
IPUs

for analysis

Daniel O’Hanlon

10/09/2021IPUs for analysis 2

CPU GPU

• Few complex cores

• Superscalar

• Few (+ SIMD) registers

• Cache hierarchy

• Many simple cores

• Lots of registers

• Memory hierarchy

Low-latency, low throughput High-latency, high throughput

10/09/2021IPUs for analysis

The IPU

 3

Many cores,
with dedicated

memory

No shared memory,
requires sync. and
message passing

Hardware, in principle,
more flexible than

GPUs

10/09/2021IPUs for analysis 4

How?
• IPU runs a static compute graph, which describes all data flow, conditional execution,

synchronisation, etc

A few ways to build the graph:

• Easiest is with TensorFlow - supports most operations with explicit device preparation or
compute ‘strategy’ (some optimised-for-IPU neural network layers)

• C++ ‘Poplar’ interface with full manual control over data placement and execution

• Execution of imported ONNX models in ‘PopART’

• PyTorch

Defined in a declarative way
and compiled, much like
(pre-eager) TensorFlow

10/09/2021IPUs for analysis 5

How?
• Benefit from explicit mapping of graph to individual hardware cores, and fast all-to-all core

connections is that it enables bulk-synchronous parallel execution

• Upshot: No mutexes, no blocking, no race conditions, no warp divergence, no bank conflicts….

• All you need is the graph, and less understanding of the underlying architecture

• Each core is a real, independent core that can run independent code on independent data (MIMD),
modulo any synchronisation requirements

10/09/2021IPUs for analysis 6

Why?
• Single CPU cores are proportionally slower

for the tasks we want them to do

• Many-core hardware accelerators are fast,
but limited by:

• 1. Serial component of any parallel algorithm
dominates as parallelism increases (Amdahl’s law),
(applies also to memory accesses)

• 2. PCI-e busses are slow compare to how fast
PCI-e devices can crunch through data

• GPUs do many 100s of times more FLOPS than CPUs, but can end up being only a few times faster

• Pure FLOPS not the only answer, given 1 and 2 - want hardware that has flexibility to do more per unit
of input data transferred, and hardware that allows developers to write code with more parallelism

10/09/2021IPUs for analysis

Graphcore APIsPoplar, C++

Lower-level interface ‘vertex code’, written in vanilla C++, which is compiled to

the IPU instruction set and executes on a single tile:

E.g, from the Kalman filter,

a 2x2 matrix inverse:

(Lots of high level functionality

isn’t present in poplar yet, and

inverting should be okay for these

matrices)

github.com/dpohanlon/IPU4HEP

 7

http://github.com/dpohanlon/IPU4HEP

10/09/2021IPUs for analysis

Graphcore APIsPoplar, C++

Possible also to copy (simple, POD…) objects to the IPU via reinterpret_cast

(thanks to Bristol HPC for this trick!)

However not possible to (dynamically) allocate memory in the tile code, which makes

some algorithms a little fiddly

Kinematics data container,

and simple numerical

functions

 8

10/09/2021IPUs for analysis

• Generate some random initial points for n walkers

• Use the position of other walkers and their posterior values to propose new values
for each walker

• Repeat until convergence

• Goodman and Weare sampler, made famous by Emcee (emcee.readthedocs.io),

paper here:

Parameters

Parallel walker
execution

Parallel walker
reads

Parameters

Parallel walker
writes

Parallel walker
execution

Parallel walker
reads

Param 0 Walker 0

Walker 15

Walker 15 could depend on walker 0,

but in reality doesn’t

Application to MCMC sampling

 9

https://emcee.readthedocs.io/
https://projecteuclid.org/download/pdf_1/euclid.camcos/1513731992

10/09/2021IPUs for analysis

• Construct compute graph over nTiles = nWalkers

Application to MCMC sampling

Inter-tile copies (indices) pre-specified

 10

10/09/2021IPUs for analysis

Copy
(read)

Parallel
executions

Barrier
synchronise

Data dependence
introduces sequential

operations

Param 0 Walker 0

Walker 15

Before synchronisation After synchronisation

1

1

2

Enforce ordering of reads/writes

Synchronise all tiles
after ‘read’ step
(probably other more
elegant ways to solve
this problem)

2

github.com/dpohanlon/congenial-octo-fiesta

 11

https://github.com/dpohanlon/congenial-octo-fiesta

10/09/2021IPUs for analysis

Multi-IPU execution

Two IPUs

One IPU

1 x CPU: ~2000/s

On the same
PCI-E board

(different implementation)

 12

• For code where the graph can be scaled according to the number of tiles, e.g.,

if ‘embarrassingly parallel’, can seamlessly construct a ‘virtual IPU’ of all those

on the same physical device

10/09/2021IPUs for analysis

Other benchmarks

arXiv:2008.09210
(Published in Comp. Soft. Big. Sci)

• Studies of HEP related workloads (old Mk1 IPUs)

• Some conventional ML applications in

TensorFlow and PyTorch (GANs,

RNNs/CNNs for classification)

• Also a basic Kálmán filter implemented in the

more flexible C++ interface

• Studies indicate that these outperform P100 GPUs,

whilst being more flexible due to MIMD architecture

• Future work will be on HEP workflows for HLT and

additional ML applications (e.g., graph nets)

 13

https://arxiv.org/abs/2008.09210

10/09/2021IPUs for analysis

Summary

• IPUs billed as an ‘AI accelerator’ but

can be used for conventional

HEP computing workloads

• Starting to understand the hardware

and SDK via ‘toy’ implementations, lots

of useful information provided by

Bristol HPC group

• Promising applications in particular for amplitude fits, features complementary to GPUs and

provide an avenue to increase performance by being more flexible

• Also preparing some documentation and tutorials to widen access and understanding

of the hardware within HEP!

 14

Backup

Graphcore APIs

• API is an important driver for how many FLOPs of useful work can be done

• Current still being worked on very rapidly (with opportunity for us to contribute suggestions)

• 1.x and 2.x supported, with different interfaces

Now public:
docs.graphcore.ai

1.x

1.x , 2.x

• Build the model - custom NN operations optimised for IPU execution - CNN, RNN, etc

http://docs.graphcore.ai

Graphcore APIs

1.x

1.x

Wrapper for model,
data, training config,

etc

Queues for data
ingestion

Graphcore APIs

Also guides on porting TensorFlow models,
with graph ‘sharding’ over multiple IPUs

2.x easier than 1.x - can use IPUStrategy:

…and (IPU) Keras out of the box:

Custom functions require ‘compiled’ XLA operations with tf.function dectorator,
not all TensorFlow ops (well) supported

https://docs.graphcore.ai/projects/porting-tf-models/en/latest/

Graphcore APIsPoplar, C++

High-level interface (matmul, scatter, gather, reduce, etc), on Tensors, control of

tile mapping is handled by a ‘virtual’ graph (subset of the total program graph):

e.g,

Graphcore APIsPoplar, C++

Lower-level interface ‘vertex code’, written in vanilla C++, which is compiled to

the IPU instruction set and executes on a single tile:

E.g, from the Kalman filter,

a 2x2 matrix inverse:

(Lots of high level functionality

isn’t present in poplar yet, and

inverting should be okay for these

matrices)

github.com/dpohanlon/IPU4HEP

http://github.com/dpohanlon/IPU4HEP

Graphcore APIsPoplar, C++

Corresponding interface code, to connect the vertex to some inputs and outputs:

Graphcore APIsPoplar, C++

And then call the ‘vertex’ when building the graph:

NB: Declarative style - you describe the structure of the graph, but nothing gets evaluated yet!

Computation Output

Create a node that executes

the computation, puts

the result in the output

(added to a graph that is then

added to a large program graph)

Gives precise control over what executes on which tiles, potentially beneficial over TF

interface for fixed parallel structures (the Kalman filter, graph neural networks, etc)

10/09/2021IPUs for analysis 23

Benchmarks - Kalman filtering

• Simulate simple set of tracking stations, no magnetic
field, parameterised homogeneous multiple scattering

• Kalman filtering: Progressive fit of track state to hits at
each tracker plane, refined using detector uncertainty
and kinematics projection (Bayesian updates)

• Inherently parallel between tracks

• Assign each track to a tile, constrain operations to the
respective tile - fit 1216 tracks in parallel

• Poplar IPU implementation:

CERN-THESIS-2017-254

Reduce overhead by
copying n batches

each time

10/09/2021IPUs for analysis

Kalman filtering redux
• Re-implemented by Lester to execute the full Kalman filter (per event) on a single

tile:

 24

github.com/lohedges/trackr

• A number of ‘easy win’ optimisations:

• Task based parallelism by oversubscribing
compute vertices to tiles (6 HW threads)

• ‘Vectorisation’ by packing 32 bit floats into
64 bit operands

• Task specific optimisations (loop
unrolling, etc)

• Additional tips from Bristol HPC group:

github.com/UoB-HPC/ipu-hpc-cookbook

http://github.com/lohedges/trackr

You all know what an RBW looks like, but here it is in vertex code:

