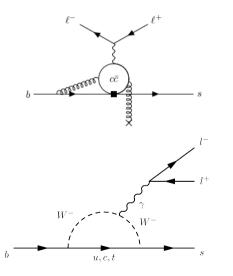


PWA12/ATHOS7


1/19

$B^0 \rightarrow DDX$ for flavour anomalies at LHCb

Jake Amey On behalf of the LHCb collaboration PWA12/ATHOS7 Bristol

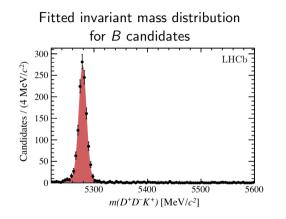
07/09/21

Testing for flavour anomilies with $B^0 \rightarrow DDX$

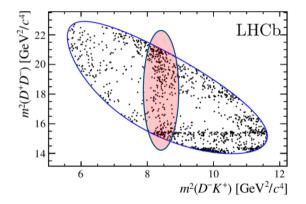
- $D\bar{D}$ systems perfect for studying states above open-charm threshold $(s > 4m_D^2)$
 - 8+ new exotic charm states discovered since 2019
- $b \rightarrow sc\bar{c}$ transitions great for studying charm loops
 - Affects FCNCs such as $b o s \ell^+ \ell^-$ (excellent probes of NP)
 - Charm-loops impact discrepancies between measured Wilson coefficeints and the SM.
 - Effects difficult to predict above open charm threshold
- LHCb designed to study c and b decays \rightarrow perfect for investigating these flavour anomalies

Recent results

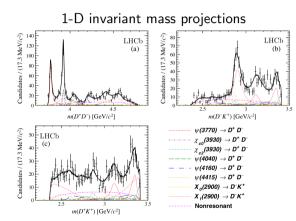
Jake Amey


 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

PWA12/ATHOS7 3/19

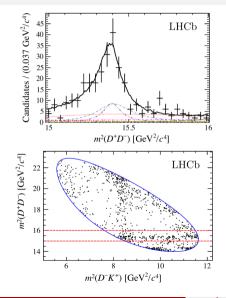

イロト イヨト イヨト イ

Outline


- Amplitude analysis of $B^+ \rightarrow D^+ D^- K^+$: Phys. Rev. D 102, 112003 (2020) & Phys. Rev. Lett. 125, 242001 (2020)
- Observation of new excited D_s^+ meson in $B^0 \rightarrow D^+ D^- K^+ \pi^-$: Phys. Rev. Lett. 126, 122002 (2021)
- Observation and branching fraction measurement of $B^0 \rightarrow D^0 \bar{D^0} K^+ \pi^-$: Phys. Rev. D 102, 051102 (2020)
- Amplitude analysis of $B^0 o D^0 ar{D^0} K^+ \pi^-$ (in progress)

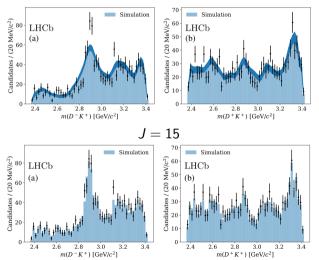
- Amplitude analysis of the $B^+ \rightarrow D^+ D^- K^+$ decay
- Initially motivated by a search for DD
 resonances and explore cs
 (cc) structure
 in DK(DD) system
- 1260 signal candidates over both LHCb runs (9*fb*⁻¹)
- Purity > 99.5% in signal region
- Backgrounds removed with vetos & BDT
- Different kinematic refits for mass fits and Dalitz variables

- Surprising structure in D⁻K⁺ spectrum
- Resonances in D⁻K⁺ channel must have minimal c̄dsu quark content → exotic.
 - First open-charm tetraquark!



Amplitude model requires new resonances in D^-K^+ channel:

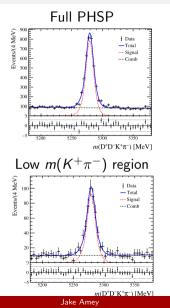
 $X_0(2900)$: $M = 2.866 \pm 0.007 \pm 0.002 GeV/c^2$ $\Gamma = 57 \pm 12 \pm 4 MeV$


 $X_1(2900)$: $M = 2.904 \pm 0.005 \pm 0.001 \, GeV/c^2$ $\Gamma = 110 \pm 11 \pm 4 \, MeV$

< 17 ►

- New spin-0 charm resonance ($\chi_{c0}(3930)$) found in D^+D^- channel, close to $\chi_{c2}(3930)$ state
 - $m = 3.9238 \pm 0.0015 \pm 0.0004 GeV/c^2$
 - $\Gamma=17.4\pm5.1\pm0.8 \mbox{MeV}$
 - Consistent with X(3915) state discovered by Belle: JHEP 07 (2019) 035
- $\chi_{c0}(3930)$ narrower than $\chi_{c2}(3930)$, unexpected as decay is S-wave, compared to D-wave decay of $\chi_{c2}(3930)$
- 2-component same-spin models produce unstable fits, so are not included

J = 2

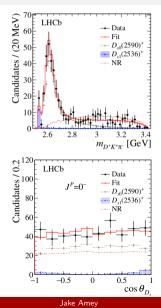


- Results confirmed in model-independent analysis
 - No exotics $\rightarrow DK$ structures fully described by $D^+D^$ resonances up to J = 2
- This is not the case, so results cannot be described by $m(D^+D^-)$ resonance reflections \rightarrow exotic

Jake Amey

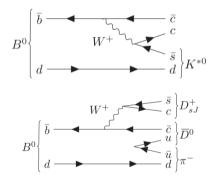
- Amplitude analysis of $B^0 o D^+ D^- K^+ \pi^-$ decay in $m(K^+ \pi^-) < 0.75 GeV$ region
- Aim is to search for D_s^+ resonances in $D^+ {\cal K}^+ \pi^-$ system
 - Previously only seen in DK pairs
- Lays groundwork for amplitude analysis of full phasespace (PHSP)
 - To provide input to $b
 ightarrow s \ell^+ \ell^-$
- 444 \pm 27 signal candidates in LHCb Run II data (5.4 fb^{-1})
 - 3420 ± 72 candidates in full PHSP

$B^0 \rightarrow D^+ D^- K^+ \pi^-$: PRL 126, 122002 (2021)



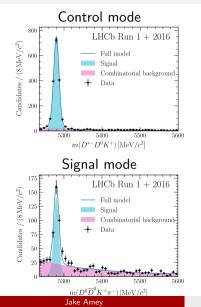
- Most backgrounds Cabibbo-supressed or have low BFs
- Combinatorial subtracted using sPlot technique
- Simultaneous unbinned Maximum likelihood fit performed (in low m(K⁺π⁻) region) on 5-D function of m_{DKπ}, m_{Kπ}, cos(θ_{D_s⁺}), cos(θ_{K*}), φ_π

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb


[•] Only significant background is combinatoric (post-selections)

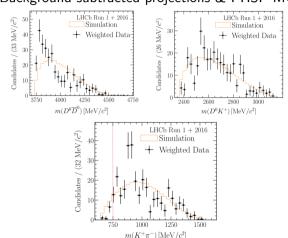
 $B^0 \rightarrow D^+ D^- K^+ \pi^-$: PRL 126, 122002 (2021)

- New D_s^+ resonance $(D_{s0}(2590)^+)$ found in $D^+K^+\pi^$ system (models without resonance rejected at 10σ level)
- Spin parity determined to be $J^P = 0^-$
 - $m = 2591 \pm 6 \pm 7 MeV/c^2$
 - $\Gamma=89\pm16\pm12 \textit{MeV}$
- Strong candidate for missing $D(2^1s_0)^+$ state
- More data would help confirm this is indeed $D(2^1s_0)^+$, and to more precisely measure width
- Scope to extend these studies to full decay phasespace, providing further results (e.g. D^+D^- resonances)


$B^0 \rightarrow D^0 \bar{D^0} K^+ \pi^-$: PRD 102, 051102 (2020)

- First observation and branching fraction measurement of this transition
- First step in study of resonant structure
- Excellent candidate for exotic state searches and charm loop studies
- 297 \pm 14 signal, 1697 \pm 42 control mode decays from LHCb Run I + 2016 data (4.6 fb^{-1})

$$\mathcal{R} = rac{\mathcal{N}(B^0 o D^0 ar{D^0} K^+ \pi^-)}{\mathcal{N}(B^0 o D^{*-} D^0 K^+)} imes \mathcal{B}(D^{*-} o D^0 \pi^-) imes rac{\epsilon^{cont}}{\epsilon^{sig}}$$


$B^0 \to D^0 \bar{D^0} K^+ \pi^-$: PRD 102, 051102 (2020)

- Backgrounds removed with cuts and veto regions (determined from simulation) + Neural Network (MLP) for combinatorial
- Kinematic refit performed
- Simultaneous unbinned maximum likelihood fit to $m(B^0)$ (across control and signal modes)

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

$B^0 \to D^0 \bar{D^0} K^+ \pi^-$: PRD 102, 051102 (2020)

Background-subtracted projections & PHSP MC

- $\mathcal{B}(B^0 \to D^0 \bar{D^0} K^+ \pi^-) =$ (3.50 ± 0.27 ± 0.26 ± 0.30)×10⁻⁴
- Hints of resonant structures in $m(D^0\bar{D^0})$, $m(D^0K^+)$ and $m(K^+\pi^-)$ invariant mass distributions. (could be reflections \rightarrow further investigation)
- More events beneficial. Prone to backgrounds. Analytical solutions to 4-body equations are difficult e.g. efficiency modelling.

$B^0 ightarrow D^0 \bar{D^0} K^+ \pi^-$ amplitude analysis (in progress)

- Follows from $B^0
 ightarrow D^0 \bar{D^0} K^+ \pi^-$ branching fraction measurement
 - Similar selection strategy, extended to include full LHCb dataset (9 fb^{-1}) and $D \to K\pi\pi\pi$ sub-decays
- Motivated by search for exotic states and study of charm loops
 - Charmonium contributions in transversity basis o helicity states separated o applicable to $b o s \ell^+ \ell^-$
 - Full $K^+\pi^-$ PHSP ightarrow separate S-wave from P-wave states
- Expect a 5-fold increase in signal candidates (roughly 1600)

Summary

- $B \to DDX$ decays promising for exotic state searches and charm loop studies (input to $b \to s \ell^+ \ell^-$)
- Amplitude analysis of $B^+ \rightarrow D^+ D^- K^+$ shows resonances in $D^- K^+$ channel (X₀(2900), X₁(2900)) at beyond 5σ level
 - First open-charm tetraquark (previously only $\bar{c}c\bar{q}q'$ seen)
 - New(?) spin-0 charm resonance ($\chi_{c0}(3930)$) also found in D^+D^- channel
- Excited D_s^+ meson $(D_{s0}(2590)^+)$ found in $B^0 o D^- D^+ K^+ \pi^-$ at $> 10\sigma$ level
- $B^0
 ightarrow D^0 \bar{D^0} K^+ \pi^-$ branching fraction measured, amplitude analysis underway
- More efficient trigger algorithms in LHCb Upgrade I and large integrated luminosity in LHCb Upgrade II will benefit these types of analyses

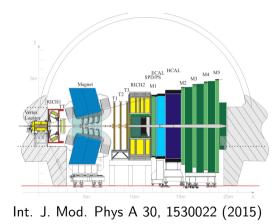
・ロット 通マ マロマ キロマー 田

Thank you for listening

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

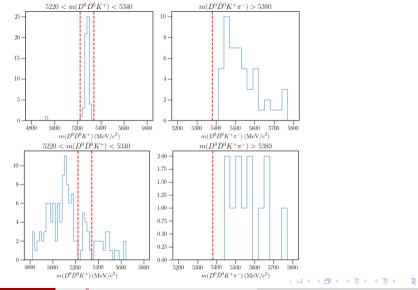
Backup

Jake Amey

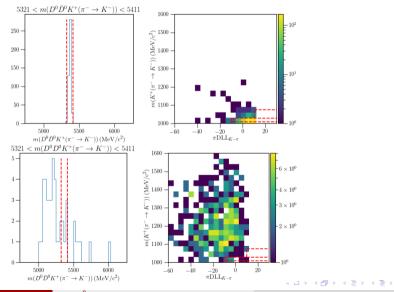

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

PWA12/ATHOS7 19/19

э


イロト イヨト イヨト イヨ

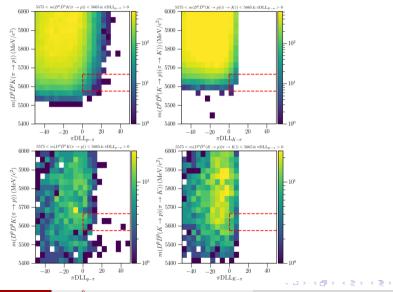
The LHCb Detector


- Designed for heavy flavour physics at the LHC
- Single-arm forward spectrometer covering pseudorapidity region $2 < \eta < 5$

$B^0 ightarrow D^0 ar{D^0} K^+ \pi^-$ veto regions 1

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

$B^0 ightarrow D^0 ar{D^0} K^+ \pi^-$ veto regions 2

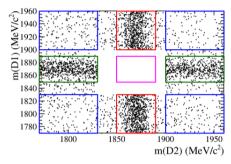


Jake Amey

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

PWA12/ATHOS7 19/19

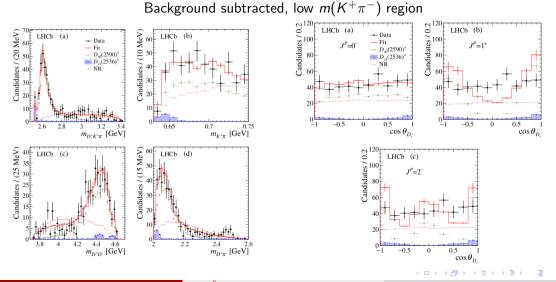
$B^0 ightarrow D^0 ar{D^0} K^+ \pi^-$ veto regions 3


Jake Amey

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

PWA12/ATHOS7 19/19

- 32


$B^+ \rightarrow D^+ D^- K^+$ methods: PRD 102, 112003 (2020)

 $\begin{array}{l} \mbox{Magenta box} \rightarrow \mbox{signal region} \\ \mbox{Other boxes are charmless or} \\ \mbox{single-charm backgrounds} \end{array}$

- BDT used to reduce combinatorial background
- Other backgrounds removed with invariant mass veto regions and flight distance + vertex cuts (plot in *D* sidebands)
- Two kinematic refits performed:
 - *D* mass constraint and *B* from primary vertex (used for mass fits)
 - The above + *B* mass constraint (used for Dalitz plot variables)
- Maximum likelyhood fit performed on invariant mass distributions

$B^0 \rightarrow D^+ D^- K^+ \pi^-$ full results: PRL 126, 122002 (2021)

Jake Amey

 $B^0 \rightarrow DDX$ for flavour anomalies at LHCb

PWA12/ATHOS7 19/19

Efficiency correction for $B^0 \rightarrow D^0 \bar{D^0} K^+ \pi^-$ amplitude analysis

• In general, the signal PDF for 4-body decays can be expressed as¹:

$$\mathcal{P}_{Sig}(x;\Theta) = \frac{\mathcal{S}_{Sig}(x)(|\mathcal{A}_{B^0}(x;\Theta)|^2 + |\mathcal{A}_{\bar{B^0}}(x;\Theta)|^2)\phi_4(x)}{\int \varepsilon_{Sig}(x)(|\mathcal{A}_{B^0}(x;\Theta)|^2 + |\mathcal{A}_{\bar{B^0}}(x;\Theta)|^2)\phi_4(x)dx^5}$$
(1)

- From this we can see the $log(\mathcal{L})$ has 2 efficiency terms, one appears as an additive constant, so can be ignored.
- The other efficiency term appears in the normalisation integral, which can be determined numerically with MC intergration of a simulated sample.
 - Allows for inclusion of the efficiency in the amplitude fit without requiring an analytical form.
 - Desirable as such functions are hard to parameterise in 4-body decays.

¹PRD 85.122002 (2012), JHEP05 143 (2017)