
TensorFlow based fitters for amplitude analysis
Abhijit Mathad, on behalf of the developers
International Workshop on PWA and ATHOS, Bristol, UK

10th September 2021

1



Amplitude or angular analysis
• (Preaching the choir!) Amplitude analysis is an important tool in studies such as hadron 

spectroscopy, finding exotic states, CP violation, effects of BSM, etc. 
• Where does TensorFlow enter? And what is it? 

2

Spectroscopy study and CPV:
Toy Dalitz plot of 𝐵!" → #𝐷"𝐾#𝜋$

Pentaquark discovery in Λ% → 𝐽/ 𝜓𝑝𝐾#

Constrain BSM effects: 
Angular analysis of rare and 

semi-leptonic decays

JCPC 2018 04 017 Phys. Rev. Lett. 122.222001 JHEP02(2016)104

https://www.sciencedirect.com/science/article/pii/S0010465518301334?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.222001
https://link.springer.com/article/10.1007%2FJHEP02%282016%29104


What is TensorFlow?

3

Machine learning (ML)? In a very general sense, the tools involved in doing an ML and 
Amplitude analysis are similar…  

In what follows I will be only talking about TF v2.x, which is very different to TF v1.x! 



Path of an amplitude analysis

4

Test an idea with quick feasibility studies
It doesn’t work!



Path of an amplitude analysis

5

Test an idea with quick feasibility studies

Extablish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Collect large amounts of data and prune it
It works!



Amplitude Vs Machine learning (ML) analysis

6

Test an idea with quick feasibility studies

Extablish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Collect large amounts of data and prune it

Come up with an idea

Build a ML model

Train model and make predictions of target

(Sometimes) Evaluate uncertainties

Publish

Collect data and identify useful features

There is quite some parallel between the two, so can we reuse the tools 
developed by a much broader ML community for our needs? 



Welcome to the world of ML software!

7

There are lots of Machine learning software’s freely available:
• Scikit-learn
• PyTorch
• TensorFlow
• Keras
• Weka
• KNIME
• The list goes on...

Covers most of our basic needs:
• Written in C++, python and CUDA. 
• API’s available for several languages (see here), with 

python being the main one. 
• A plethora of mathematical operations and functions for 

numerical analysis (Very numpy-like!)
• Flexibility in developing a model with compact and 

readable code.
• Clever optimisations of code. 
• Can run on various heterogeneous computing architectures 

(multi-core CPUs, TPU, GPU, CPU/GPU farm).

Hang on, we have our own packages in HEP? What are the advantages with TF?

https://www.tensorflow.org/api_docs


Welcome to the world of HEP fitting frameworks!

8

Within LHCb several frameworks are used for amplitude/angular analysis:

• Laura++: C++ with dependency on ROOT, used in Dalitz plot analysis (including time-dependent), 
single threaded with many optimizations.

• Hammer:  C++ interface, single threaded, mainly for semi-leptonic decays with missing neutrinos, has 
interface to RooFit (RooHammer). 

• MINT : C++ interface to study generic 3-body and 4-body final states, has interface with LHCb
simulation package Gauss. 

• GooFit : GPU-based, C++ with python bindings.
• AmpGen: GPU-based, Amplitude analysis extension of GooFit.
• Ipanema-𝛽: GPU-based with python interface (pyCUDA)
• qft++: Amplitude models in covariant formalism (no fitting yet). 
• RooFit: Based on ROOT.
• CompPWA: C++ interface, also python (pycompwa), see dedicated talk. 
• The list could go on…

https://laura.hepforge.org/
https://hammer.physics.lbl.gov/
https://gitlab.cern.ch/InterfacingHammer/roohammermodel
https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
https://github.com/GooFit
https://github.com/GooFit/AmpGen
https://arxiv.org/abs/1706.01420
https://github.com/jdalseno/qft
https://root.cern.ch/doc/master/group__Roofit.html
https://compwa.readthedocs.io/en/latest/
https://indico.cern.ch/event/885396/timetable/


Issues with the HEP fitting frameworks!

9

• They lack functionality and/or flexibility to cover all cases that might 
be encountered in an amplitude analysis. 
• Significant alteration to the framework might be needed to accommodate 

outlying cases, e.g:
• Non-scalars in the initial/final states.
• Accommodating studies of partially reconstructed decays. 

• For analysis that go beyond the available framework, need: 
• Speed of computation. 
• Speed of development.
• Flexibility in model construction and fitting. 

TensorFlow provides a lot of flexibility with quick model development and without 
compramising too much on speed!



Tensor in TensorFlow

10

• The data in TF is represented as a multi-dimensional array with rows and columns (just like numpy array). 
• Rows: Number of events 
• Columns: Dimensions of your phase space (or observables to fit). Easily scalable to multi-dimensions.

• This bulk data can be mapped (e.g. probability at various points in phase space) or reduced (e.g. fit fractions integrated 
over phase space). 



Flow in TensorFlow

11

TF is based on a dataflow paradigm where a program is modelled as directed flow of data between mathematical operations. 
As such it first builds a computational graph that allows for:
• Evaluation of analytic gradients (through automatic differentiation) used by gradient based optimisers (e.g. Minuit).
• Clever optimisations (e.g data caching, common subgraph elimination that avoids multiple computations of same object). 

Ok great! But what TF based frameworks are on the market?



Welcome to the world of TensorFlow frameworks!

12

Packages where only TF is used a computational backend! Packages that use different
computational backends such as:
• Numpy
• TensorFlow
• PyTorch
• JAX

However, I have experience with only zfit, AmplitTF and TFA2 only!

https://numpy.org/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/google/jax


TF fitters

13

Amplitude analysis package, see the dedicated talk. Code from sympy
converted into different computational backends [Webpage]. 

Not for amplitude analysis. Pyhf is a pure-python version of RooFit’s
HistFactory for template fitting! Also has different backends. Storing of 
likelihoods in human-readable format. [Webpage].

Amplitude analysis package based on TensorFlow, see the dedicated 
talk. [Webpage]

Not a fitter but a MC integration library (with MC algorithms) on 
different computing architectures, compatible with python, C, C++ and 
Fortran [Webpage].

https://indico.cern.ch/event/885396/timetable/
https://www.sympy.org/en/index.html
https://github.com/ComPWA/tensorwaves
https://root.cern/doc/master/group__HistFactory.html
https://github.com/scikit-hep/pyhf
https://indico.cern.ch/event/885396/timetable/
https://tf-pwa.readthedocs.io/en/latest/index.html
https://github.com/scikit-hep/pyhf


zFit

14

• Package focused on generic fitting (like RooFit). However very easy to implement custom amplitude model (see backup)!

• Fully integrated with scikit-hep and can use hepstats for statistical inference ("RooStats-like") for sWeights, limits, etc.

• Can be easily interfaced with other amplitude analysis packages (like AmpliTF and TensorWaves). More on this later!

• Currently 2 LHCb papers published using this (both non-amplitude analysis) and a lot ongoing analyses (both within and outside of 
LHCb). 

• A lot of functionality already present. In recent months, the focus has been on following aspects:
• A lot of effort/thought has gone into providing support for a range of minimizers and homogenizing them (e.g. Ipyopt, NLopt, 

SciPy, TF).  
• Different integration techniques. 
• Binned fits (maybe in next release!). 
• Efficient convolution algorithms to include resolution information.

[Paper]
[Webpage]

https://github.com/scikit-hep
https://github.com/scikit-hep/hepstats
https://zfit.readthedocs.io/en/latest/user_api/minimize/minimizers.html
https://gitlab.com/g-braeunlich/ipyopt
https://nlopt.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimizer
https://inspirehep.net/literature/1762012
https://zfit.readthedocs.io/en/latest/index.html


AmpliTF and TFA2

15

• Library based on TF v1.x
• I have conducted an LHCb analysis using this 

(Search for model-dependent CPV of Ξ!" →
𝑝𝐾"𝐾". See Anton’s talk).

• Several ongoing LHCb analysis also use this 
library.  

Update to TF v2.x and split 
into two separate packages 

[TensorFlowAnalysis]

[AmpliTF] [TFA2]

Collection of lot of useful functions for 
amplitude analysis! Easy to contribute and 
interface with other libraries!

Support for fitting, toy generation, easy plotting 
(LHCb publication style), multidimensional density 
estimation using neural nets, ROOT I/O with uproot. 

https://inspirehep.net/literature/1861567
https://indico.cern.ch/event/885396/timetable/
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis
https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2


Tasks in amplitude analysis

16

Test an idea with quick feasibility studies

Establish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Construction of model and toy generation 

Parametrising efficiency, background and accounting for resolution. 

Likelihood minimisation

Generation and fitting to toys with small tweaks to the full model

Analysis reproducibility and preservation

How can AmpliTF and TFA2 help me each of these steps?

Many things to consider when doing amplitude analysis, such as…



Model construction and toy generation

17

Test an idea with quick feasibility studies

Establish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Construction of model and toy generation 

Parametrising efficiency, background and accounting for resolution. 

Likelihood minimisation

Generation and fitting to toys with small tweaks to the full model

Lets look with model construction and toy generation with AmpliTF and TFA2...

Analysis reproducibility and preservation



Model construction: Phase space

The phase space model of of Λ, → 𝑝𝐾-𝜋. can be constructed as follows:

18

Phase space observables here include:
• 𝑚#$

% , 𝑚$&
% , cos(𝜃#), 𝜙# and 𝜙$&

Example of functionalities provided by AmplitTF in such phasespace objects:
• Ensure that a given phsp point is inside the phase space (Note: Non-rectangular phase space due to Dalitz plot observables). 
• Generation of uniform samples in phase space or rectangular grid points in phase space (useful in multi-dimensional MC integration). 
• In presence of identical particles (e.g. Ξ!" → 𝑝𝐾"𝐾") fold the conventional Dalitz plot (convDP). 
• Calculation of various helicity angles and square Dalitz plot variables. 
• In presence of narrow resonances (e.g. Λ(1520)) generate uniform sample in square Dalitz plot (sqDP) instead of conventional.  

• This is helpful in MC integration. There is also a method in this class that provides jacobian of sqDP -> convDP. 
• Given the phsp points, returns the 4-vectors of final state in parent rest frame. 

[AmpliTF]
[TFA2]

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2


Model construction: Phase space

19

[AmpliTF]

Different phase spaces are also available!

We just looked this 5D phase space!

5D and 3D phase space of 4-body decay.

2D Dalitz phase space (forms base class 
for Baryonic3BodyPhaseSpace). 

Mulit-dimensional rectangular phase 
space. Helpful for sequential decays. 

Combining multiple phase spaces 
helpful in sequential decays.

Accept/veto 
certain regions of 
phase space. 

[TFA2]

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2


Model construction: Dynamic terms

20

[AmpliTF]

Define the 
resonance 
properties 

Convert equations 
to code easily

Helpful functions provided by 
AmpliTF.

Side note: The wigner-D 
function actually uses sympy
(open source symbolic python 
library) to generate TF code.  

[TFA2]

https://github.com/apoluekt/AmpliTF
https://www.sympy.org/en/index.html
https://github.com/apoluekt/TFA2


Model construction: Dynamic terms

21

[AmpliTF]

Functions for calculating angular observables 
from lorentz invariant quantities according to 
Dalitz Plot Decomposition (DPD) technique. 

4-vectors, rotations, boost, Wigner-D 
functions, calculation of various angles 
in 3 and 4 body decays, etc. 

Functions that interface with TF, setting 
precision, etc. 

Definitions of 
various lineshape 
related function: 
RBW, non-resonant 
polynomial, Flatte, 
LASS, Gounaris-
Sakurai, etc 

Calculation of integrals, 
weighted/un-weighted 
unbinned likelihood function.

[TFA2]

https://github.com/apoluekt/AmpliTF
https://arxiv.org/abs/1910.04566
https://github.com/apoluekt/TFA2


Toy generation

22

[AmpliTF]
[TFA2]

Output

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2


Experimental effects in the model

23

Test an idea with quick feasibility studies

Establish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Construction of model and toy generation 

Parametrising efficiency, background and accounting for 
resolution. 

Likelihood minimisation

Generation and fitting to toys with small tweaks to the full model

Lets look at parametrising efficiency and background with AmpliTF and TFA2…
(Note: No custom convolution functions yet provided by the library to account for resolution)

Analysis reproducibility and preservation



Interpolation of efficiency

24

[AmpliTF]
[TFA2]

Efficiency maps usually obtained from ratio of histograms before and after selections. To mitigate discontinuity at bin 
edges use smoothing techniques. AmpliTF provides a method (interpolate) for multi-linear interpolation.

Side note about code snippet: The 
RootHistShape class takes TH2D and 
calls the interpolate method internally. 
This class only exists in TFA and not TFA2
(since latter wanted to be ROOT independent). 

Output

[LHCb-PAPER-2020-017]

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2
https://github.com/apoluekt/AmpliTF/blob/master/amplitf/interface.py
https://gitlab.cern.ch/poluekt/TensorFlowAnalysis
https://github.com/apoluekt/TFA2
https://arxiv.org/abs/2104.15074


Modelling of the combinatorial background

25

[AmpliTF]
[TFA2]

The combinatorial background is usually modelled using B mass sideband region and as a result the B mass constraint 
affects its distribution under the signal region. 

JINST 16 P06016

Simulated sample of 𝐷! → 𝐾𝜋𝜋

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2
https://arxiv.org/abs/1902.01452


Modelling of the combinatorial background

26

[AmpliTF]
[TFA2]

To avoid effects of B mass constraint, in the analysis of model-dependent CPV in Ξ%# → 𝑝𝐾#𝐾# [LHCb-PAPER-2020-017], 
artificial neural network (ANN) was trained to model the 3D distribution of sqDP and Ξ%# mass (see JINST 16 P06016, the 
talk and code here). This model is then used to extrapolate the sqDP distribution of the bkg at the Ξ%# mass. 

Store the 
trained weights 

and biases

Side note: Takes a long time to train. Better 
run on GPU if available.

Minimize the 
likelihood

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2
https://arxiv.org/abs/2104.15074
https://arxiv.org/abs/1902.01452
https://indico.cern.ch/event/791230/timetable/?view=standard_numbered
https://github.com/apoluekt/ANNDensity


Modelling of the combinatorial background

27

[AmpliTF]
[TFA2]

Load the trained weights and biases and generate the 3D sample to obtain the sqDP distribution in signal region

True distribution Prediction

Side note: Situation can be 
improved by assissting ANNs 
and can also be applied to 
model efficiency. 
[JINST 16 P06016, talk]

https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2
https://arxiv.org/abs/1902.01452
https://indico.cern.ch/event/791230/timetable/?view=standard_numbered


Minimisation

28

Test an idea with quick feasibility studies

Establish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Construction of model and toy generation 

Parametrising efficiency, background and accounting for resolution. 

Likelihood minimisation

Generation and fitting to toys with small tweaks to the full model

Lets look at likelihood minimisation with AmpliTF and TFA2…

Analysis reproducibility and preservation



Minimisation

• Define the function that calculates 
negative log likelihood function that 
takes list of FitParameter as input 
(see slide).
• Minimize using iminuit (since error 

estimates readily available). 
• Note that one can also interface with 

zfit to use the range of minimizers 
available there. 

29

[AmpliTF]
[TFA2][zfit]

https://iminuit.readthedocs.io/en/stable/
https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2
https://zfit.readthedocs.io/en/latest/whats_new/index.html


Speeding up the minimisation

• To establish an amplitude model, one first considers a large set of resonant and non-resonant 
components e.g., in Ξ23 → 𝑝𝐾3𝐾3 analysis [LHCb-PAPER-2020-017] we initially started with 128 
free parameters with data size of ~500 events a single fitting taking 3 hours.

• Can we improve? The decay density can be expressed as complex parameter-free function of phase 
space with factorizable and non-factorizable parameters of interest. 

• In Ξ23 → 𝑝𝐾3𝐾3 analysis, since masses and widths were fixed, we pre-computed all the 
parameter free integrals with and w/o efficiency information (Taylor expanding the exponential 
non-resonant lineshapes with a slope parameter). This gave massive speed gains i.e. single fit now 
took 15 mins!

• One can further cache all the parameter free terms too for data (see here). 
• Some benchmark studies are mentioned in the backup, but with TFA. 

30

𝑑Γ
𝑑𝑚!𝑑Ω

='ℎ"ℎ#∗ ∗ 𝑓"# m! | 𝑚%, Γ%, 𝛼 ∗ 𝑔"# Ω

[AmpliTF]
[TFA2]

https://arxiv.org/abs/2104.15074
https://github.com/apoluekt/TFA2/blob/master/doc/22_tfa_dalitz_fit_cached.md
https://github.com/apoluekt/AmpliTF
https://github.com/apoluekt/TFA2


Analysis reproducibility and preservation

31

Test an idea with quick feasibility studies

Establish a model including all experimental effects

Obtain the parameters of interest

Evaluate associated uncertainties

Publish

Construction of model and toy generation 

Parametrising efficiency, background and accounting for resolution. 

Likelihood minimisation

Generation and fitting to toys with small tweaks to the full model

Analysis reproducibility and preservation

The models written in TF are portable and can, with some effort, work standalone. This could 
perhaps be shared?



Issues and future

• Graph building impacts performance for large number of quick and simple fits. 
• When large datasets are involved memory usage is high (> few Gb of RAM) even more when 

analytic gradient calculation is involved. 
• Less efficient than code developed with CUDA, but very flexible!

32

• Support for covariant formalism (some code in TFA), K-matrix, etc.
• Porting of other useful code (like fit fraction and interference fit fractions) from TFA to AmpliTF. 
• Develop some examples on how different fitting frameworks can benefit from each other.  
• Documentation on AmpliTF and TFA2. Conventions, formalisms and formulae used!
• Evolve code in AmpliTF and TFA2, such that we are not locked into TF and can easily switch 

backends to numpy, numba, JAX, etc (like in TensorWaves).  

https://gitlab.cern.ch/poluekt/TensorFlowAnalysis
https://github.com/ComPWA/tensorwaves


Summary

• TensorFlow provides a lot of flexibility with quick model development 
and without compramising too much on speed!
• Code can be adapted easily to run on various computing architechures. 
• Benefit a lot from inherent optimisations that come for free with TF and 

with optimisations implemented in amplitude analyses packages.
• Presented an overview of various high and low-level TF fitting 

frameworks. 
• Highlighted here how AmpliTF and TFA2 can help in different steps of 

amplitude analysis [Demo scripts][Installation instructions and guide].

33

https://github.com/apoluekt/TFA2/tree/master/demos
https://github.com/apoluekt/TFA2/tree/master/doc


Backup

34



Implement a wave solutions in TF (Eager execution) 

35

𝑦 𝑥 = 𝑎 ∗ sin(𝑤 ∗ 𝑥 + 𝑝)

Data represented as multi-
dimensional tensor object 
(tf.Tensor)  

Parameters can be tunnable (tf.Variable) 
or non-tunnable (tf.constant). 

Outputs

Note that the data is printed twice. Numpy-like behaviour or eager execution!



Lazy evaluation (@tf.function)

36

Same code as before but 
add a decorator 
(@tf.function) and 
execute.

Side note: For Just-in-time 
compilation (JIT):
@tf.function(jit_comp
ile=True)

Outputs

Note the data get printed only once and is different to before! What is hapenning?

[Code: hello_world.py]

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://github.com/apoluekt/TFA2/blob/master/demos/00_hello_world.py


Lazy execution (@tf.function)

37

• The decorator (@tf.function) takes the function (f) and returns a computational graph (with nodes
as operations and edges representing acyclic flow of data). 

• Under lazy evaluation this graph is compiled once, speeding up the code! 

Side note: 
tf.Variable.assign 
can be used to write new 
value to the variable 
memory (w/o adding any 
new operations to the 
graph).  



Benefits of computational graph

• Many advantages, but a direct application is auto differentiation, i.e. applying chain rule as we 
traverse forwards/backwards through the graph, which helps in evaluation of analytic gradients. 

• Such analytic gradients of the minimizing function not only help overcome the problems of 
numerical ways of computing gradients (round-off errors) but also help speed up the 
minimization itself!

38

𝜕𝜒&

𝜕𝑎
𝜕𝜒&

𝜕𝑤
𝜕𝜒&

𝜕𝑝

Outputs



zfit custom model

39



CPU profiling

40



TFA benchmarks

41



Analysis reproducibility and preservation

• Analysts spend quite some time trying to reproduce results of a different analysis for 
various purposes (correcting simulation samples, extending the previous analysis, etc). 
• To compare between different analysis papers usually publish fit fractions, interference fit 

fractions, etc instead of the direct fit results of the helicity couplings. 
• There could also be intricacies in the model building that might be perhaps be overlooked

in the paper. 
• TensorFlow allows one to store computational graphs however this not human readable. 
• The models written in TF are portable and can, with some effort, work standalone. 

This could perhaps be shared? Should be cautious in propagating bugs!

42


