Laboratoire de Physique des 2 Infinis

"Amplitude for polarisation measurement, future BSM searches"

Elisabeth Maria Niel
International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy
"On behalf of the LHCb collaboration"

Focus of the talk

1. The amplitude description
2. Production polarization
3. New physics searches

Amplitude for polarisation measurement

$>$ Polarisation: spin projection on a given axis.
$>$ Technique to measure it, example of 2-body decays:
$\rightarrow 2$ main elements: asymmetry parameter and polarization vector

$$
\frac{1}{N} \frac{d \Gamma}{d \cos \theta} \propto \frac{1}{2}(1+\alpha P \cos \theta)
$$

θ : angle baryon momentum and baryon spin
P is the magnitude of the polarization vector

1. The decay asymmetry parameter α :is independent of the production mechanism.
2. The polarization \mathbf{P} instead depends on the production mechanism.

Asymmetry parameter

$>$ Asymmetry parameter α : is a property of the decay studied.
$>$ It depends on the final/initial state spins and on the interactions involved

$$
\alpha=\frac{2 R e\left(A_{P V}^{*} A_{P C}\right)}{\left|A_{P V}\right|^{2}+\left|A_{P C}\right|^{2}} \quad \begin{aligned}
& A_{P V}=\text { parity violating } \\
& A_{P C}=\text { parity conserving }
\end{aligned}
$$

$>$ The larger is $\boldsymbol{\alpha}$ the larger is the sensitivity on the polarization
$>$ If parity is conserved, $\alpha=0 \rightarrow$ loss of sensitivity. Need a weak decay.
$>$ Both, PV and PC amplitude needed
$>$ However if $P=0, \alpha$ can still be measured

Amplitude

- 3-body case: subsequent decays $A \rightarrow B(\rightarrow D+E)+C$

Isobar decomposition: factorize the amplitude in dynamic part and angular part:

$$
\mathscr{A}(\vec{\Omega})=\sum_{i} \psi_{r_{i}}(\vec{\Omega}) \Delta_{r_{i}}\left(m_{r_{i}}\right) \longleftarrow \begin{aligned}
& \text { Most of the resonances described using } \\
& \text { relativistic Breit Wigner lineshape, } \\
& \text { but not always.. }
\end{aligned}
$$

Helicity formalism [M. Jacob and G.C. Wick Annals Phys. 7, 404 (1959)]

- Nowadays huge datasets to perform very detailed analysis \rightarrow the formalism need to evolve
- Two-body formula sill holds:

$$
\frac{1}{N} \frac{d \Gamma}{d \cos \theta_{i}} \propto \frac{1}{2}\left(1+\boldsymbol{\alpha}_{\boldsymbol{i}} \boldsymbol{P} \cos \theta_{i}\right)
$$

- Different angles depending on the chain
- Intermediate resonant states interfere between different chains
- Caveat: spin matching is not trivial!

Spin projection axis

- Example for $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$:

$$
\begin{array}{ll}
\text { 1. } & \Lambda_{c}^{+} \rightarrow\left(K^{*} \rightarrow K^{-} \pi^{+}\right) p \\
\text { 2. } & \Lambda_{c}^{+} \rightarrow\left(\Delta^{++} \rightarrow p \pi^{+}\right) K^{-} \\
\text {3. } & \Lambda_{c}^{+} \rightarrow\left(\Lambda \rightarrow p K^{-}\right) \pi^{+}
\end{array} \quad \frac{1}{N} \frac{d \Gamma}{d \cos \theta_{i}} \propto \frac{1}{2}\left(1+\boldsymbol{\alpha}_{i} \boldsymbol{P} \cos \theta_{i}\right)
$$

- The proton helicity frame is reached through a different sequence of rotations and boosts:
The proton quantization axis
is the direction of the proton
in the Λ_{c}^{+}rest frame

$K^{* 0}$ rest frame

p rest frame

The proton quantization axis is the direction of the proton in the Δ^{++} or Λ rest frame.

Spin projection axis

Spin axis matching methods: $\quad \Lambda_{c}^{+} \rightarrow p \quad K^{-} \pi^{+}$

1. Add a rotation to each chain [soon in my thesis]

$$
\begin{gathered}
\mathcal{A}_{m, \lambda_{p}}(\Omega)=\mathcal{A}_{m, \lambda_{p}}^{K^{*}}\left(\Omega_{K^{*}}\right)+\sum_{\lambda_{p}^{\prime}} \mathcal{A}_{m, \lambda_{p}^{\prime}}^{\Lambda^{*}}\left(\Omega_{\Lambda^{*}}\right) D\left(\alpha_{1}, \beta_{\Lambda^{*}}, \phi_{K^{-}}^{\prime}\right)+\sum_{\lambda_{p}^{\prime}} \mathcal{A}_{m, \lambda_{p}^{\prime}}^{\Delta^{++}}\left(\Omega_{\Delta^{++}}\right) D\left(\alpha_{2}, \beta_{\Delta^{*}}, \phi_{K^{-}}^{\prime}\right) \\
\alpha_{1}=\left\{\begin{array}{ll}
2 \pi & \text { if }\left|\phi_{p}-\phi_{\pi}\right|>\pi \\
0 & \text { else }
\end{array} \quad \alpha_{2}= \begin{cases}2 \pi & \text { if }\left|\phi_{p}-\phi_{K}\right|>\pi \\
0 & \text { else }\end{cases} \right.
\end{gathered}
$$

The Wigner rotation contains an extra " $2 \boldsymbol{\pi}$ factor" to compensate for the fact that a 2π rotation does not leave the system invariant. This is due to the two-to-one homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$

Spin projection axis

Spin axis matching methods:

1. Add a rotation to each chain [soon in my thesis]
2. Factorize [MM et al.(JPAC), arXiv:1910.04566]

$$
M_{\lambda}^{\Lambda}=\sum_{\nu} D_{\Lambda, \nu}^{1 / 2 *}\left(\phi_{1}, \theta_{1}, \phi_{23}\right) O_{\lambda}^{\nu}(\{\sigma\})
$$

Plane orientation : containing polarization effects

Dalitz plot function : depends only on pair of invariant masses

Polarization responsible for the relative orientation of these two planes
3. Match the spin using canonical spin states (see Daniele Marangotto talk): [Adv.High Energy Phys. 2020 (2020), 6674595]

Spin projection axis

- Need: Wigner rotation to align the proton projection axis.

$$
\begin{gathered}
\mathcal{A}_{m, \lambda_{p}}(\Omega)=\mathcal{A}_{m, \lambda_{p}}^{K^{*}}\left(\Omega_{K^{*}}\right)+\sum_{\lambda_{p}^{\prime}} \mathcal{A}_{m, \lambda_{p}^{\prime}}^{\Lambda^{*}}\left(\Omega_{\Lambda^{*}}\right) D\left(\alpha_{1}, \beta_{\Lambda^{*}}, \phi_{K^{-}}^{\prime}\right)+\sum_{\lambda_{p}^{\prime}} \mathcal{A}_{m, \lambda_{p}^{\lambda_{p}}}^{\Delta^{++}}\left(\Omega_{\Delta^{++}}\right) D\left(\alpha_{2}, \beta_{\Delta^{*}}, \phi_{K^{-}}^{\prime}\right) \\
\alpha_{1}=\left\{\begin{array}{ll}
2 \pi & \text { if }\left|\phi_{p}-\phi_{\pi}\right|>\pi \\
0 & \text { else }
\end{array} \quad \alpha_{2}= \begin{cases}2 \pi & \text { if }\left|\phi_{p}-\phi_{K}\right|>\pi \\
0 & \text { else }\end{cases} \right.
\end{gathered}
$$

- The wigner rotation contains a " $2 \boldsymbol{\pi}$ factor" to compensate for the fact that a 2π rotation leave not the system invariant. This is due to the two-to-one homomorphism $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$

Benchmark tests

Tests used to check the amplitude formalism and asses the necessity of the wigner rotations and 2π factor

1. Linearity: if only one chain is included, the angular distribution MUST BE linear:

Example for the Λ^{*} chain:

$$
\frac{d \Gamma}{d \cos \theta} \sim \frac{4}{3}\left(1+P_{\Lambda_{c}} \alpha_{\Lambda_{c}}^{\Lambda^{*}} \cos \theta_{\Lambda^{*}}\right)
$$

where
$\alpha_{\Lambda_{c}}^{\Lambda_{c}^{*}}=\frac{\left|H_{1 / 2,0}^{\Lambda_{c}^{+} \rightarrow \Lambda^{*} \pi^{+}}\right|^{2}-\left|H_{-1 / 2,0}^{\Lambda_{c}^{+} \rightarrow \Lambda^{*} \pi^{+}}\right|^{2}}{\left|H_{1 / 2,0}^{\Lambda_{c}^{+} \rightarrow \Lambda^{*} \pi^{+}}\right|^{2}+\left|H_{-1 / 2,0}^{\Lambda_{c}^{+} \rightarrow \Lambda^{*} \pi^{+}}\right|^{2}}:$

Decomposition in the LS-basis

$$
\left\{\begin{array}{l:c}
h_{\frac{1}{c}, 0}^{\Lambda_{2}^{+}+\Lambda^{*} \pi^{+}}=-\sqrt{\frac{1}{2}}\left(h_{\mathrm{PC}}^{\Lambda^{*}}+h_{\mathrm{PV}}^{\Lambda^{*}}\right) \\
h_{-\frac{1}{2}, 0}^{\Lambda_{c}^{+}, \Lambda^{*} \pi^{+}}=-\sqrt{\frac{1}{2}}\left(h_{\mathrm{PC}}^{\Lambda^{*}}-h_{\mathrm{PV}}^{\Lambda^{*}}\right) & \alpha_{\Lambda_{c}}^{\Lambda_{c}^{*}}=-2 \frac{\operatorname{Re}\left\{h_{P C}^{\Lambda^{*}} h_{P V}^{\Lambda_{V}^{*}}\right\}}{\left|h_{P C}^{\Lambda^{*}}\right|^{2}+\left|h_{P V}^{\Lambda_{V}^{*}}\right|^{2}}
\end{array}\right.
$$

Non zero assymmetry parameter \rightarrow need both parity violating(PV) and parity conserving (PC) amplitudes

Benchmark tests

1. If $P=0$, the angular dependance drops
2. If parity conservation enforced for the Λ_{c}^{+}decay, $\alpha_{\Lambda_{c}^{+}}=0$
angular distributions should be flat

Example : Δ^{++}chain angles

Benchmark tests

Test used to assess the need of the azimuthal part of the Wigner rotation, Without Wigner rotation and 2π condition the angular distributions are not flat

Example : Δ^{++}chain angles, without incuding the 2π condition

Additional test: comparison with DPD formalism

- This formalism and the Dalitz plot decomposition proposed in MM et al.(JPAC), arXiv:1910.04566 have been compared numerically and proven to be equivalent.
- Also compatible with the covariant formalism

Amplitude analysis: the model choice

Polarization included via spin density matrix, for spin $1 / 2$:

$$
\begin{aligned}
& \rho=\frac{1}{2}(\mathcal{I}+\vec{P} \cdot \vec{\sigma})=\frac{1}{2}\left(\begin{array}{cc}
1+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & 1-P_{z}
\end{array}\right) \\
& \Gamma=\left.+\rho_{-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}\left(\mathcal{A}_{-\frac{1}{2}, \frac{1}{2}} \mathcal{A}_{\frac{1}{2}, \frac{1}{2}}^{*}+\left.\mathcal{A}_{-\frac{1}{2}, \frac{1}{2}}\right|^{2}+\left\lvert\, \mathcal{A}_{\frac{1}{2},-\frac{1}{2}} \mathcal{A}_{\frac{1}{2}}^{*}\right.\right),-\frac{1}{2}\right) \\
&+\rho_{\frac{1}{2},-\frac{1}{2}}\left(\mathcal{A}_{\frac{1}{2}, \frac{1}{2}} \mathcal{A}_{-\frac{1}{2}, \frac{1}{2}}^{*}+\mathcal{A}_{\frac{1}{2},-\frac{1}{2}} \mathcal{A}_{-\frac{1}{2},-\frac{1}{2}}^{*}\right)
\end{aligned}+\rho_{-\frac{1}{2},-\frac{1}{2}}\left(\left|\mathcal{A}_{-\frac{1}{2}, \frac{1}{2}}\right|^{2}+\left|\mathcal{A}_{-\frac{1}{2},-\frac{1}{2}}\right|^{2}\right) .
$$

- The choice of the model give the largest systematic on the polarization measurement
- Need to assess which resonances contributes to the amplitude, by eye it is impossible to decide
- The choice of the model give the largest systematique on the polarization measurement
- Need to assess which resonances contributes to the amplitude, by eye it is impossible to decide

Particle	J^{P}	Overall status	Status as seen in -		
			$N \bar{K}$	$\Sigma \pi$	Other channels
M(1116)	$1 / 2^{+}$	****			$N \pi$ (weak decay)
$\Lambda(1380)$	$1 / 2^{-}$	**	**	**	
$\Lambda(1405)$	$1 / 2^{-}$	****	****	****	
$\Lambda(1520)$	$3 / 2^{-}$	****	****	****	$\Lambda \pi \pi, \Lambda \gamma$
$\Lambda(1600)$	$1 / 2^{+}$	****	***	****	$\Lambda \pi \pi, \Sigma(1385) \pi$
$\Lambda(1670)$	$1 / 2^{-}$	****	****	****	$\Lambda \eta$
$\Lambda(1690)$	$3 / 2^{-}$	****	****	***	$\Lambda \pi \pi, \Sigma(1385) \pi$
$\Lambda(1710)$	$1 / 2^{+}$	*	*	*	
$\Lambda(1800)$	$1 / 2^{-}$	***	***	**	$\Lambda \pi \pi, \Sigma(1385) \pi, N \bar{K}^{*}$
$\Lambda(1810)$	$1 / 2^{+}$	***	**	**	$N \bar{K}_{2}^{*}$
$\Lambda(1820)$	$5 / 2^{+}$	****	****	****	$\Sigma(1385) \pi$
Λ (1830)	$5 / 2^{-}$	****	$* * * *$	****	$\Sigma(1385) \pi$
$\Lambda(1890)$	$3 / 2^{+}$	****	****	**	$\Sigma(1385) \pi, N \bar{K}^{*}$
$\Lambda(2000)$	$1 / 2^{-}$	*	*	*	
$\Lambda(2050)$	$3 / 2^{-}$	*	*	*	
$\Lambda(2070)$	$3 / 2^{+}$	*	*	*	PDU202
$\Lambda(2080)$	$5 / 2^{-}$	*	*	*	
$\Lambda(2085)$	$7 / 2^{+}$	**	**	*	
$\Lambda(2100)$	$7 / 2^{-}$	****	****	**	$N \bar{K}^{*}$
$\Lambda(2110)$	$5 / 2^{+}$	***	**	**	$N \bar{K}^{*}$
$\Lambda(2325)$	$3 / 2^{-}$	*	*		
$\Lambda(2350)$	$9 / 2^{+}$	***	***	*	
$\Lambda(2585)$		*	*		

- Look at 2D $\chi^{2} / n d f$, fit fractions

Focus of the talk

1. The amplitude description
2. Production polarization
3. New physics searches

Production polarization: experimental status

First measurements in 90 's for strange baryons: strange baryons produced using unpolarized beams found polarized

1. 1976: 300 GeV protons on Be target FERMILAB-PUB-76-157-E: polarization up to $\mathbf{2 8 \%}$
2. 1978: 400 GeV proton beam on Be target FERMILAB-PUB-78-145-E: polarization up to 24% and most importantly. $\overline{\Lambda^{0}}$ polarisztion found to be zero

Baryon	System	Beam energy [GeV]	Result	$\begin{aligned} & p_{T} \text { range } \\ & {[\mathrm{GeV} / c]} \end{aligned}$
$1976{ }^{\text { }}$	$p \mathrm{Be}$	300	18\%	1.5
	$p \mathrm{Be}$	400	24%	2.1
	$p \mathrm{C}$ and $p \mathrm{~W}$	920	~ 0	~ 0.8
	$p \mathrm{~N}$	450	up to 0.29%	0.86
$1978 \bar{\Lambda}^{0}$	$p \mathrm{Be}$	400		up to 1.2
	p-X	400	0	up to 2.4
Ω^{-}	p Be	800	~ 0	[0.5, 1.3]
$\begin{array}{r} 1993 \Sigma^{\Sigma^{+}} \\ \Xi^{0} \end{array}$	$p \mathrm{Cu}$	800	16\%	1.0
	$p \mathrm{Cu}$ and $p \mathrm{Be}$	400	$\sim 20 \%$	1.6
Ξ^{+}	$p \mathrm{Be}$	800	up to 0.09\%	0.76
$1990 \Xi^{-}$	$p \mathrm{Be}$	400	up to 10%	1.21
	$p \mathrm{Cu}$	400	up to 0.07\%	0.63
	$p \mathrm{Be}$	800	up to 0.1%	>0.8

Features that seem to emerge:
$>$ Increasing polarization with p_{T}, with a plateau at high p_{T} which depends on the energy
$>$ A (not well-defined) target dependence
$>$ Different polarization between hyperon and antihyperon.

> J.Lach FNAL/C-92/378; CONF-9209299-1):
$>$ Explain origin of polarization:
Λ need a strange quark from the sea Strange quark polarized (for some p_{T})
\rightarrow Predicting unpolarized anti-baryons. However, a non-zero polarization was measured later on for Ξ^{-}PhysRevD.33.3172.

Mechanism at the origin of baryons polarization not understood, need new measurements

Production polarization

Production mechanism:

1. Strong interactions: $p p \rightarrow$ Baryons $+X$

Polarization matrix (for spin $1 / 2$ baryons) :

$$
\rho=\frac{1}{2}(\mathcal{I}+\vec{P} \cdot \vec{\sigma})=\frac{1}{2}\left(\begin{array}{cc}
1+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & 1-P_{z}
\end{array}\right)
$$

Parity conservation implies: $\rho_{\lambda, \lambda^{\prime}}=\rho_{-\lambda,-\lambda^{\prime}}$
i.e. $P_{x}=P_{y}=0$

The polarization matrix is diagonal
$>$ Polarization perpendicular to the production plane for strong production (along \hat{n})

Polarization of beauty baryons: Λ_{b}^{0} at LHCb

$>$ Measurement of beauty baryon polarization: using $\boldsymbol{\Lambda}_{\boldsymbol{b}}^{\mathbf{0}} \rightarrow \mathbf{J} / \mathbf{\Psi} \boldsymbol{\Lambda}$ at 7,8 and 13 TeV with the LHCb detector. Result: \mathbf{P} is compatible with zero
$>$ Kinematics of $\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \Psi\left(\rightarrow \mu^{+} \mu^{-}\right) \Lambda: 5$ decay angles, one unit vector

$$
\hat{n}=\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda_{b}} /\left|\vec{p}_{\text {beam }} \times \vec{p}_{\Lambda_{b}}\right| \text { in pp c.o.m. frame }
$$

> Angular distribution

$$
\frac{\mathrm{d}^{5} \Gamma}{\mathrm{~d} \vec{\Omega}}=\frac{3}{32 \pi^{2}} \sum_{i} J_{i}\left(a_{+}, a_{-}, b_{+}, b_{-}, \alpha_{\Lambda}, P_{b}\right) f_{i}(\vec{\Omega})
$$

> Angular term \rightarrow polarisation accessible via J_{11} and J_{34}
Angular functions

$$
\frac{1}{4} P_{b}\left(2\left|a_{+}\right|^{2}-2\left|a_{-}\right|^{2}+\left|b_{+}\right|^{2}-\left|b_{-}\right|^{2}\right)
$$

$$
\frac{1}{2} P_{b} \alpha_{\Lambda} \operatorname{Im}\left(b_{+}^{*} b_{-}\right)
$$

$$
\sin ^{2} \theta_{l} \sin \theta_{b} \sin \left(2 \phi_{l}+\phi_{b}\right) \sin \theta
$$

Polarization of beauty baryons: Λ_{b}^{0} at LHCb

Observable	MPV	Interval	
$\left\|a_{+}\right\|$	0.129	$[0.033$,	$0.163]$
$\left\|a_{-}\right\|$	1.021	$[0.998$,	$1.041]$
$\left\|b_{-}\right\|$	0.145	$[0.060$,	$0.188]$
$\arg \left(a_{+}\right)[\mathrm{rad}]$	-2.523	$[-\pi,-1.131]$ or $[2.117, \pi]$	
$\arg \left(a_{-}\right)[\mathrm{rad}]$	1.122	$[-2.633,-1.759]$ or $[0.101,2.224]$	
$\arg \left(b_{-}\right)[\mathrm{rad}]$	1.788	$[-\pi,-2.275]$ or $[0.232, \pi]$	
$P_{b}(7 \mathrm{TeV})$	-0.004	$[-0.064$,	$0.051]$
$P_{b}(8 \mathrm{TeV})$	0.001	$[-0.035$,	$0.045]$
$P_{b}(13 \mathrm{TeV})$	0.032	$[-0.011$,	$0.065]$
α_{b}	-0.022	$[-0.048$,	$0.005]$

1. The Λ_{b}^{0} production polarisation is consistent with zero, with 68% credibility level intervals of $[-0.06,0.05]$, $[-0.04,0.05]$ and $[-0.01,0.07]$ at V_{s} of 7,8 and 13 TeV
2. $\alpha_{\mathrm{b}}=-0.022,68 \%$ interval $[-0.048,0.005]$
3. Measurement uses the new BES III value for α_{Λ}

Hyperon polarisation, ATLAS

> 2014 by ATLAS Phys. Rev. D 91, 032004 (2015)

$$
x_{F}=\frac{P_{z}}{P_{\text {beam }}}
$$

$>$ In the absence of any new polarization producing mechanism that would manifest itself at low x_{F} and high center-of-mass energies, the measured polarization is expected to be consistent with zero

Q
Good extrapolation from beam-line experiment

Sample	$\overline{\boldsymbol{x}}_{\mathrm{F}}$	$\bar{p}_{\text {T }}$	Polarization	
	$\left[10^{-4}\right]$	[GeV]	Λ	$\bar{\Lambda}$
Full fiducial volume	10.0	1.91	$-0.010 \pm 0.005 \pm 0.004$	$0.002 \pm 0.006 \pm 0.004$
$x_{\text {F }} \in(0.5,5) \times 10^{-4}$	2.8	1.83	$0.005 \pm 0.009 \pm 0.006$	$-0.009 \pm 0.010 \pm 0.006$
$x_{\mathrm{F}} \in(5,10.5) \times 10^{-4}$	7.5	1.85	$-0.012 \pm 0.009 \pm 0.008$	$0.002 \pm 0.010 \pm 0.007$
$x_{\mathrm{F}} \in(10.5,100) \times 10^{-4}$	19.3	2.12	$-0.005 \pm 0.010 \pm 0.008$	$0.012 \pm 0.010 \pm 0.010$
$p_{\mathrm{T}} \in(0.8,1.3) \mathrm{GeV}$	7.5	1.07	$-0.008 \pm 0.012 \pm 0.011$	$-0.004 \pm 0.013 \pm 0.013$
$p_{\text {T }} \in(1.3,2.03) \mathrm{GeV}$	9.3	1.64	$-0.019 \pm 0.009 \pm 0.007$	$-0.003 \pm 0.010 \pm 0.007$
$p_{\text {T }} \in(2.03,15) \mathrm{GeV}$	12.6	2.84	$-0.005 \pm 0.008 \pm 0.005$	$0.009 \pm 0.009 \pm 0.004$

Production polarization

Production mechanism:

2. Weak interactions: for instance $p p \rightarrow \Lambda_{b}(\rightarrow B l v)+X$.
W-boson involved

$>$ Different projection axis
$>$ The known V-A current is involved
$>$ Prediction from HQET available [PRD49, 2363 (1994)]:

- $\alpha_{\Lambda_{b} \rightarrow \Lambda_{c}^{+}\left(l \rightarrow v l^{-}\right)}=-0.77(H Q E T)$
- $\alpha_{\Lambda_{b} \rightarrow \Lambda_{c}^{+}\left(l \rightarrow v l^{-}\right)}=-0.81(F Q D)$

Polarized production expected

Focus of the talk

1. The amplitude description
2. Production polarization
3. New physics searches

Magnetic dipole moments (MDM)

The measurement of Λ_{c}^{+}polarization at LHCb is a necessary input for a long-term project aiming at measuring the magnetic dipole moment of charmed baryons

MDM is a fundamental property of particles with spin:

$$
\vec{\mu}=\frac{g}{2} \frac{q}{m} \overrightarrow{\boldsymbol{S}} \text { where } g \text { is the gyromagnetic factor }
$$

- For elementary particles, classical prediction $g=2$. Quantum corrections can modify this values.
- If $\mathrm{g} \neq 2$ indication of a composite structure (\rightarrow New Physics)
- Measured using spin precession in a magnetic field.
- Method successufully used for leptons MDM :

1. Muon, g-2 expriment $\rightarrow 4.2 \sigma$ tension with the SM Phys. Rev. Lett. 126, 141801
2. Tau: short lifetime $(87 \mu \mathrm{~m})$, no direct measurements

Spin precession

Magnetic dipole moments (MDM)

Baryons MDM:
(a) Science. 358 (6366): 1081-1084.
(b) Phys. Rev. D. 86 (1): 010001.

- Proton and neutron measured, results in agreement with quark model prediction: $\boldsymbol{\mu}_{\boldsymbol{n}}=-\frac{2}{3} \boldsymbol{\mu}_{\boldsymbol{p}}$
- Short lived baryons is harder \rightarrow requires a strong magnetic field to precess before the decay

$$
\rightarrow \text { need for a new technique }
$$

MDM measurement using bent crystals:

- Conventional methods: maximum 45 T
- Use strong effective magnetic field produced beween crystal planes.

	$\boldsymbol{c} \boldsymbol{\tau}$
Σ^{+}	2.4 cm
$\boldsymbol{\Lambda}_{\boldsymbol{c}}^{+}$	$\mathbf{6 0} \boldsymbol{\mu m}$

- Done in 1990 for Σ^{+}and promising for charmed baryons EERMILAB-THESIS-1992-40

$$
\Theta_{\mu} \approx \gamma\left(\frac{g}{2}-1\right) \Theta
$$

Need initial $\left(\overrightarrow{\xi_{i}}\right)$ and final $\left(\overrightarrow{\xi_{f}}\right) \boldsymbol{\Lambda}_{\boldsymbol{c}}^{+}$polarization

Magnetic dipole moments (MDM): baryons

	$\boldsymbol{c} \boldsymbol{\tau}$	Comments	$g-$ factor - exp.
p		Quark model description	$+5.585694702(17)$
n		$\mu_{n}=-\frac{2}{3} \mu_{p}$ satisfied	$-3.82608545(90)$
Σ^{+}	2.4 cm	Measured using bent crystals	$+6.1(12)_{\text {stat }}(10)_{\text {syst }}$
$\mathbf{\Lambda}_{\boldsymbol{c}}^{+}$	$\mathbf{6 0 \mu m}$	Not measured	

Prediction for $\Lambda_{\boldsymbol{c}}^{+}$MDM: suffers from uncertanty on the charm quark mass

- Quark model: $\mu_{\Lambda_{c}^{+}}=\mu_{c}$
- Inserting the constituent quark mass: $\mu_{\Lambda_{c}^{+}}=0.37 \frac{g_{c}}{2} \mu_{N}$

$$
\mu_{\Lambda_{c}^{+}}=\left\langle\Lambda_{c}^{+} ; \frac{1}{2},+\frac{1}{2}\right|\left(\vec{\mu}_{1}+\vec{\mu}_{2}+\vec{\mu}_{3}\right) \cdot \vec{S}_{z}\left|\Lambda_{c}^{+} ; \frac{1}{2},+\frac{1}{2}\right\rangle
$$

- All predictions: [0.34-0.43] μ_{N}
- Prediction using radiative charmonium decays (using BES III experimental data) without any charm quark mass uncertainty

$$
\frac{g_{c}}{2 m_{c}}=0.76 \pm 0.05 \mathrm{GeV}^{-1} \quad \mu_{\Lambda_{c}}=\mu_{c}=\frac{g_{c}}{2 m_{c}} \frac{2}{3} m_{p} \mu_{N}=(0.48 \pm 0.03) \mu_{N}
$$

Conclusions

1. Amplitude analysis can be cumbersome and very model/person dependent (reproducibility can be an issue)
2. Baryon's polarisation has been studied starting from the first puzzling results on hyperon polarisation
3. Polarisation used to discriminate within different theoretical predictions
4. Since the 90 's progress have been made:
\rightarrow new precise measurements requiring more sophisticated models
5. Recent and (close) future experiments can perform precise measurements on baryons (and not only) polarisation and asymmetry parameters with complex multi-dimensional analyses
6. Physics beyond the standard model: MDM

Back Up

Helicity formalism : amplitude for $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$

What happens when we sum up different chains? We pass through different paths.

We need to sum over the final state helicities (only proton is non zero), but the definition of the helicity changes depending on the path used to reach the helicity frame (of the proton).

$$
\text { From } \Lambda_{c}^{+} \rightarrow \text { Res helicity frame then from Res } \rightarrow \text { proton helicity frame }
$$

(as

$$
\overrightarrow{p_{0}^{\prime}}=\Lambda_{c}^{+} \quad \begin{aligned}
& \left.\overrightarrow{p_{3}^{\prime}}=\pi^{+} \quad \begin{array}{l}
\text { @ } \overrightarrow{p_{1}} \text { rest } \\
\text { reached from } \Lambda \\
\\
\text { boost from } \overrightarrow{p_{0}} \text { along } \\
\Lambda^{*} \overrightarrow{p_{2}^{\prime}} \|-z
\end{array}\right]
\end{aligned}
$$

$$
(x, z) \text { plane }
$$

2 non collinear boost give rise to a Wigner rotation: need to rotate around y axis of beta angles

Boost along z direction:

$\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$	
$\Lambda_{c}^{+} \rightarrow\left(K^{*} \rightarrow K^{-} \pi^{+}\right) p$	
K^{*} chain resonan	
$\Lambda_{c}^{+} \rightarrow\left(\Delta^{++} \rightarrow p \pi^{+}\right) K^{-}$	Δ chain
$\Lambda_{c}^{+} \rightarrow\left(\Lambda \rightarrow p K^{-}\right) \pi^{+}$	Λ chain

$t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} z\right)$
$x^{\prime}=x$
$y^{\prime}=y$
$z^{\prime}=\gamma(z-v t)$

Helicity formalism : Wigner rotation, azimuthal part

Need also an extra phase for the K^{*} channel

Boost to p rest frame: x, y component don't change since the boost is along z
(y, x) plane

$$
\Lambda_{c}^{+} \rightarrow\left(\Lambda^{*} \rightarrow p K^{-}\right) \pi^{+}
$$

MDM predictions

nb.	$\mu_{\Lambda_{c}^{+}}\left[\mu_{N}\right]$	Approach	Ref.
1	0.15 ± 0.05	QCD spectral sum rule	$[94]$
2	0.24 ± 0.02	NNLO in the HHCPT	$[95]$
5	$0.33-0.34$	Interquark potential and Fadeev formalism	$[96]$
3	0.34	Independent quark model, power-law potential	$[97]$
4	$0.369-0.385$	Hyper central Coulomb plus power potential	$[98]$
5	$0.36-0.41$	5q components contributions	$[99]$
6	0.37	Chiral perturbation theory	$[100]$
7	0.38	Soliton model and chiral perturbation theory	$[101]$
8	0.392	SU(4) chiral constituent quark model	$[102]$
9	0.40 ± 0.05	Light cone QCD sum rules	$[103]$
10	0.411	Bag model reexamined	$[104]$
11	0.42 ± 0.01	Relativistic three-quark model	$[105]$
12	0.48 ± 0.03	Radiative charmonium decays	$[3]$
13	0.52	Dirac point-form dynamics	$[106]$

Reference for MDM predicitons

[101] D.O Riska. Physics of charmed baryons and their magnetic moments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 119(1): 259-265, 1996. ISSN 0168-583X. doi: https://doi.org/10.1016/0168-583X(95)01382-2. URL https://www.sciencedirect.com/science/article/pii/0168583X95013822.
[102] Neetika Sharma, Harleen Dahiya, P. K. Chatley, and Manmohan Gupta. Spin $\frac{1_{2}}{}{ }^{+}$, spin $\frac{3^{+}}{}{ }^{+}$, and transition magnetic moments of low lying and charmed baryons. Phys. Rev. D, 81:073001, Apr 2010. doi: 10.1103/PhysRevD.81.073001. URL https://link.aps.org/doi/10.1103/ PhysRevD. 81.073001.
[103] T. M. Aliev, A. Ozpineci, and M. Savci. The Magnetic moments of Λ_{b}^{0} and Λ_{c}^{+}baryons in light cone QCD sum rules. Phys. Rev. D, 65:056008, 2002. doi: 10.1103/PhysRevD.65.056008. URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.056008.
[104] Andrius Bernotas and Vytautas Simonis. Magnetic moments of heavy baryons in the bag model re-examined, 9 2012. URL https://inspirehep.net/literature/1185432.
[105] Amand Faessler, Th. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, D. Nicmorus, and K. Pumsa-ard. Magnetic moments of heavy baryons in the relativistic three-quark model. Phys. Rev. D, 73:094013, May 2006. doi: 10.1103/PhysRevD.73.094013. URL https://link. aps.org/doi/10.1103/PhysRevD.73.094013.
[106] Peter Cho. Chiral perturbation theory for hadrons containing a heavy quark. The sequel. Physics Letters B, 285(1):145-152, 1992. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(92) 91314-Y. URL https://www.sciencedirect.com/science/article/pii/037026939291314Y.
[94] Shi-lin Zhu, W-Y. P. Hwang, and Ze-sen Yang. Σ_{c} and Λ_{c} magnetic moments from QCD spectral sum rules. Phys. Rev. D, 56:7273-7275, Dec 1997. doi: 10.1103/PhysRevD.56.7273. URL https://link.aps.org/doi/10.1103/PhysRevD.56.7273
[95] Guang-Juan Wang, Lu Meng, Hao-Song Li, Zhan-Wei Liu, and Shi-Lin Zhu. Magnetic moment of the spin $-\frac{1}{2}$ singly charmed baryons in chiral perturbation theory. Phys. Rev. D, 98:054026, Sep 2018. doi: 10.1103/PhysRevD.98.054026. URL https://link.aps.org/doi/10.1103/ PhysRevD.98.054026.
[96] B. Silvestre-Brac. Spectrum and static properties of heavy baryons. Few Body Syst., 20:1-25, 1996. doi: $10.1007 /$ s006010050028. URL https://inspirehep.net/literature/431028
[97] N. Barik and M. Das. Magnetic moments of confined quarks and baryons in an independent quark model based on dirac equation with power-law potential. Phys. Rev. D, 28:2823-2829, Dec 1983. doi: 10.1103/PhysRevD.28.2823. URL https://link.aps.org/doi/10.1103/PhysRevD. 28.2823.
[98] Ajay Kumar Rai Bhavin Patel and P C Vinodkumar. Masses and magnetic moments of heavy flavour baryons in the hyper central model. J. Phys. G: Nucl. Part. Phys, $35(065001)$, 2008. doi: https://doi-org.proxy.scd.u-psud.fr/10.1088/0954-3899/35/6/065001. URL https: //iopscience-iop-org.proxy.scd.u-psud.fr/article/10.1088/0954-3899/35/6/065001.
[99] C.S. An. The $q q q q \bar{q}$ components and the magnetic moments of the charmed and the bottomed baryons. Nuclear Physics A, 797(3):131-144, 2007. ISSN 0375-9474. doi: https://doi.org/ 10.1016/j.nuclphysa.2007.10.002. URL https://www.sciencedirect.com/science/article/ pii/S037594740700735X.
[100] Martin J. Savage. Magnetic moment of the $\Lambda_{c}, \Xi_{c 1}^{+}$and $\Xi_{c 1}^{0}$. Phys. Lett. B, 326:303-306, 1994. doi: 10.1016/0370-2693(94)91326-9. URL https://www.sciencedirect.com/science/ article/pii/0370269394913269.

