathcal{U}_{f_{q}} \mathcal{C}_{f_{q}}^{*}\right]=0
$$

G.C. Branco, L. Lavoura, J.P. Silva, CP Violation, Oxford University Press, 1999.
I.I. Bigi, A.I. Sanda, CP Violation, second ed., Cambridge University Press, 2009.

$$
\mathcal{U}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| U^{q}\left|B^{u}\right\rangle \quad \text { and } \quad \mathcal{C}_{f^{q}}=\left\langle f_{\text {out }}^{q}\right| C^{q}\left|B^{u}\right\rangle
$$

U-spin symm:

$$
\left\langle f_{\text {out }}^{s}\right| U^{s}\left|B^{u}\right\rangle=\left\langle f_{\text {out }}^{d}\right| U^{d}\left|B^{u}\right\rangle \text { and }\left\langle f_{\text {out }}^{s}\right| C^{s}\left|B^{u}\right\rangle=\left\langle f_{\text {out }}^{d}\right| C^{d}\left|B^{u}\right\rangle
$$

CKM unitarity:

$$
\operatorname{Im}\left(V_{u b}^{*} V_{u s} V_{c b} V_{c s}^{*}\right)=-\operatorname{Im}\left(V_{u b}^{*} V_{u d} V_{c b} V_{c d}^{*}\right)
$$

$$
\begin{array}{r}
\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)=-\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right) \\
\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)=-\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)
\end{array}
$$

Coupled $\pi \pi$ and $K K$ channels in $B^{ \pm}$three-body decays

$$
\text { S-wave }\left(\begin{array}{cc}
S_{\pi \pi, \pi \pi} & S_{\pi \pi, K \bar{K}} \\
S_{K \bar{K}, \pi \pi} & S_{K \bar{K}, K \bar{K}}
\end{array}\right)=\left(\begin{array}{cc}
\eta \mathrm{e}^{2 \imath \delta_{\pi \pi}} & \imath \sqrt{1-\eta^{2}} \mathrm{e}^{\imath\left(\delta_{\pi \pi}+\delta_{K K}\right)} \\
\imath \sqrt{1-\eta^{2}} \mathrm{e}^{\imath\left(\delta_{\pi \pi}+\delta_{K K}\right)} & \eta \mathrm{e}^{2 \imath \delta_{K K}}
\end{array}\right)
$$

$\Delta \Gamma_{C P}^{(\mathrm{LO})}\left(q_{\pi \pi}\right)=w_{q} \operatorname{Re}\left[\mathrm{e}^{\imath\left(\delta_{\pi \pi}-\delta_{K K}\right)} \mathcal{U}_{0 q_{\pi \pi}}^{*} \mathcal{C}_{0 q_{K K}}-\mathrm{e}^{-\imath\left(\delta_{\pi \pi}-\delta_{K K}\right)} \mathcal{U}_{0 q_{K K}}^{*} \mathcal{C}_{0 q_{\pi \pi}}\right]$

$$
\begin{aligned}
& \mathcal{U}_{0 d_{\pi \pi}}=\mathcal{U}_{0 s_{K K}} \quad \text { and } \quad \mathcal{U}_{0 d_{K K}}=\mathcal{U}_{0 s_{\pi \pi}} \\
& \mathcal{C}_{0 d_{\pi \pi}}=\mathcal{C}_{0 s_{K K}} \quad \text { and } \quad \mathcal{C}_{0 d_{K K}}=\mathcal{C}_{0 s_{\pi \pi}}
\end{aligned}
$$

$$
\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)} \sim-1 \quad \text { and } \quad \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)} \sim-1 .
$$

CPT symm:
$\Delta \Gamma\left(q_{\pi \pi}\right)=-\Delta \Gamma\left(q_{K K}\right)$

$$
\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=-1 \quad \text { and } \quad \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-1
$$

Remarks

$\Delta S=0, \quad B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}, \pi^{ \pm} K^{0} \bar{K}^{0}, K^{ \pm} \bar{K}^{0} \pi^{0}, \pi^{ \pm} \pi^{+} \pi^{-}, \pi^{ \pm} \pi^{0} \pi^{0}$
$\Delta S=1 \quad B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}, \pi^{ \pm} K^{0} \pi^{0}, K^{ \pm} \pi^{0} \pi^{0}, K^{ \pm} K^{0} \bar{K}^{0}, K^{ \pm} K^{+} K^{-}$ three-body re-scattering is expect to be small

CPT constraint for decay channels coupled by the strong interaction

$\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{0} \bar{K}^{0}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{0} \pi^{0}\right)=0$
$\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{0} \pi^{0}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} K^{0} \bar{K}^{0}\right)=0$
assuming:

charm rescattering in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$

- high mass CPV

$$
m_{\pi \pi}^{2}>3 G e V^{2}
$$

avoid low energy resonances

- include $\chi_{c 0}$ (expected in Run II)

$$
m_{\chi_{c 0}}^{2}=11.65 \mathrm{GeV}^{2}
$$

charm loop

\rightarrow QCDF approach: excited $\chi c 0(3680) \quad$ Mannel, Olschewsky, Vos JHEP 06 (2020) 073 [arXiv:2003. I2053]

Amplitude model

- Amplitude Model for $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$high mass $m_{\pi \pi}^{2}>3 \mathrm{GeV}^{2}$

$$
A_{B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}}\left(s_{12}, s_{23}\right)=A_{\text {tree }}^{ \pm}\left(s_{12}, s_{23}\right)+A_{D \bar{D}}\left(s_{12}, s_{23}\right)
$$

- $A_{\text {tree }}^{ \pm}=a_{0} e^{ \pm i \gamma}$: weak phase γ from the dominant $b \rightarrow u$ tree diagram

\rightarrow Nonresonant (only resonances tails)
$\rightarrow a_{0}$ is complex (strong phase)
- $A_{D \bar{D}}$ charm rescattering with $\chi_{c 0}$: source of strong phase variation

$\rightarrow \chi_{c 0(3414)}$: a pole below $D \bar{D}$ threshold thanks to P. C. Magalhães

Results

$$
\begin{aligned}
\gamma & =70^{\circ} \\
a_{0} & =2 e^{\left(\delta_{s}=45^{\circ}\right)}
\end{aligned}
$$

- Reck Run

- not the same binning and scale
- mimic some of the CPV pattern at high mass
- superposition of triangles and excited states can enlarge de CPV signature
\rightarrow parameters from $D \bar{D} \rightarrow \pi^{+} \pi^{-}$have to be fitted to data

$$
B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}, B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}, \quad B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}, \text {and } B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}
$$

- Relevance of Hadronic FSI, CPT constraint and U-spin symmetry for CPV
\longrightarrow two-body unitary and coupled-channels
- Understading of CPV- Global, region of low-mass resonance and for I-I.5GeV (LHCb amplitude analysis)
- unified treatment low and high masses of the Dalitz with FSI
low-mass resonances, pion-pion \rightarrow KK, pion-pion $(K K) \rightarrow$ nucleon-antinucleon, pion-pion $(\mathrm{KK}) \rightarrow$ D-Dbar \& high mass resonances
\longrightarrow two-body unitary, coupled-channels, three-body unitarity?
Thank you!!

